广西平南县2017届中考第三次综合训练数学试题含答案
广西贵港市平南县九年级数学第三次模拟考试试题(扫描版)

广西贵港市平南县2018届九年级数学第三次模拟考试试题2018年初中学业水平考试第三次模拟数学科试题参考答案一、选择题:1A 2D 3B 4C 5B 6D 7A 8C 9D 10B 11A 12C二、填空题:0 16. 1217. 10 18. 172b <19.(本题满分10分,每小题5分)(1)计算: 解:原式13(263=-+---⨯分 =3- ………………………5分 (2)解:原式=211(1)()11(2)x x x x x x ---⨯--- ………………………1分 =()()22112--⨯--x x x x x …………………2分 =2-x x………………………3分 ∴当3=x 时,原式=32=-x x(答案不唯一,只要x 取不是0、1、2都可以)……5分20.作图如下:解:(1) ………………………3分(2)由(1)结论可知:A A B ADE ∠=∠∠=∠,ABC ∽△ADE △∴ ………………………4分BC DEAB AD =∴341DE=∴ 43=∴DE ………………………5分21.(本题满分6分) 解:(1)∵反比例函数xy 12=的图象过点()a B ,2-,∴212-=a ,解得:6-=a ,∴点B 的坐标为()6,2--B . ………………………1分 将()4,3A 、()6,2--B 代入b kx y +=中得,⎩⎨⎧+=+-=-b k b k 3426, 解得:⎩⎨⎧-==22b k ,…………………2分 ∴一次函数的解析式为22-=x y . …………………3分 (2) 当03<<-x 或2>x 时,直线l 在反比例函数图象的上方, ∴使112y x>成立的x 的取值范围为03<<-x 或2>x . …………………6分 22.(本题满分8分)解:∴答案为:50; 20; 30; ………………………3分 (2)如下图所示:………………………6分(3)根据题意得:80050202000=⨯(名), ………………………7分 答:该校最喜爱《中国诗词大会》节目的学生有800名。
2017年广西贵港市平南县中考数学三模试卷

2017年广西贵港市平南县中考数学三模试卷一、选择题(每小题3分)1.(3分)﹣2017的相反数是()A.B.2017 C.﹣2017 D.﹣2.(3分)面积为2的正方形的边长在()A.1.5和2之间B.1和1.5之间C.0.5和1之间D.0和0.5之间3.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁4.(3分)下列计算结果正确的是()A.a8÷a4=a2B.a2•a3=a6 C.(a3)2=a6D.(﹣2a2)3=8a65.(3分)在函数y=中,自变量x的取值范围是()A.x>3 B.x≥3 C.x>4 D.x≥3且x≠46.(3分)如图所示几何体的左视图为()A.B.C.D.7.(3分)东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,他选中创新能力试题的概率是()A.B.C.D.8.(3分)一元二次方程2x2+3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定9.(3分)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+410.(3分)如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25°B.40°C.50°D.65°11.(3分)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2 C.3 D.212.(3分)如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S=4S△ADF.其中正确的有()△ABCA.1个 B.2 个C.3 个D.4个二、填空题(每小题3分)13.(3分)某种细胞的直径是9.5×10﹣7米,则9.5×10﹣7表示的数值是.14.(3分)分解因式:a3﹣9a=.15.(3分)某校规定学生的数学期评成绩满分为100分,其中段考成绩占40%,期考成绩占60%,小明的段、期考成绩(百分制)依次是80分,90分,则小明的数学期评成绩是分.16.(3分)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是.17.(3分)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是.18.(3分)如图,在△ABC中,∠C=90°,AC=2,BC=1,点A,C分别在x轴、y 轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为.三、解答题19.(10分)(1)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0;(2)解分式方程:=.20.(6分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.21.(6分)如图,反比例函数y=(x>0)图象经过点A(2,1),直线AB 与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求∠DAC的度数及直线AC的解析式.22.(7分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?23.(8分)某市政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价如表:设购买甲种树苗x棵,承包商获得的利润为y元.请解答下列问题:(1)求y与x之间的函数关系式;(2)若栽植这批树苗全部成活,承包商要获得不低于中标价16%的利润,应如何选购树苗?最大利润是多少?24.(8分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.25.(11分)抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,P(1,﹣3),B(4,0).(1)求该抛物线的解析式;(2)若F为x轴上一点,且FO=OP,求点F的坐标;(3)若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标.26.(10分)如图,已知一个直角三角形纸片ACB,其中,∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)①如图1,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且S四边形ECBF=3S△EDF,则AE=.②如图2,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上点的M处,且MF∥CA,求EF的长(2)如图3,若FE的延长线与BC的延长线交于点N,CN=1,CE=,求的值.2017年广西贵港市平南县中考数学三模试卷参考答案与试题解析一、选择题(每小题3分)1.(3分)﹣2017的相反数是()A.B.2017 C.﹣2017 D.﹣【解答】解:﹣2017的相反数是2017.故选:B.2.(3分)面积为2的正方形的边长在()A.1.5和2之间B.1和1.5之间C.0.5和1之间D.0和0.5之间【解答】解:面积为2的正方形的边长是,∵12=1,1.52=2.25,∴1<<1.5,故选:B.3.(3分)如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择()A.甲B.乙C.丙D.丁【解答】解:∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选:A.4.(3分)下列计算结果正确的是()A.a8÷a4=a2B.a2•a3=a6 C.(a3)2=a6D.(﹣2a2)3=8a6【解答】解:A、a8÷a4=a4,故A错误;B、a2•a3=a5,故B错误;C、(a3)2=a6,故C正确;D、(﹣2a2)3=﹣8a6,故D错误.故选:C.5.(3分)在函数y=中,自变量x的取值范围是()A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4【解答】解:由题意,得x﹣3≥0且x﹣4≠0,解得x≥3且x≠4,故选:D.6.(3分)如图所示几何体的左视图为()A.B.C.D.【解答】解:从左边看第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故选:A.7.(3分)东营市某学校组织知识竞赛,共设有20道试题,其中有关中国优秀传统文化试题10道,实践应用试题6道,创新能力试题4道.小婕从中任选一道试题作答,他选中创新能力试题的概率是()A.B.C.D.【解答】解:∵共设有20道试题,创新能力试题4道,∴他选中创新能力试题的概率==.故选A.8.(3分)一元二次方程2x2+3x+1=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定【解答】解:∵在方程2x2+3x+1=0中,△=32﹣4×2×1=1>0,∴方程2x2+3x+1=0有两个不相等的实数根.故选B.9.(3分)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+4【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1,故答案为C.10.(3分)如图,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O的切线,交AB的延长线于点D,则∠D的度数是()A.25°B.40°C.50°D.65°【解答】解:连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°﹣∠BOC=40°.故选B.11.(3分)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2 C.3 D.2【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D 处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.12.(3分)如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE、BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;=4S△ADF.其中正确的有()③BC•AD=AE2;④S△ABCA.1个 B.2 个C.3 个D.4个【解答】解:∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵点F是AB的中点,∴FD=AB,∵∠ABE=45°,∴△ABE是等腰直角三角形,∴AE=BE,∵点F是AB的中点,∴FE=AB,∴FD=FE,①正确;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正确;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD~△BCE,∴=,即BC•AD=AB•BE,∵AE2=AB•AE=AB•BE,BC•AD=AC•BE=AB•BE,∴BC•AD=AE2;③正确;∵F是AB的中点,BD=CD,∴S=2S△ABD=4S△ADF,④正确.△ABC故选:D.二、填空题(每小题3分)13.(3分)某种细胞的直径是9.5×10﹣7米,则9.5×10﹣7表示的数值是0.00000095.【解答】解:9.5×10﹣7=0.00000095,故答案为:0.00000095.14.(3分)分解因式:a3﹣9a=a(a+3)(a﹣3).【解答】解:a3﹣9a=a(a2﹣32)=a(a+3)(a﹣3).15.(3分)某校规定学生的数学期评成绩满分为100分,其中段考成绩占40%,期考成绩占60%,小明的段、期考成绩(百分制)依次是80分,90分,则小明的数学期评成绩是86分.【解答】解:由加权平均数的公式可知==86,故答案为86.16.(3分)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.【解答】解:因为2+2=4,所以等腰三角形的腰的长度是4,底边长2,周长:4+4+2=10,答:它的周长是10,故答案为:1017.(3分)如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是﹣.【解答】解:如图,连接OM交AB于点C,连接OA、OB,由题意知,OM⊥AB,且OC=MC=,在RT△AOC中,∵OA=1,OC=,∴cos∠AOC==,AC==∴∠AOC=60°,AB=2AC=,∴∠AOB=2∠AOC=120°,则S=S扇形OAB﹣S△AOB弓形ABM=﹣××=﹣,S阴影=S半圆﹣2S弓形ABM=π×12﹣2(﹣)=﹣.故答案为:﹣.18.(3分)如图,在△ABC中,∠C=90°,AC=2,BC=1,点A,C分别在x轴、y 轴上,当点A在x轴运动时,点C随之在y轴上运动,在运动过程中,点B到原点O的最大距离为+1.【解答】解:设AC的中点是D,则OD=AC=1,根据勾股定理得BD=,当B、D、O在一条直线上时,点B到原点O的最大,最大距离是+1.三、解答题19.(10分)(1)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0;(2)解分式方程:=.【解答】解:(1)原式=﹣2×+2+1=+2;(2)去分母得:2x﹣2=x+3,解得:x=5,检验:当x=5时,(x+3)(x﹣1)≠0,则x=5是分式方程的解.20.(6分)在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△AB2C2即为所求,点B2(4,﹣2),C2(1,﹣3).21.(6分)如图,反比例函数y=(x>0)图象经过点A(2,1),直线AB 与反比例函数图象交于另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k的值;(2)求∠DAC的度数及直线AC的解析式.【解答】解:(1)由反比例函数y=(x>0)的图象经过点A(2,1),得:k=2×1=2,∴反比例函数为y=(x>0),(2)作BH⊥AD于H,如图1,把B(1,a)代入反比例函数解析式y=(x>0),得a=2,∴B点坐标为(1,2),∴AH=2﹣1,BH=2﹣1,∴△ABH为等腰直角三角形,∴∠BAH=45°,∵∠BAC=75°,∴∠DAC=∠BAC﹣∠BAH=30°,∴tan∠DAC=tan30°=;∵AD⊥y轴,∴OD=1,AD=2,∵tan∠DAC==,∴CD=2,∴OC=1,∴C点坐标为(0,﹣1),设直线AC的解析式为y=kx+b,把A(2,1)、C(0,﹣1)代入得,解,∴直线AC的解析式为y=x﹣1.22.(7分)为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求文学社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有1500名学生,请估计喜欢体育类社团的学生有多少人?【解答】解:(1)80÷40%=200(人).∴此次共调查200人.(2)×360°=108°.∴文学社团在扇形统计图中所占圆心角的度数为108°.(3)补全如图,(4)1500×40%=600(人).∴估计该校喜欢体育类社团的学生有600人.23.(8分)某市政府将对江边一处废弃荒地进行绿化,要求栽植甲、乙两种不同的树苗共6000棵,且甲种树苗不得多于乙种树苗,某承包商以26万元的报价中标承包了这项工程.根据调查及相关资料表明:移栽一棵树苗的平均费用为8元,甲、乙两种树苗的购买价如表:设购买甲种树苗x棵,承包商获得的利润为y元.请解答下列问题:(1)求y与x之间的函数关系式;(2)若栽植这批树苗全部成活,承包商要获得不低于中标价16%的利润,应如何选购树苗?最大利润是多少?【解答】解:(1)y=260000﹣[20x+32(6000﹣x)+8×6000]=12x+20000(2)由题意,得12x+20000≥260000×16%,解得:x≥1800,∵x≤6000﹣x∴x≤3000∴1800≤x≤3000,购买甲种树苗不少于1800棵且不多于3000棵;而y=12x+20000∵12>0,∴y随x的增大而增大,∴x=3000时,y取得最大值56000∴最大利润为56000元.24.(8分)如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=,BC=2,求⊙O的半径.【解答】解:(1)直线CE与⊙O相切.…(1分)理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.…(5分)(2)∵tan∠ACB==,BC=2,∴AB=BC•tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC•tan∠DCE=1;方法一:在Rt△CDE中,CE==,连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,过点O作OM⊥AE于点M,则AM=AE=在Rt△AMO中,OA==÷=…(9分)25.(11分)抛物线y=ax2+c与x轴交于A、B两点,顶点为C,点P在抛物线上,P(1,﹣3),B(4,0).(1)求该抛物线的解析式;(2)若F为x轴上一点,且FO=OP,求点F的坐标;(3)若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标.【解答】解:(1)将P(1,﹣3)、B(4,0)代入y=ax2+c,得,解得.抛物线的解析式为:y=x2﹣;(2)设F(q,0),则12+32=q2,解得:q=,∴点F的坐标为,;(3)如图1:当D在P左侧时,由∠DPO=∠POB得DP∥OB.D与P关于y轴对称,P(1,﹣3)得D(﹣1,﹣3).如图2,当D在P右侧时,即图中D2,则∠D2PO=∠POB,延长PD2交x轴于Q,则QO=QP,设Q(q,0),则(q﹣1)2+32=q2,解得:q=5,∴Q(5,0),则直线PD2为y=x﹣,再联立得:x=1或,∴D2(,﹣).∴点D的坐标为(﹣1,﹣3)或().26.(10分)如图,已知一个直角三角形纸片ACB,其中,∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上的点,连接EF.(1)①如图1,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且S四边形ECBF=3S△EDF,则AE= 2.5.②如图2,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上点的M处,且MF∥CA,求EF的长(2)如图3,若FE的延长线与BC的延长线交于点N,CN=1,CE=,求的值.【解答】解:(1)如图①,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF ≌S△DEF,∵S四边形ECBF=3S△EDF,∴S△ABC=4S△AEF,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,∴AB==5,∵∠EAF=∠BAC,∴Rt△AEF∽Rt△ABC,∴=()2,即()2=,∴AE=2.5,故答案为:2.5;(2)连结AM交EF于点O,如图②,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴AE=EM,AF=MF,∠AFE=∠MFE,∵MF∥AC,∴∠AEF=∠MFE,∴∠AEF=∠AFE,∴AE=AF,∴AE=EM=MF=AF,∴四边形AEMF为菱形,设AE=x,则EM=x,CE=4﹣x,∵四边形AEMF为菱形,∴EM∥AB,∴△CME∽△CBA,∴==,即==,解得x=,CM=,在Rt△ACM中,AM==,∵S=EF•AM=AE•CM,菱形AEMF∴EF=2×=;(3)如图③,作FH⊥BC于H,∵EC∥FH,∴△NCE∽△NFH,∴CN:NH=CE:FH,即1:NH=:FH,∴FH:NH=4:7,设FH=4x,NH=7x,则CH=7x﹣1,BH=3﹣(7x﹣1)=4﹣7x,∵FH∥AC,∴△BFH∽△BAC,∴BH:BC=FH:AC,即(4﹣7x):3=4x:4,解得x=0.4,∴FH=4x=,BH=4﹣7x=1.2,在Rt△BFH中,BF==2,∴AF=AB﹣BF=5﹣2=3,∴=.。
广西贵港市平南县2017届中考数学一模试卷(含解析)

2017年广西贵港市平南县中考数学一模试卷一、选择题(共12小题,每小题3分,满分36分)1.﹣相反数的是()A.B.﹣ C.﹣ D.2.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076克用科学记数法表示为()A.7.6×10﹣8B.0.76×10﹣9C.7.6×108D.0.76×1093.下列各式计算正确的是()A.(a+b)2=a2+b2B.a•a2=a3C.a8÷a2=a4D.a2+a3=a54.下列命题为真命题的是()A.有公共顶点的两个角是对顶角B.多项式x2﹣4x因式分解的结果是x(x2﹣4)C.a+a=a2D.一元二次方程x2﹣x+2=0无实数根5.下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c6.如图,观察图形,找出规律,确定第四个图形是()A.B.C.D.7.下列说法中正确的是()A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C.“同位角相等”这一事件是不可能事件D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件8.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30° B.20° C.15° D.14°9.如图,半圆的圆心为O,直径AB的长为12,C为半圆上一点,∠CAB=30°,的长是()A.12π B.6πC.5πD.4π10.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1 B.﹣1<a<C.﹣<a<1 D.a>11.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段DE B.线段PD C.线段PC D.线段PE12.如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC边上任一点,过点F 分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为()A.B.C. D.二、填空题(本大题共有6小题,每小题3分,共18分)13.函数y=中,自变量x的取值范围是.14.若α、β是方程x2+2x﹣2017=0的两个实数根,则α2+3α+β的值为.15.如图,OD是⊙O的半径,弦AB⊥OD于E,若∠O=70°,则∠A+∠C= 度.16.如图,P是Rt△ABC的斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有条.17.不论m取任何实数,抛物线y=(x﹣m)2+m﹣1(x为自变量)的顶点都在一条直线上,则这条直线的函数解析式是.18.如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2016A2017= .三、解答题(本大题共有8小题,共66分)19.(10分)(1)计算:|﹣2|+20150﹣()+3tan30°;(2)解不等式组:,并将不等式组的解集在所给数轴上表示出来.20.(6分)已知BD平分∠ABF,且交AE于点D.(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,当AC⊥BD时,AD与BC的位置和数量关系是.21.(6分)已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.22.(7分)某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是个,中位数是个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.23.(8分)某工厂对零件进行检测,引进了检测机器.已知一台检测机的工作效率相当于一名检测员的20倍.若用这台检测机检测900个零件要比15名检测员检测这些零件少3小时.(1)求一台零件检测机每小时检测零件多少个?(2)现有一项零件检测任务,要求不超过7小时检测完成3450个零件.该厂调配了2台检测机和30名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?24.(8分)如图,△ABC中,E是AC上一点,且AE=AB,∠EBC=∠BAC,以AB为直径的⊙O交AC于点D,交EB于点F.(1)求证:BC与⊙O相切;(2)若AB=8,sin∠EBC=,求AC的长.25.(11分)如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA所在的直线为x轴,y轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c经过O,D,C三点.(1)求抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C 出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC 是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.26.(10分)在四边形ABCD中,对角线AC、BD相交于点O,设锐角∠AOB=α,将△DOC按逆时针方向旋转得到△D′OC′(0°<旋转角<90°)连接AC′、BD′,AC′与BD′相交于点M.(1)当四边形ABCD为矩形时,如图1.求证:△AOC′≌△BOD′.(2)当四边形ABCD为平行四边形时,设AC=kBD,如图2.①猜想此时△AOC′与△BOD′有何关系,证明你的猜想;②探究AC′与BD′的数量关系以及∠AMB与α的大小关系,并给予证明.2017年广西贵港市平南县中考数学一模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(2017•平南县一模)﹣相反数的是()A.B.﹣ C.﹣ D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:相反数的是.故选D.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.学生易与倒数混淆.2.(2017•平南县一模)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微笑的无花果,质量只有0.000000076克,将0.000000076克用科学记数法表示为()A.7.6×10﹣8B.0.76×10﹣9C.7.6×108D.0.76×109【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000076=7.6×10﹣8.故选:A.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(2014•汕尾)下列各式计算正确的是()A.(a+b)2=a2+b2B.a•a2=a3C.a8÷a2=a4D.a2+a3=a5【考点】同底数幂的除法;合并同类项;同底数幂的乘法;完全平方公式.【分析】A、原式利用完全平方公式展开得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式不能合并,错误.【解答】解:A、原式=a2+b2+2ab,故A选项错误;B、原式=a3,故B选项正确;C、原式=a6,故C选项错误;D、原式不能合并,故D选项错误,故选:B【点评】此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.4.(2016•铜仁市)下列命题为真命题的是()A.有公共顶点的两个角是对顶角B.多项式x2﹣4x因式分解的结果是x(x2﹣4)C.a+a=a2D.一元二次方程x2﹣x+2=0无实数根【考点】命题与定理.【分析】分别利用对顶角的定义以及分解因式、合并同类项法则、根的判别式分析得出答案.【解答】解:A、有公共顶点的两个角不一定是对顶角,故此选项错误;B、多项式x2﹣4x因式分解的结果是x(x+2)(x﹣2),故此选项错误;C、a+a=2a,故此选项错误;D、一元二次方程x2﹣x+2=0,b2﹣4ac=﹣7<0,故此方程无实数根,正确.故选:D.【点评】此题主要考查了命题与定理,正确把握相关定义是解题关键.5.(2017•平南县一模)下列各式从左到右的变形中,为因式分解的是()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.y2﹣1=(y+1)(y﹣1)D.ax+by+c=x(a+b)+c【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、把一个多项式转化成几个整式积,故C正确;D、没把一个多项式转化成几个整式积,故D错误;故选:C.【点评】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积是解题关键.6.(2017•平南县一模)如图,观察图形,找出规律,确定第四个图形是()A.B.C.D.【考点】规律型:图形的变化类.【分析】根据(1)(2)(3)可以看出图形每次逆时针方向旋转90°,按此规律不难作出判断.【解答】解:观察图形,发现(1)(2)(3)每次逆时针方向旋转90°,依次规律第四个图形应为C.故选:C.【点评】本题主要考查了学生的分析、总结、归纳能力,规律型的题目一般是从所给的图形、数据以及运算方法进行分析,从特殊到一般,从而总结出一般性的规律.7.(2015•包头)下列说法中正确的是()A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C.“同位角相等”这一事件是不可能事件D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件【考点】随机事件;列表法与树状图法.【分析】根据概率的意义,可判断A;根据必然事件,可判断B、D;根据随机事件,可判断C.【解答】解:A、掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为,故A错误;B、“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件,故B正确;C、同位角相等是随机事件,故C错误;D、“钝角三角形三条高所在直线的交点在三角形外部”这一事件是必然事件,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.(2013•盘锦)如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是()A.30° B.20° C.15° D.14°【考点】平行线的性质.【分析】延长两三角板重合的边与直尺相交,根据两直线平行,内错角相等求出∠2,再利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:如图,∠2=30°,∠1=∠3﹣∠2=45°﹣30°=15°.故选C.【点评】本题考查了平行线的性质,三角板的知识,熟记平行线的性质,三角板的度数是解题的关键.9.(2016•遵义)如图,半圆的圆心为O,直径AB的长为12,C为半圆上一点,∠CAB=30°,的长是()A.12π B.6πC.5πD.4π【考点】弧长的计算.【分析】如图,连接OC,利用圆周角定理和邻补角的定义求得∠AOC的度数,然后利用弧长公式进行解答即可.【解答】解:如图,连接OC,∵∠CAB=30°,∴∠BOC=2∠CAB=60°,∴∠AOC=120°.又直径AB的长为12,∴半径OA=6,∴的长是: =4π.故选:D.【点评】本题考查了弧长的计算,圆周角定理.根据题意求得∠AOC的度数是解题的关键.10.(2012•深圳)已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a<﹣1 B.﹣1<a<C.﹣<a<1 D.a>【考点】关于x轴、y轴对称的点的坐标;一元一次不等式组的应用.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在第四象限,∴,解不等式①得,a>﹣1,解不等式②得,a<,所以,不等式组的解集是﹣1<a<.故选:B.【点评】本题考查了关于x轴、y轴对称点的坐标,以及各象限内点的坐标的特点,判断出点P在第四象限是解题的关键.11.(2017•平南县一模)如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P 为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的()A.线段DE B.线段PD C.线段PC D.线段PE【考点】动点问题的函数图象.【分析】先设等边三角形的边长为1个单位长度,再根据等边三角形的性质确定各线段取最小值时x的范围,最后结合函数图象得到结论.【解答】解:设等边三角形边长为1,则0≤x≤1,如图1,分别过点E、C、D作AB的垂线,垂足分别为F、G、H,根据等边三角形的性质可知,当x=时,线段PE有最小值;当x=时,线段PC有最小值;当x=时,线段PD有最小值;∵点E、D分别是AC,BC边的中点∴线段DE的长为定值.根据图2可知,当x=时,函数有最小值,故这条线段为PE.故选(D)【点评】本题主要考查的是动点问题的函数图象,灵活运用等边三角形的性质和二次函数图象的对称性是解题的关键.解题时需要深刻理解动点的函数图象,了解图象中关键点所代表的实际意义.12.(2017•平南县一模)如图,在矩形ABCD中,AB=3,BC=2,点E为AD中点,点F为BC 边上任一点,过点F分别作EB,EC的垂线,垂足分别为点G,H,则FG+FH为()A.B.C. D.【考点】矩形的性质.【分析】连接EF,由矩形的性质得出AB=CD=3,AD=BC=2,∠A=∠D=90°,由勾股定理求出BE,由SAS证明△ABE≌△DCE,得出BE=CE=,再由△BCE的面积=△BEF的面积+△CEF 的面积,即可得出结果.【解答】解:连接EF,如图所示:∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=2,∠A=∠D=90°,∵点E为AD中点,∴AE=DE=1,∴BE===,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴BE=CE=,∵△BCE的面积=△BEF的面积+△CEF的面积,∴BC×AB=BE×FG+CE×FH,即BE(FG+FH)=BC×AB,即(FG+FH)=2×3,解得:FG+FH=;故选:D.【点评】本题考查了矩形的性质、全等三角形的判定与性质、勾股定理、三角形面积的计算;熟练掌握矩形的性质,证明三角形全等是解决问题的关键.二、填空题(本大题共有6小题,每小题3分,共18分)13.(2017•平南县一模)函数y=中,自变量x的取值范围是x>1 .【考点】函数自变量的取值范围.【分析】从两个角度考虑:分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.【解答】解:根据题意得到:x﹣1>0,解得x>1.故答案为:x>1.【点评】本题考查了函数式有意义的x的取值范围.判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.14.(2017•平南县一模)若α、β是方程x2+2x﹣2017=0的两个实数根,则α2+3α+β的值为2015 .【考点】根与系数的关系.【分析】根据一元二次方程的解的定义,以及根与系数之间的关系,即可得到α2+2α﹣2017=0,α+β=﹣2,根据α2+3α+β=α2+2α+α+β即可求解.【解答】解:∵α,β是方程x2+2x﹣2017=0的两个实数根,∴α2+2α﹣2017=0,α+β=﹣2.∴α2+2α=2017,∴α2+3α+β=α2+2α+α+β=2017﹣2=2015.故答案是2015.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.也考查了一元二次方程的解的定义.15.(2017•平南县一模)如图,OD是⊙O的半径,弦AB⊥OD于E,若∠O=70°,则∠A+∠C= 55 度.【考点】垂径定理.【分析】如图,连接OB,利用等腰△OAB的性质可以求得∠ABO的度数;结合垂径定理、圆周角定理来求∠C的度数,易得∠A+∠C的值.【解答】解:如图,连接OB,∵OA=OB,∴∠A=∠ABO.又∵OD是⊙O的半径,弦AB⊥OD于E,∠O=70°,∴=,∠AOB=140°,∴∠C=∠AOD=35°,∠A=∠ABO=20°,∴∠A+∠C=55°.故答案是:55.【点评】本题考查了垂径定理.解此类题目要注意将圆的问题转化成三角形的问题再进行计算.16.(2017•平南县一模)如图,P是Rt△ABC的斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有 3 条.【考点】相似三角形的判定.【分析】过点P作直线与另一边相交,使所得的三角形与原三角形有一个公共角,只要再作一个直角就可以.【解答】解:由于△ABC是直角三角形,过P点作直线截△ABC,则截得的三角形与△ABC有一公共角,所以只要再作一个直角即可使截得的三角形与Rt△ABC相似,过点P可作AB的垂线、AC的垂线、BC的垂线,共3条直线.故答案为:3.【点评】本题主要考查三角形相似判定定理及其运用.解题时运用了两角法(有两组角对应相等的两个三角形相似)来判定两个三角形相似.17.(2017•平南县一模)不论m取任何实数,抛物线y=(x﹣m)2+m﹣1(x为自变量)的顶点都在一条直线上,则这条直线的函数解析式是y=x﹣1 .【考点】待定系数法求二次函数解析式.【分析】根据抛物线的顶点式可得顶点坐标,即,①﹣②得:x﹣y=1,可知答案.【解答】解:∵抛物线y=(x﹣m)2+m﹣1的顶点坐标为(m,m﹣1),即,①﹣②,得:x﹣y=1,即y=x﹣1,故答案为:y=x﹣1.【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.18.(2017•平南县一模)如图,正方形ABCB1中,AB=1,AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3B4,…,依此规律,则A2016A2017= 2×31008.【考点】相似三角形的判定与性质;正方形的性质.【分析】由四边形ABCB1是正方形,得到AB=AB1,AB∥CB1,于是得到AB∥A1C,根据平行线的性质得到∠CA1A=30°,解直角三角形得到A1B1=,AA1=2,同理:A2A3=2()2,A3A4=2()3,找出规律A n A n+1=2()n,答案即可求出.【解答】解:∵四边形ABCB1是正方形,∴AB=AB1,AB∥CB1,∴AB∥A1C,∴∠CA1A=30°,∴A1B1=,AA1=2,∴A1B2=A1B1=,∴A1A2=2,同理:A2A3=2()2,A3A4=2()3,…∴A n A n+1=2()n,∴A2016A2017=2()2016=2×31008.故答案为:2×31008.【点评】本题考查了正方形的性质,含30°直角三角形的性质,平行线的性质的综合应用,求出后一个正方形的边长是前一个正方形的边长的倍是解题的关键.三、解答题(本大题共有8小题,共66分)19.(10分)(2017•平南县一模)(1)计算:|﹣2|+20150﹣()+3tan30°;(2)解不等式组:,并将不等式组的解集在所给数轴上表示出来.【考点】解一元一次不等式组;实数的运算;零指数幂;在数轴上表示不等式的解集;特殊角的三角函数值.【分析】(1)根据绝对值、零指数幂、负整数指数幂、特殊角的三角函数值分别求出每部分的值,再代入求出即可;(2)先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:(1)原式=2﹣+1﹣3+3=0;(2)解不等式①得:x≤4,解不等式②得:x<2,原不等式组的解集为x<2,不等式组的解集在数轴上表示如下:.【点评】本题考查了绝对值、零指数幂、负整数指数幂、特殊角的三角函数值、解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能求出每部分的值是解(1)的关键,能求出不等式组的解集是(2)的关键.20.已知BD平分∠ABF,且交AE于点D.(1)求作:∠BAE的平分线AP(要求:尺规作图,保留作图痕迹,不写作法);(2)设AP交BD于点O,交BF于点C,当AC⊥BD时,AD与BC的位置和数量关系是平行且相等.【考点】作图—基本作图.【分析】(1)根据角平分线的作法作出∠BAE的平分线AP即可;(2)根据ASA证明△ABO≌△CBO,得出AO=CO,AB=CB,再根据ASA证明△ABO≌△ADO,得出BO=DO.由对角线互相平分的四边形是平行四边形及有一组邻边相等的平行四边形是菱形即可证明四边形ABCD是菱形即可得.【解答】解:(1)如图所示:(2)在△ABO和△CBO中,∵,∴△ABO≌△CBO(ASA),∴AO=CO,AB=CB.在△ABO和△ADO中,∵,∴△ABO≌△ADO(ASA),∴BO=DO.∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∵AB=CB,∴平行四边形ABCD是菱形,∴AD与BC的位置和数量关系是:平行且相等,故答案为:平行且相等.【点评】此题主要考查了角平分线的作法以及菱形的判定和全等三角形的判定与性质,熟练掌握菱形的判定是解题关键.21.已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=:(1)求反比例函数和直线的函数表达式;(2)求△OPQ的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)过P作PC⊥y轴于C,由P(,n),得到OC=n,PC=,根据三角函数的定义得到P(,8),于是得到反比例函数的解析式为y=,Q(4,1),解方程组即可得到直线的函数表达式为y=﹣2x+9;(2)过Q作OD⊥y轴于D,于是得到S△POQ=S四边形PCDQ=.【解答】解:(1)过P作PC⊥y轴于C,∵P(,n),∴OC=n,PC=,∵tan∠BOP=,∴n=8,∴P(,8),设反比例函数的解析式为y=,∴a=4,∴反比例函数的解析式为y=,∴Q(4,1),把P(,8),Q(4,1)代入y=kx+b中得,∴,∴直线的函数表达式为y=﹣2x+9;(2)过Q作OD⊥y轴于D,则S△POQ=S四边形PCDQ=(+4)×(8﹣1)=.【点评】本题考查了反比例函数与一次函数的交点问题,反比例函数图象上点的坐标特征,利用待定系数法求反比例函数和一次函数的解析式,正切函数的定义,难度适中,利用数形结合是解题的关键.22.某中学初三(1)班共有40名同学,在一次30秒跳绳测试中他们的成绩统计如下表:将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是95 个,中位数是95 个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳不能得满分.【考点】频数(率)分布直方图;用样本估计总体;中位数;众数.【分析】(1)首先根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,从而求得跳98个的人数;(2)根据众数和中位数的定义填空即可;(3)用样本估计总体即可.【解答】解:(1)根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,∴跳98个的有13﹣5=8人,跳90个的有40﹣1﹣2﹣8﹣11﹣8﹣5=5人,故统计表为:直方图为:(2)观察统计表知:众数为95个,中位数为95个;(3)估计该中学初三年级不能得满分的有720×=54人.【点评】本题考查了频数分布表及频率分布直方图的知识,解题的关键是读懂题意并读懂两个统计图,难度中等.23.某工厂对零件进行检测,引进了检测机器.已知一台检测机的工作效率相当于一名检测员的20倍.若用这台检测机检测900个零件要比15名检测员检测这些零件少3小时.(1)求一台零件检测机每小时检测零件多少个?(2)现有一项零件检测任务,要求不超过7小时检测完成3450个零件.该厂调配了2台检测机和30名检测员,工作3小时后又调配了一些检测机进行支援,则该厂至少再调配几台检测机才能完成任务?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)首先设一名检测员每小时检测零件x个,则一台零件检测机每小时检测零件20x个,根据题意可得等量关系:15名检测员检测900个零件所用的时间﹣检测机检测900个零件所用的时间=3,根据等量关系列出方程,再解即可;(2)设该厂再调配a台检测机才能完成任务,由题意得不等关系:2台检测机和30名检测员工作7小时检测的零件数+a台检测机工作4小时检测的零件数>3450个零件,根据不等关系列出不等式,再解即可.【解答】解:(1)设一名检测员每小时检测零件x个,由题意得:﹣=3,解得:x=5,经检验:x=5是分式方程的解,20x=20×5=100,答:一台零件检测机每小时检测零件100个;(2)设该厂再调配a台检测机才能完成任务,由题意得:(2×100+30×5)×7+100a×(7﹣3)>3450,解得:a>2.5,∵a为正整数,∴a的最小值为3,答:该厂至少再调配3台检测机才能完成任务.【点评】此题主要考查了分式方程和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系或不等关系,设出未知数,列出方程和不等式.24.如图,△ABC中,E是AC上一点,且AE=AB,∠EBC=∠BAC,以AB为直径的⊙O交AC于点D,交EB于点F.(1)求证:BC与⊙O相切;(2)若AB=8,sin∠EBC=,求AC的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)首先连接AF,由AB为直径,根据圆周角定理,可得∠AFB=90°,又由AE=AB,∠EBC=∠BAC,根据等腰三角形的性质,可得∠BAF=∠EBC,继而证得BC与⊙O相切;(2)首先过E作EG⊥BC于点G,由三角函数的性质,可求得BF的长,易证得△CEG∽△CAB,然后由相似三角形的对应边成比例,求得答案.【解答】(1)证明:连接AF.∵AB为直径,∴∠AFB=90°.∵AE=AB,∴△ABE为等腰三角形.∴∠BAF=∠BAC.∵∠EBC=∠BAC,∴∠BAF=∠EBC,∴∠FAB+∠FBA=∠EBC+∠FBA=90°.∴∠ABC=90°.即AB⊥BC,∴BC与⊙O相切.(2)解:过E作EG⊥BC于点G,∵∠BAF=∠EBC,∴sin∠BAF=sin∠EBC=.在△AFB中,∠AFB=90°,∵AB=8,∴BF=AB•sin∠BAF=8×=2,∴BE=2BF=4.在△EGB中,∠EGB=90°,∴EG=BE•sin∠EBC=4×=1,∵EG⊥BC,AB⊥BC,∴EG∥AB,∴△CEG∽△CAB,∴.∴,∴CE=,∴AC=AE+CE=8+=.【点评】此题考查了切线的判定、相似三角形的判定与性质、圆周角定理、等腰三角形的性质以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.25.(11分)(2017•平南县一模)如图,在矩形ABCD中,AO=10,AB=8,分别以OC、OA 所在的直线为x轴,y轴建立平面直角坐标系,点D(3,10)、E(0,6),抛物线y=ax2+bx+c 经过O,D,C三点.(1)求抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C 出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使四边形MENC 是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)由矩形的性质可求得C点坐标,再利用待定系数法可求得抛物线的解析式;(2)用t可分别表示出CQ、PC的长,当∠PQC=∠DAE=90°,有△ADE∽△QPC;当∠QPC=∠DAE=90°,有△ADE∽△PQC,利用相似三角形的性质可分别得到关于t的方程,可求得t 的值;(3)由题意可知CE为平行四边形的对角线,根据抛物线的对称性可知当M为抛物线顶点时满足条件,再由平行四边形的性质可知线段MN被线段EC平分,可求得N点坐标.【解答】解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.∴C(8,0),∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0),。
平南县初中三模数学试卷

一、选择题(每题5分,共30分)1. 下列数中,能被3整除的是()A. 14B. 21C. 27D. 302. 一个长方形的长是8厘米,宽是4厘米,它的面积是()A. 32平方厘米B. 16平方厘米C. 12平方厘米D. 10平方厘米3. 下列图形中,对称轴最多的是()A. 等边三角形B. 等腰三角形C. 长方形D. 平行四边形4. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (3,-2)5. 如果一个数的平方是9,那么这个数可能是()A. 3B. -3C. 0D. 3或-3二、填空题(每题5分,共25分)6. 5的平方根是______。
7. (-3)的立方是______。
8. 一个等腰三角形的底边长为10厘米,腰长为8厘米,那么这个三角形的周长是______厘米。
9. 下列式子中,正确的是()A. 3a + 2b = 5a - 3bB. 2a - 3b = 5a - 2bC. 3a + 2b = 5a + 2bD. 2a - 3b = 5a + 3b10. 在直角坐标系中,点B(-2,4)到原点的距离是______。
三、解答题(每题15分,共45分)11. (1)一个长方形的长是12厘米,宽是6厘米,求这个长方形的面积。
(2)一个正方形的边长是8厘米,求这个正方形的对角线长度。
12. 解下列方程:(1)2x - 5 = 3x + 1(2)3(x + 2) = 5 - 2x13. 已知三角形ABC的边长分别为AB=6cm,BC=8cm,AC=10cm,判断三角形ABC的类型,并说明理由。
四、应用题(25分)14. 小明家养了若干只鸡和鸭,鸡的只数是鸭的2倍,鸡和鸭的只数之和是100只。
求小明家鸡和鸭各有多少只?15. 某工厂生产一批产品,计划每天生产120件,但实际每天生产的产品数量比计划少20件。
如果按照计划生产,需要多少天才能完成生产任务?答案:一、选择题:1. B2. A3. C4. A5. D二、填空题:6. ±√57. -278. 249. C 10. 4√2三、解答题:11. (1)面积 = 长× 宽= 12cm × 6cm = 72cm²(2)对角线长度= √(边长² + 边长²) = √(8cm² + 8cm²) = 8√2cm12. (1)2x - 5 = 3x + 1,移项得 x = -6(2)3(x + 2) = 5 - 2x,去括号得 3x + 6 = 5 - 2x,移项得 5x = -1,解得 x = -1/513. 三角形ABC的边长满足勾股定理,即AC² = AB² + BC²,因此三角形ABC是直角三角形。
中考数学综合模拟测试题(附答案解析)

三、解答题(本大题共9小题,共90分)
19.计算:(π﹣3.14)0+|1﹣2 |﹣ +( )﹣1
20.先化简,再求值: ﹣ ÷ ,其中x=2.
21.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
A. 102°B. 54°C. 48°D. 78°
5.一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是
A. 100元B. 105元C. 108元D. 118元
6.为了了解某校九年级学生的体能情况,随机抽查了其中50名学生,测试1分钟仰卧起坐的成绩(次数),进行整理后绘制成如图所示的频数分布直方图(注:15~20包括15,不包括20,以下同),
23.某中学艺术节期间,学校向学生征集书画作品,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作品的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(1)杨老师采用的调查方式是(填“普查”或“抽样调查”);
(2)请你将条形统计图补充完整,并估计全校共征集多少件作品?
【答案】D
【解析】
【详解】试题分析:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,
2017年广西南宁市中考数学模拟试卷及解析答案word版(三)

2017年广西南宁市中考数学模拟试卷(三)一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)5的绝对值是()A.5 B.﹣5 C.D.﹣2.(3分)如图,平行直线a,b被直线c所截,分别相交于点A,B,过点A作AC⊥AB,交直线于点C.若∠1=128°,则∠2的度数是()A.128°B.90°C.52°D.38°3.(3分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×1084.(3分)下列运算正确的是()A.(﹣2a3)2=﹣4a6 B.=±3 C.m2•m3=m6D.x5+2x5=3x55.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>56.(3分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A 优弧上一点,则tan∠OBC为()A.B.2 C.D.7.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半的面积是()A.15 B.30 C.45 D.608.(3分)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<09.(3分)现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A.B.C.D.10.(3分)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离是()(结果精确到0.1海里)【参考数据:sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947】A.22.5 B.41.7 C.43.1 D.55.611.(3分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P 的坐标为()A.(0,0) B.(1,)C.(,)D.(,)12.(3分)如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD 边扫过的面积为()A.3πB.6πC.9πD.12π二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)在,﹣1,﹣3,0这四个实数中,最小的实数是.14.(3分)因式分解:a3﹣ab2=.15.(3分)不等式组的所有整数解的积为.16.(3分)为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形统计图,若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有人.17.(3分)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为cm2.18.(3分)将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,使点A1,A2,A3在直线y=x+1上,点C1,C2,C3在x轴上,若按此规律放置正方形A2017B2017C2017C2016,则点B2017的纵坐标为.三、解答题(本大题共8小题,共66分)19.(6分)计算:.20.(6分)解分式方程:+=1.21.(8分)已知△ABC,如图所示.(1)用尺规作图求作点P,使PB=PC,且点P到AB、BC的距离相等;(保留作图痕迹,不写作法);(2)连接CP,若∠A=60°,∠ACP=24°,求∠ABP的度数.22.(8分)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD 交AD的延长线于点F,求证:DF=BE.23.(8分)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.24.(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?25.(10分)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)若tan∠CED=,⊙O的半径为3,求OA的长.26.(10分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.2017年广西南宁市中考数学模拟试卷(三)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)5的绝对值是()A.5 B.﹣5 C.D.﹣【解答】解:在数轴上,数5所表示的点到原点0的距离是5;故选:A.2.(3分)如图,平行直线a,b被直线c所截,分别相交于点A,B,过点A作AC⊥AB,交直线于点C.若∠1=128°,则∠2的度数是()A.128°B.90°C.52°D.38°【解答】解:∵直线a∥b,∴∠ACB=∠2,∵AC⊥BA,∴∠BAC=90°,∴∠2=∠ACB=∠1﹣∠BAC=128°﹣90°=38°,故选D.3.(3分)世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.000000076克,将数0.000000076用科学记数法表示为()A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108【解答】解:将0.000000076用科学记数法表示为7.6×10﹣8,故选:B.4.(3分)下列运算正确的是()A.(﹣2a3)2=﹣4a6 B.=±3 C.m2•m3=m6D.x5+2x5=3x5【解答】解:A、(﹣2a3)2=4a6,故A错误;B、=3,故B错误;C、m2•m3=m5,故C错误;D、x5+2x5=3x5,故D正确.故选:D.5.(3分)若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>5【解答】解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.6.(3分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A 优弧上一点,则tan∠OBC为()A.B.2 C.D.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:C.7.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD 的面积是()A.15 B.30 C.45 D.60【解答】解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.故选B.8.(3分)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<0【解答】解:∵反比例函数y=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,故选A.9.(3分)现有两枚质地均匀的正方体骰子,每枚骰子的六个面上都分别标有数字1、2、3、4、5、6.同时投掷这两枚骰子,以朝上一面所标的数字为掷得的结果,那么所得结果之和为9的概率是()A.B.C.D.【解答】解:由题意可得,同时投掷这两枚骰子,所得的所有结果是:(1,1)、(1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、(2,3)、(2,4)、(2,5)、(2,6)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(3,6)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6)、(5,1)、(5,2)、(5,3)、(5,4)、(5,5)、(5,6)、(6,1)、(6,2)、(6,3)、(6,4)、(6,5)、(6,6),则所有结果之和是:2、3、4、5、6、7、3、4、5、6、7、8、4、5、6、7、8、9、5、6、7、8、9、10、6、7、8、9、10、11、7、8、9、10、11、12,∴所得结果之和为9的概率是:,故选C.10.(3分)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离是()(结果精确到0.1海里)【参考数据:sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947】A.22.5 B.41.7 C.43.1 D.55.6【解答】解:如图,过点P作PA⊥MN于点A,MN=30×2=60(海里),∵∠MNC=90°,∠CNP=46°,∴∠MNP=∠MNC+∠CNP=136°,∵∠BMP=68°,∴∠PMN=90°﹣∠BMP=22°,∴∠MPN=180°﹣∠PMN﹣∠PNM=22°,∴∠PMN=∠MPN,∴MN=PN=60(海里),∵∠CNP=46°,∴∠PNA=44°,∴PA=PN•sin∠PNA=60×0.6947≈41.7(海里)故选:B.11.(3分)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=4,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P 的坐标为()A.(0,0) B.(1,)C.(,)D.(,)【解答】解:如图连接AC,AD,分别交OB于G、P,作BK⊥OA于K.∵四边形OABC是菱形,∴AC⊥OB,GC=AG,OG=BG=2,A、C关于直线OB对称,∴PC+PD=PA+PD=DA,∴此时PC+PD最短,在RT△AOG中,AG===,∴AC=2,∵OA•BK=•AC•OB,∴BK=4,AK==3,∴点B坐标(8,4),∴直线OB解析式为y=x,直线AD解析式为y=﹣x+1,由解得,∴点P坐标(,).故选D.12.(3分)如图,⊙P的半径为5,A、B是圆上任意两点,且AB=6,以AB为边作正方形ABCD(点D、P在直线AB两侧).若AB边绕点P旋转一周,则CD 边扫过的面积为()A.3πB.6πC.9πD.12π【解答】解:连接PD,过点P作PE⊥CD与点E,PE交AB于点F,∵AB是弦,PE⊥AB,∴AE=BE=AB=3,∴PE==4,∵四边形ABCD是正方形,∴AB∥CD,AB=BC=6,∵PE⊥CD,∴EF=BC=6,DF=AE=3,PF=PE+EF=10,∵PF=10,DF=3,∠PEF=90°,∴PD==,∵若AB边绕P旋转一周,则CD边扫过的面积为以PD为外圆半径、PE为内圆半径的圆环面积,∴CD边扫过的面积为π(PD2﹣PE2)=π•DE2=9π.故选C.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)在,﹣1,﹣3,0这四个实数中,最小的实数是﹣3.【解答】解:∵3>1,∴﹣3<﹣1.又∵正数大于零,负数小于零,∴﹣3<﹣1<0<.∴最小的是﹣3.故答案为:﹣3.14.(3分)因式分解:a3﹣ab2=a(a+b)(a﹣b).【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).15.(3分)不等式组的所有整数解的积为0.【解答】解:,解不等式①得:x,解不等式②得:x≤50,∴不等式组的整数解为﹣1,0,1…50,所以所有整数解的积为0,故答案为:0.16.(3分)为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了部分居民进行调查,并将调查结果绘制成如图所示的扇形统计图,若该辖区约有居民9000人,则可以估计其中对慈善法“非常清楚”的居民约有2700人.【解答】解:估计其中对慈善法“非常清楚”的居民人数为:9000×(1﹣30%﹣15%﹣×100%)=9000×30%=2700(人).故答案为:2700.17.(3分)如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为16cm2.【解答】解:如图所示.∵点A、B的坐标分别为(1,0)、(4,0),∴AB=3.∵∠CAB=90°,BC=5,∴AC=4.∴A′C′=4.∵点C′在直线y=2x﹣6上,∴2x﹣6=4,解得x=5.即OA′=5.∴CC′=5﹣1=4.∴S▱BCC′B′=4×4=16 (cm2).即线段BC扫过的面积为16cm2.故答案为16.18.(3分)将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,使点A1,A2,A3在直线y=x+1上,点C1,C2,C3在x轴上,若按此规律放置正方形A2017B2017C2017C2016,则点B2017的纵坐标为22016.【解答】解:∵点A1是直线y=x+1与y轴的交点,∴A1(0,1),∵四边形A1B1C1O是正方形,∴B1(1,1),∵点A2在直线y=x+1上,∴A2(1,2),同理可得,A3(3,4),B2(3,2),B3(7,4),∴前三个正方形的边长=1+2+4=7,∴A4(7,8),∵B1(1,1),B2(3,2),B3(7,4),∴B n的坐标是(2n﹣1,2n﹣1),B2017的纵坐标为22017﹣1=22016,故答案为:22016.三、解答题(本大题共8小题,共66分)19.(6分)计算:.【解答】解:=1+×﹣3+2=1+1﹣3+2=120.(6分)解分式方程:+=1.【解答】解:方程两边同乘(x﹣3),得:2﹣x﹣1=x﹣3,整理解得:x=2,经检验:x=2是原方程的解.21.(8分)已知△ABC,如图所示.(1)用尺规作图求作点P,使PB=PC,且点P到AB、BC的距离相等;(保留作图痕迹,不写作法);(2)连接CP,若∠A=60°,∠ACP=24°,求∠ABP的度数.【解答】解:(1)作线段BC的垂直平分线MN,作∠ABC的平分线BE,BE交MN于P.点P即为所求.(2)∵PB=PC,∴∠PBC=∠PCB=∠ABP,设∠PBC=∠PCB=∠ABP=x,在△ABC中,根据三角形内角和定理可得3x+60°+24=180°,解得x=32°,∴∠ABP=32°.22.(8分)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF⊥AD交AD的延长线于点F,求证:DF=BE.【解答】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.23.(8分)某校初三(1)班部分同学接受一次内容为“最适合自己的考前减压方式”的调查活动,收集整理数据后,老师将减压方式分为五类,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题.(1)初三(1)班接受调查的同学共有多少名;(2)补全条形统计图,并计算扇形统计图中的“体育活动C”所对应的圆心角度数;(3)若喜欢“交流谈心”的5名同学中有三名男生和两名女生;老师想从5名同学中任选两名同学进行交流,直接写出选取的两名同学都是女生的概率.【解答】解:(1)由题意可得总人数为10÷20%=50名;(2)听音乐的人数为50﹣10﹣15﹣5﹣8=12名,“体育活动C”所对应的圆心角度数==108°,补全统计图得:(3)画树状图得:∵共有20种等可能的结果,选出都是女生的有2种情况,∴选取的两名同学都是女生的概率==.24.(10分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.25.(10分)如图,直线AB经过⊙O上的点C,并且OA=OB,CA=CB,⊙O交直线OB于E,D,连接EC,CD.(1)求证:直线AB是⊙O的切线;(2)若tan∠CED=,⊙O的半径为3,求OA的长.【解答】(1)证明:连结OC,如图,∵OA=OB,CA=CB,∴OC⊥AB,∴直线AB是⊙O的切线;(2)解:作DH⊥OC于H,如图,∵DE为直径,∴∠DCE=90°,在Rt△DCE中,tan∠CED==,设CD=x,则CE=2x,∴DE==x,∴x=6,解得x=,∴CD=,∵∠ECO+∠OCD=90°,而OE=OC,∴∠E=∠ECO,∴∠E+∠OCD=90°,∵∠HCD+∠CDH=90°,∴∠CDH=∠E,在Rt△CDH中,tan∠CDH==,设CH=t,则DH=2t,∴CD=t,∴t=,解得t=,∴CH=,∴OH=OC﹣CH=,∵DH∥BC,∴=,即=,∴OB=5,∴OA=5.26.(10分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.【解答】解:(1)∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y=x2+2x+1,(2)∵AC∥x轴,A(0,1)∴x2+2x+1=1,∴x1=﹣6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m,m2+2m+1)∴E(m,﹣m+1)∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC=AC×EF+AC×PF=AC×(EF+PF)=AC×PE=×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+)2+,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣);(3)∵y=x2+2x+1=(x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9,AC=6,CP=3∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4或t=﹣8(不符合题意,舍)∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3或t=﹣15(不符合题意,舍)∴Q(3,1)赠送:初中数学几何模型【模型一】半角型:图形特征:F AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa B E挖掘图形特征:x-aa-a运用举例:1.正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF =45°.将△DAE 绕点D 逆时针旋转90°,得到△DCM . (1)求证:EF =FM(2)当AE =1时,求EF 的长.E3.如图,梯形ABCD 中,AD ∥BC ,∠C =90°,BC =CD =2AD =4,E 为线段CD 上一点,∠ABE =45°.(1)求线段AB 的长;(2)动点P 从B 出发,沿射线..BE 运动,速度为1单位/秒,设运动时间为t ,则t 为何值时,△ABP 为等腰三角形; (3)求AE -CE 的值.。
广西桂平市2017届初中毕业班第三次教学质量监测数学试题含答案

2017届初中毕业班第三次教学质量监测试题数 学(本试卷分第Ⅰ卷和第Ⅱ卷,考试时刻120分钟,赋分120分)注意:答案一概填写在答题卡上,在试题上作答无效.考试终止将答题卡交回.第Ⅰ卷(选择题,共36分)一、 选择题(本大题共12小题,每题3分,共36分)每题都给出标号为的四个选项,其中只有一个是正确的.请考生用2B 铅笔在答题卡上将选定的答案标号涂黑1. -3的相反数是( )A .-31 B. 3 C. -3 D. 312. 以下运算正确的选项是( )A .4)2(22-=-a aB .39±=C .327- =﹣3D .842a a a =⋅3. 某市人口数为万人,用科学记数法表示该市人口数为( )A. ×106人B. ×105 人C. ×104人D. 1901×103人4. 一个等腰三角形的两条边长别离是方程0232=+-x x 的两根,那么该等腰三角形的周长是( )A .5或4 B.4 C .5 D .3 5. 设21x x 、是方程0122=--x x 的两个实数根,那么2112x x x x +的值是( ) B. -5 C. -6或-5 D. 6或56.咱们明白:等腰三角形、平行四边形、菱形、双曲线、抛物线.这些都是咱们在初中学习时期学过的几何图形或函数的图象,那么从它们当中随机抽取两个,取得的都是中心对称图形的概率是( ) A.51 B.103 C.21 D.1 7.以下四个命题中,属于真命题的共有( )①相等的圆心角所对的弧相等 ② 假设b a ab ⋅=,则a 、b 都是非负实数 ③相似的两个图形必然是位似图形 ④ 三角形的内心到那个三角形三边的距离相等 个 个 个 个8.如图①,在△ABC 中,∠CAB=70°,将△ABC 在平面内绕点A 旋转到△AB ′C ′的位置,使CC ′∥AB ,那么旋转角的度数为( )° ° ° ° 图①9.将直径为60cm 的圆形铁皮,做成三个相同的圆锥容器的侧面(不浪费材料,不计接缝处的材料损耗),那么每一个圆锥容器的底面半径为( )A .30cmB .20cmC .15cmD .10cm10.假设点A )1,1(-+b a 在第二象限,那么点B(),b a -在( )A.第一象限B.第二象限C.第三象限D.第四象限11.如图 ②,MN 是⊙O 的直径,MN=8,∠AMN=40°,点B 为弧AN 的中点, 点P 是 直径MN 上的一个动 点,那么PA+PB 的最小值为( ) 图②A.3B.23C. 33 312.二次函数)0(2≠++=a c bx ax y 的部份图象如图③所示,图象过点(-1,0),对称轴为直线x =2,那么下 列结论中正确的个数有( )① 4a +b =0; ②039<++c b a ;③ 假设点A(-3,1y ),点B(-12,2y ),点C(5,3y )则1y <3y <2y ;④ 假设方程3)5()1(-=-+x x a 的两根为1x 和2x ,且1x <2x , 则1x <-1<5<2x A .1个 B .2个 C .3个 D .4个第Ⅱ卷(非选择题,共84分)二、 填空题(本大题共6小题,每题3分,共18分)13. 2的算术平方根是 .14.分解因式:a a 823-= .15.在函数y x 的取值范围是 . 16.如图④,矩形ABCD 的极点A 、C 别离在直线a 、b 上,且a 与b 平行,∠2=58°,那么∠1的度数为 °17.如图⑤ ,将一块含30°角的直角三角版和半圆量角器按如图的方式摆放 ,使斜边与半圆相切.假设半径OA =4,那么图中阴影部份的面积为____________.(结果保留π)18.如图⑥,是一个几何体的三视图,由图中数据计算此几何体的表面积为 (结果保留π).图④ 图⑤ 图⑥三、解答题(本大题共8小题,总分值66分,解答要求写出文字说明,证明进程或演算步骤)19.(此题总分值10分,每题5分)(1)计算:(1)21--+(0)3-4cos30°-|3-2| (2)先化简,后求值:(13+x ﹣1+x )÷1442+++x x x ,其中22-=x . 20.(5分)如图,已知在△ABC 中,∠A=90°.(1)请用圆规和直尺作出⊙P ,使圆心P 在AC 边上,且与AB ,BC 两边都相切(保留作图痕迹,不写作法和证明).(2)假设∠B=60°,AB=3,求⊙P 的面积.21.(7分)如图,一次函数b kx y +=的图象与反比例函数)0(<=x xm y 图象交于A (-1,3),B (-3,n )两点,直线1-=y 与y (1)求一次函数与反比例函数的解析式;(2)求△ABC 的面积.22.(8分)某中学为了解九年级学生体能状况,从九年级学生中随机抽取部份学生进行体能测试,测试结果分为A ,B ,C ,D 四个品级,并依据测试成绩绘制了如下两幅尚不完整的统计图;(1)这次抽取的学生的人数是 ;(2)补全条形统计图;(3在扇形统计图中C 品级所对应的圆心角为 度.(4)该校九年级学生有1500人,请你估量其中A 品级的学生人数.23.(8分)某学校在商场购买甲、乙两种不同足球,其中一个乙种足球的价钱比一个甲种足球的价钱多20元,购买甲种足球的数量是购买乙种足球数量的2倍,购买甲种足球花费2000元,购买乙种足球花费1400元.(1)求购买一个甲种足球.一个乙种足球各需多少元;(2)为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两格种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.若是这次购买甲.乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?24.(7分)如图,已知点P 是⊙O 外一点,PB 切⊙O 于点B ,BA 垂直OP 于C ,交⊙O 于点A ,连接PA 、AO ,延长AO ,交⊙O 于点E .(1)求证:PA 是⊙O 的切线;(2)假设tan ∠CAO=32,且OC=4,求PB 的长. 25.(10分)在平面直角坐标系中,已知抛物线通过A (-4,0),B (0,-4),C (2,0)三点.图1 图2 备用图2017届初中毕业班第三次教学质量监测数学参考答案一、选择题1. B 2. C 3. A 4. C 5. A 6. B 7. B 8. D 9. D 10. A 11. D 12. C二、填空题13. 2 14. )2)(2(2-+a a 15. 3≥x 且4≠x 16. 58 17. 2316+π 18. π28三、解答题19.(1)解: 原式=-2+1+4×23-(2-3) ………………………………… 4分 =-3-3 ……………………………………… 5分(2)解: 原式=22)2(114++⋅+-x x x x …………………………………2分 =2)2(11)2)(2(++⋅+-+x x x x x =22+-x x …………………………………4分 那时x=2-2时,原式=1222)22()22(2-=+---…………………5分20. 解:(1)图(略) …………………………………3分(注:正确画出∠B 的平分线的给2分,标出点P 的位置及正确画出圆的给1分, 共3分,画角平分线时无痕迹或痕迹不全者不给分)(2) 3π ………………………………………5分21. 解:(1)反比例函数m y x=的图像通过点A (-1,3), ∴ 3-=m∴反比例函数的解析式为xy 3-= …………… 2分 ∵点B (-3,n )在反比例函数的xy 3-= 图像上, ∴ 1=n ∴B (-3,1) ……………………… 3分∵一次函数y kx b =+的图像通过A (-1,3).B (-3,1)两点∴⎩⎨⎧=+-=+-133b k b k 解得: ⎩⎨⎧==41b k ∴一次函数的解析式是4+=x y …………… 4分(2) S △A B C 23214121222143⨯⨯-⨯⨯-⨯⨯-⨯= ……………… 6分 32212---=5= ……………………………7分22. 解:(1)50 (2)略 (3)72 (4) %32⨯1500=480 (每题2分,共8分)23. (1) 设购买一个甲种足球需x 元,那么购买一个乙种足球需(x +20)元,由题意得 ………… 1分2000x =2×1400x +20解得:x =50 ……………………………………………2分 经查验,x =50是原方程的解 ……………………………………3分x +20=70.答:购买一个甲种足球需50元,购买一个乙种足球需70元. ………………… 4分(2) 设这所学校再次购买y 个乙种足球,那么购买(50-y)个甲种足球,由题意得 ………… 5分50(1+10% )(50-y)+70(1-10% )y ≤ 2900 …………………………… 6分解得:y ≤ ………………………………………… 7分由题意知,y 为非负整数,故最多可购买18个乙种足球.笞:这所学校这次最多可购买18个乙种足球. …………………… 8分24.(1)证明:连接OB ,那么OA =OB ,∵OP ⊥AB ,∴AC =BC ,∴OP 是AB 的垂直平分线,∴PA =PB ,在△PAO 和△PBO 中, ∵,∴△PAO ≌△PBO (SSS )∴∠PAO=∠PBO ………………1分∵PB 为⊙O 的切线,B 为切点,∴∠PBO=90°,∴∠PAO=90°,即PA ⊥OA ………2分∴PA 是⊙O 的切线 …………………………………… 3分(2)∵ tan ∠CAO == 且OC=4 ∴ AC = 6 ∴ AB =12 在Rt △ACO 中, 22OC AC AO += 2246+= 132= ……………4分显然 △ACO ∽△PAO ,∴ACPA CO OA = 64132PA = ……………… 6分 ∴ PA = 3∴ PB = PA = 3……………………………… 7分25. 解:(1)设抛物线的解析式为:c bx ax y ++=2 (0≠a )那么有 ⎪⎩⎪⎨⎧=++-==+-02440416c b a c c b a 解得: ⎪⎪⎩⎪⎪⎨⎧-===4121c b a ∴ 4212-+=x x y …………………………… 4分 (2)∴抛物线的解析式为: 4212-+=x x y 过点M 作MD ⊥x 轴于点D 设M 点的坐标为(m ,21m 2+m-4),那么AD = m+4,MD = -21m 2-m+4, ∴S = S △AMD +S 梯形DMB o-S △AB o ………………………………………7分=21(m+4)(-21m 2-m+4)+21(-21m 2-m+4+4)(-m)-21×4×4= -m 2-4m=-(m+2)2+4(-4<m <0) ……………… 9分∴ 4=最大值S ……………………… 10分26.(1)证明:∵△ABC 是等腰直角三角形,∠BAC=90°,点D 是BC 的中点, ∴AD ⊥BC ,BD=CD ∴∠ADB=∠ADC=90°AD=DC=DB …………… 1分 ∵四边形DEFG 是正方形,∴DE=DG∴△ADE ≌△BDG (SAS ) ………………… 2分∴BG=AE ……………………… 3分(2)成立 ………………………………… 4分理由如下:如图2,连接AD ,由(1)知AD=BD ,AD ⊥BC.∴∠ADG+∠GDB=90°.∵四边形EFGD 为正方形,∴DE=DG ,且∠GDE=90°.∴∠ADG+∠ADE=90°∴∠BDG=∠ADE . ………………… 6分在△BDG 和△ADE 中,∵BD =AD ,∠BDG =∠ADE ,GD =ED ,∴△BDG ≌△ADE (SAS )∴AE = BG …………………………………… 8分 (3)α=270° …………………………… 9分正方形DEFG 如图3所示由(2)知BG=AE∴ 当BG 取得最大值时,AE 取得最大值.∵ BC = DE = 4 ∴ EF = 4 ∴ BG = 2+4 = 6∴ AE = 6 ……………………………………… 10分 在Rt △AEF 中,由勾股定理,得132163622=+=+=EF AE AF ………………… 11分。
平南县初中三模数学试卷

1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 若a < b,则下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 < b - 2C. a + 3 < b + 3D. a - 3 < b - 33. 在等腰三角形ABC中,AB=AC,AD是底边BC上的高,则下列说法正确的是()A. ∠BAC = ∠BADB. ∠BAC = ∠CADC. ∠BAD = ∠CADD. ∠BAC =∠BDC4. 已知一次函数y=kx+b的图象过点A(1,-2),且与y轴交于点B,则下列说法正确的是()A. k > 0,b < 0B. k < 0,b > 0C. k > 0,b > 0D. k < 0,b < 05. 一个正方形的对角线长为10cm,则该正方形的面积是()A. 50cm²B. 25cm²C. 100cm²D. 20cm²6. 下列函数中,y随x增大而减小的函数是()A. y=x²B. y=-x²C. y=xD. y=-x7. 已知一元二次方程x²-5x+6=0,则该方程的两个实数根为()A. x₁=2,x₂=3B. x₁=3,x₂=2C. x₁=1,x₂=6D. x₁=6,x₂=18. 在平面直角坐标系中,点P(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)9. 下列各数中,有理数是()A. √9B. √16C.√-9D. √-1610. 下列各数中,无理数是()A. √4B. √9C. √-4D. √-911. 若a+b=0,则a=________,b=________。
12. 下列各数中,负数是________。
13. 在直角三角形ABC中,∠C=90°,∠A=30°,则∠B=________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年春季期九年级数学第三次综合训练试题(考试时间120分钟,赋分120分)第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出标号为A、B、C、D的四个选项,其中只有一个是正确的.1.sin60°的值等于()A.21B.22C.23D. 32.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A. B. C. D.3.2)A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间4.全球海洋总面积约为36105.9万平方公里,用科学记数法表示为()A.3.61×108平方公里B. 3.60×108平方公里C. 361×106平方公里D. 36100万平方公里5.甲、乙、丙、丁四位选手各10次射击的平均成绩都是9.2环,其中甲的成绩的方差为0.015,乙的成绩的方差为0.035,丙的成绩的方差为0.025,丁的成绩的方差为0.027,则()A.甲的成绩最稳定B.乙的成绩最稳定C.丙的成绩最稳定D.丁的成绩最稳定6.如图,AB是⊙O的直径,∠D=35°,则∠BOC的度数为()A.120°B. 110°C. 100°D. 70°7.下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形8.一个几何体如图所示,则该几何体的三视图正确的是()9.某天小明骑自行车上学,途中因自行车发生故障修车耽误了一段时间后继续骑行,按时赶到了学校.如图描述了他上学的情景,下列说法中错误的是()A.学校离家的距离为2000米B.修车时间为15分钟C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米第8题图A. B.C. D.第6题10. 如图,从一块直径为24cm的圆形纸片上剪出一个圆心角为90°的扇形ABC,使点A,B,C在圆周上,将剪下的扇形作为一个圆锥的侧面,则这个圆锥的底面圆的半径是()A.12cm B. 6cm C. 3cm D. 2cm第10题图DA(第10题图)(第11题图)(第12题图)11.二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和()A.大于0 B.等于0 C.小于0 D.不能确定12.在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=2.正确的结论有( )A.4个B. 3个C. 2个D. 1个第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,每小题3分,共18分)13. 分解因式:2x y y-= .14.在函数12yx=+中,x的取值范围是 .15.若2235a b-=,则2623a b-+= .16.任取不等式组30,250kk-⎧⎨+⎩≤>的一个整数解,则能使关于x的方程:2x+k=-1的解为非负数的概率为______.17.抛物线248293y x x=-++与y轴交于点A,顶点为B.点P是x轴上的一个动点,当点P 的坐标是_______________时,|PA-PB|取得最小值.(第17题图)(第18题图)18. 如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为2的等边三角形,边AO在y 轴上,点B1,B2,B3,…都在直线y=x上,则A2014的坐标是______________.第9题图三、解答题:19.(本题满分10分,每小题5分) (1)计算:4sin60°+|3﹣|﹣()﹣1+(π﹣2017)0.(2)解方程组: ⎩⎨⎧=-=+.12,853y x y x20.(本题满分6分)如图,已知△ABC,∠BAC=90°,AB=6,AC=8.(1)请用尺规过点A 作一条线段与BC 交于D ,使其将△ABC 分成两个相似的三角形(保留作图痕迹,不写作法) (2)求AD 的长.21.(本题满分6分)如图,在平面直角坐标系中,一次函数b kx y +=的图象分别交x 轴、y轴于A 、B 两点,与反比例函数x my =的图象交于C 、D 两点,DE⊥x 轴于点E.已知点C 的坐标是(6,-1),DE=3. (1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x 为何值时,一次函数的值大于反比例函数的值?22.(本题满分7分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图:30%8%6%动画新闻体育娱乐戏曲请你根据以上的信息,回答下列问题:(1) 本次共调查了_____名学生,其中最喜爱戏曲的有_____人;(2)在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是______;(3) 根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.23.(本题满分8分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元;(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.24.(本题满分7分)如图,AB是⊙O的直径,CD是⊙O的切线,切点为C.延长AB交CD 于点E.连接AC,作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G.(1)求证:AD是⊙O的切线;(2)如果⊙O的半径是6cm,EC=8cm,求GF的长.25.(本题满分11分)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A(1,3),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△B C N、S△P M N满足S△B C N=2S△P M N,求出的值,并求出此时点M的坐标.26. (本题满分10分)如图①,△ABC 与△CDE 是等腰直角三角形,直角边AC 、CD 在同一条直线上,点M 、N 分别是斜边AB 、DE 的中点,点P 为AD 的中点,连接AE 、BD . (1)猜想PM 与PN 的数量关系及位置关系,请直接写出结论;(2)现将图①中的△CDE 绕着点C 顺时针旋转)900(︒<<︒αα,得到图②,AE 与MP 、BD 分别交于点G 、H .请判断(1)中的结论是否成立?若成立,请证明; 若不成立,请说明理由;(3)若图②中的等腰直角三角形变成直角三角形,使BC =k AC ,CD =k CE ,如图③,写出PM 与PN 的数量关系,并加以证明.第26题图图① 图② 图③GH ADPBMC NE AD PBMCNENEPM CDBA一、1—4 C C B A 5—8 A B D A 9—12 B C A B二、13. (1)(1)y x x +- 14.2x ≠- 15. 1 16. 13 17. 41(,0)618.(2014,2016)三、19.(1)解:4sin60°+|3﹣|﹣()﹣1+(π﹣2017)0=4×+2﹣3﹣2+1=2+2﹣4=4﹣4 (2) 解:⎩⎨⎧=-=+②①.12,853y x y x 由②得12-=x y ,③代入①得()81253=-+x x ,解这个方程,得1=x . 把1=x 代入③得,112-⨯=y =1, ∴原方程组的解为⎩⎨⎧==.y ,x 11.20.(1)如图,AD 为所作.(2) AD=4.821.解:(1)∵点C(6,-1)在反比例函数x m y =的图象上, ∴-1=6m, m=-6 .∴反比例函数的解析式为x y 6-=. ∵点D 在反比例函数x y 6-=的图象上,且DE=3,∴x 63-=,∴x=-2 . ∴点D 的坐标为(-2,3) . ∵C 、D 两点在直线b kx y +=上,∴⎩⎨⎧=+--=+.b k ,b k 3216解得⎪⎩⎪⎨⎧=-=.b,k221∴一次函数的解析式为221+-=xy.(2)当x<-2或0<x<6时,一次函数的值大于反比例函数的值.22.解: (1)50,3;(2) 72°;(3)2000×8%=160(人).23.解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元,根据题意,得:,解得:,答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元,根据题意,得:W=5m+7(50﹣m)=﹣2m+350,∵﹣2<0,∴W随x的增大而减小,又∵m≤3(50﹣m),解得:m≤37.5,而m为正整数,∴当m=37时,W最小=﹣2×37+350=276,此时50﹣37=13,答:当购买A型灯37只,B型灯13只时,最省钱.24解:(1)证明:连接OC.∵CD是⊙O的切线,∴∠OCD=90°.∴∠OCA+∠ACD=90°.∵OA=OC,∴∠OCA=∠OAC.∵∠DAC=∠ACD,∴∠0AC+∠CA D=90°.∴∠OAD=90°.∴AD是⊙O的切线.(2)连接BG;∵OC=6cm,EC=8cm,∴在Rt △CEO 中,OE =OC 2+EC 2=10. ∴AE =OE +OA =1. ∵AF ⊥ED ,∴∠AFE =∠OCE =90°,∠E =∠E . ∴Rt △AEF ∽Rt △OEC . ∴AF OC =AEOE. 即:AF 6=1610.∴AF =9.6.∵AB 是⊙O 的直径, ∴∠AGB =90°. ∴∠AGB =∠AFE . ∵∠BAG =∠EAF , ∴Rt △ABG ∽Rt △AEF . ∴AG AF =AB AE . 即:AG 9.6=1216.∴AG =7.2.∴GF =AF -AG =9.6-7.2=2.4(cm) .25.解:(1)∵A(1,3),B (4,0)在抛物线y=mx 2+nx 的图象上,∴,解得, ∴抛物线解析式为y=﹣x 2+4x ;(2)存在三个点满足题意,理由如下:当点D 在x 轴上时,如图1,过点A 作AD⊥x 轴于点D ,∵A(1,3),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3)2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3﹣d)2+42+d2=36,解得d=,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(3)如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴==3,∴MF=3PF,在Rt△ABD 中,BD=3,AD=3,∴tan∠ABD=,∴∠ABD=60°,设BC=a ,则CN=a ,在Rt△PFN 中,∠PNF=∠BNC=30°, ∴tan∠PNF==,∴FN=PF ,∴MN=MF+FN=4PF , ∵S △B C N =2S △P M N ,∴a 2=2××4PF 2,∴a=2PF , ∴NC=a=2PF ,∴==, ∴MN=NC=×a=a , ∴MC=MN+NC=(+)a ,∴M 点坐标为(4﹣a ,(+)a ),又M 点在抛物线上,代入可得﹣(4﹣a )2+4(4﹣a )=(+)a ,解得a=3﹣或a=0(舍去), OC=4﹣a=+1,MC=2+, ∴点M 的坐标为(+1,2+).26.(1)PM =PN ,PM ⊥PN . ………2分(2) ∵△ACB 和△ECD 是等腰直角三角形, ∴AC=BC ,EC=CD ,∠ACB =∠ECD =90°. ∴∠ACB +∠BCE =∠ECD +∠BCE . ∴∠ACE =∠BCD .∴△ACE ≌△BCD . ∴AE =BD ,∠CAE =∠CBD . ………4分又∵∠AOC =∠BOE , ∠CAE =∠CBD ,∴∠BHO =∠ACO =90°. ………5分 ∵点P 、M 、N 分别为AD 、AB 、DE 的中点, ∴PM =21BD , PM ∥BD ; O G H A D PB MC N E第26题图②PN =21AE , PN ∥AE . ∴PM =PN . ………6分 ∴∠MGE+∠BHA =180°.∴∠MGE=90°.∴∠MPN=90°.∴PM ⊥PN . ………8分(3) PM = kPN ………9分 ∵△ACB 和△ECD 是直角三角形,∴∠ACB =∠ECD =90°.∴∠ACB +∠BCE =∠ECD +∠BCE .∴∠ACE =∠BCD .∵BC =kAC ,CD =kCE , ∴k CE CD AC BC ==. ∴△BCD ∽△ACE .∴BD = kAE . ………11分 ∵点P 、M 、N 分别为AD 、AB 、DE 的中点, ∴PM =21BD ,PN =21AE . ∴PM = kPN . ………12分 A D P B M CN E 第26题图③。