利用基本不等式求最值的常见方法

合集下载

用基本不等式求最值六种方法

用基本不等式求最值六种方法

用基本不等式求最值六种方法基本不等式是求解数学问题中常用的工具,可以通过基本不等式来求解最值问题。

下面将介绍六种使用基本不等式求解最值问题的方法。

方法一:两边平方法若要求一个式子的最大值或最小值,在不改变问题的本质情况下,可以通过平方的方式将问题转化为一个更容易处理的形式。

例如,我们要求a+b 的最小值,可以通过平方的方式将其转化为一个更易处理的问题,即(a+b)^2=a^2+b^2+2ab,然后应用基本不等式,得到(a+b)^2≥ 2ab。

由此可见,通过两边平方后,可使用基本不等式求得 a+b 的最小值。

方法二:四平方法四平方法指的是对式子的四个项分别平方,将一些复杂的问题转化为四个简单展开的项的和,然后再应用基本不等式进行推导。

例如,我们要求 a^2 + b^2 的最小值,可以采用四平方法将其转化为 a^2/2 + a^2/2 + b^2/2 + b^2/2 的和,即 (a^2/2 + b^2/2) + (a^2/2 + b^2/2),然后应用基本不等式,得到(a^2/2 + b^2/2) + (a^2/2 + b^2/2) ≥2√[(a^2/2)(b^2/2)] = ab。

方法三:绝对值法绝对值法是将问题中的绝对值项用不等式进行替代,然后使用基本不等式进行求解。

例如,我们要求,x-2,的最小值,可以将其转化为不等式形式,即x-2≥0或x-2≤0。

然后根据这两个不等式分别求解x的取值范围,得到最小值。

方法四:极值法极值法是将要求最值的式子看作一个函数,通过求函数的极值点来确定最值。

例如,我们要求 f(x) = x^2 的最小值,可以求函数的极值点。

对于二次函数 f(x) = ax^2 + bx + c,其极值点的横坐标是 -b/2a,通过求解方程 -b/2a = 0,可以得到 x = 0。

因此,f(x) = x^2 的最小值是 f(0) = 0。

方法五:辅助不等式法辅助不等式法是引入一个辅助不等式,通过该不等式来推导求解最值问题。

基本不等式求最值的八种思维方法

基本不等式求最值的八种思维方法

ʏ尹丹青利用基本不等式求最值是高考的常考点,下面介绍基本不等式求最值的八种思维方法㊂方法一: 定和 与 拼凑定和 求积的最值例1 已知x >0,y >0,且x +y =7,则(1+x )(2+y )的最大值为㊂解:由x +y =7,可拼凑(x +1)+(y +2)=10,利用基本不等式求最值㊂易得(x +1)+(y +2)=10,所以(1+x )(2+y )ɤ(1+x )+(2+y )22=25,当且仅当1+x =2+y ,即x =4,y =3时等号成立㊂故(1+x )㊃(2+y )的最大值为25㊂解后反思:利用基本不等式求最值时,必须同时满足: 一正 二定 三相等㊂方法二: 定积 与 拼凑定积 求和的最值例2 若a >-3,则a 2+6a +13a +3的最小值为㊂解:对a 2+6a +13a +3变形拼凑积为定值,利用基本不等式求最值㊂因为a >-3,所以a +3>0,4a +3>0㊂由基本不等式得a 2+6a +13a +3=(a +3)2+4a +3=(a +3)+4a +3ȡ2(a +3)㊃4a +3=4,当且仅当a +3=4a +3即a =-1时等号成立㊂故a 2+6a +13a +3的最小值为4㊂解后反思:观察积与和哪个是定值,根据 和定积动,积定和动 来求解㊂方法三: 和积化归 构建不等式求最值例3 已知x >0,y >0,且x +y +x y =3,若不等式x +y ȡm 2-m 恒成立,则实数m 的取值范围为㊂解:由基本不等式得(x +y )m i n =2,构建m 2-m ɤ(x +y )m i n ,再解不等式即可㊂由3-(x +y )=x y ɤ(x +y )24,当且仅当x =y =1时等号成立,解得x +y ȡ2或x +y ɤ-6(舍去),则(x +y )m i n =2㊂因为不等式x +y ȡm 2-m 恒成立,所以m 2-m ɤ(x +y )m i n ,即m 2-m ɤ2,解得-1ɤm ɤ2㊂解后反思:根据和与积的关系式,结合基本不等式可以求出积或和的最值,这就是 和积化归法㊂方法四: 化1 与 拼凑化1 求最值例4 已知a ,b 均为正数,且1a +1+2b -2=12,则2a +b 的最小值为㊂解:确定b >2,由题设变换得2a +b =2[2(a +1)+(b -2)]1a +1+2b -2,展开凑积为定值,利用基本不等式求最值㊂当b ɪ(0,2)时,2b -2<-1,而1a +1<1,则1a +1+2b -2<0,不符合题意,故b >2㊂2a +b =2(a +1)+(b -2)=2[2(a +1)+(b -2)]1a +1+2b -2=8㊃a +1b -2+2㊃b -2a +1+8ȡ216㊃a +1b -2㊃b -2a +1+8=16,当且仅当8㊃a +1b -2=2㊃b -2a +1,即a =3,b =10时等号成立㊂故2a +b 的最小值为16㊂解后反思: 化1 或 拼凑化1 求最值的关键是基本不等式的灵活应用㊂方法五:不等式链21a +1bɤa b ɤa +b2ɤa 2+b 22(a ,b ɪR *)的合理应用例5 已知a >0,b >0,若a +b =4,51知识结构与拓展高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.则( )㊂A .a 2+b 2有最小值4B .a b 有最大值2C .1a +1b 有最大值1D .1a +b 有最小值24解:已知a >0,b >0,则21a +1b ɤa b ɤa +b 2ɤa 2+b22,当且仅当a =b 时取等号㊂a 2+b 2ȡ(a +b )22=8,A 错误㊂由4=a +b ȡ2a b ,可得a b ɤ4,B 错误㊂1a +1b ȡ4a +b =1,C 错误㊂1a +b ȡ12a +b 2=122=24,当且仅当a =b =2时取等号,D 正确㊂应选D ㊂解后反思:不等式链21a +1bɤa b ɤa +b 2ɤa 2+b 22(a ,b ɪR *)分别为调和平均数㊁几何平均数㊁代数平均数㊁平方平均数㊂方法六:复杂分式构造法凑定值例6 已知a >b ,不等式a x 2+2x +b ȡ0对于一切实数x 恒成立,且∃x 0ɪR ,使得a x 20+2x 0+b =0成立,则a 2+b2a -b的最小值为㊂解:由不等式恒成立和∃x 0ɪR 使得方程成立可得a b =1,将a 2+b2a -b化成a -b +2a -b 求最值㊂因为不等式a x 2+2x +b ȡ0对于一切实数x 恒成立,所以a >0,4-4a b ɤ0㊂因为∃x 0ɪR ,使得a x 20+2x 0+b =0成立,所以4-4a b ȡ0㊂据上可得,4-4a b =0,所以a >0,b >0,a b =1㊂故a 2+b 2a -b =(a -b )2+2a ba -b=a -b +2a -b ȡ22,当且仅当a -b =2a -b 时取等号㊂故所求的最小值为22㊂解后反思:复杂分式构造法凑定值,其目的是构造和式的积为定值,再利用基本不等式求最值㊂方法七:反解代入消元法凑积为定值例7 设b >0,a b +b =1,则a 2b 的最小值为㊂解:已知等式转化为b =1a +1,再通过常数分离得到a b 2=(a +1)+1a +1-2求最值㊂已知b >0,a b +b =1,所以b =1a +1,a +1>0,所以a 2b =a 2a +1=(a +1-1)2a +1=a +1+1a +1-2ȡ2(a +1)㊃1a +1-2=0,当且仅当a +1=1a +1,即a =0时等号成立㊂故a 2b 的最小值为0㊂解后反思:借助反解代入消元,重新构造积为定值,这是求解最值的通法㊂方法八:两次使用基本不等式求最值例8 已知x ,y 都为正实数,则4(x y +1)x +x 2y的最小值为㊂解:4(x y +1)x +x 2y=4y +4x +x 2y ㊂因为x ,y 都为正实数,所以4y +x 2yȡ24x 2=4x ,当且仅当4y 2=x 2,即2y =x 时等号成立㊂所以4y +4x +x 2yȡ4x +4x ȡ216=8,当且仅当4x =4x,即x =1时等号成立㊂综上所述,当x =1,y =12时,4(x y +1)x +x 2y取得最小值为8㊂解后反思:两次使用不等式求最值,既要注意多次取等号时成立的条件,也要注意两次使用不等式后能 约分凑出定值㊂作者单位:江苏省丹阳高级中学(责任编辑 郭正华)61 知识结构与拓展 高一数学 2023年7 8月Copyright ©博看网. All Rights Reserved.。

基本不等式求最值技巧总结

基本不等式求最值技巧总结

高三复习讲义: 基本不等式求最值总结一、直接法1.求函数2log log (2)x y x x =+的值域2.1,1,,a b x y R >>∈,若3,x y a b a b ==+=11x y +的最大值3.设01,01a x y <<<≤<,且log log 1a a x y ⋅=,求xy 的最大值4.已知0a b >>,求216()a b a b +-的最小值二、凑系数5.当04x <<时,求(82)y x x =-的最大值6.设0,0x y >>,且3212x y +=,求xy 的最大值三、凑项7.已知54x <,求函数14245y x x =-+-的最大值8.设,x y z n N >>∈*,且11n x y y z x z +≥---恒成立,求n 的最大值9.设01,,x a b R +<<∈,求1a b x x+-的最小值四、凑、配、拆 10.已知52x ≥,求24524x x y x -+=-的最小值 11.当0x >时,求22121x x y x x ++=++的最小值12.若对于任意的0x >,231x a x x ≤++恒成立,求a 的取值范围13.已知1x >-,求2158x y x x +=++的最大值 五、基本不等式失效14.求函数2y =15.求4sin (0)sin y x x xπ=+<<的值域 六、1的整体代换16.已知正数,x y 满足4x y +=,求使不等式14m x y+≥,恒成立的实数m 的取值范围 17.已知,x y R +∈,且20x y xy +-=,若222x y m m +>+恒成立的m 的取值范围18.函数22(0,1)x y a a a +=->≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,求12m n+的最小值 19.已知正数,,x y z 满足1x y z ++=,求149x y z ++的最小值七、凑和为定值20.已知正数,a b 满足2223a b +=,求21. 已知,x y R +∈,且2212y x +=,求22.已知30x -<<,求八、构造不等式23.设,x y R +∈,且()1xy x y -+=,求x y +的最小值24. ,x y R +∈,且228x y xy ++=,求2x y +最小值25.已知1,1x y >->-,且(1)(1)4x y ++=,求x y +的最小值九、平方26. 求y =27.设,,a b c R +∈,且1a b c ++=28.设,x y R +∈a 的最小值。

利用基本不等式求最值的技巧

利用基本不等式求最值的技巧

基本不等式应用一:直接应用求最值例1:求下列函数的值域(1)y =3x 2+(2)y =x +解:(1)y =3x 2+≥2)=∴值域为[,+∞)(2)当x >0时,y =x +≥2)=2;当x <0时,y =x +=-(-x -)≤-2)=-2∴值域为(-∞,-2]∪[2,+∞) 二:凑项例2:已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

变式12,33y x x x =+>- 三:凑系数例3.当时,求(82)y x x =-的最大值。

解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。

变式1:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=3,03x 时等号成立。

变式2:已知x ,y 为正实数,且x 2+=1,求x 的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab ≤。

利用基本不等式求最值的常见方法

利用基本不等式求最值的常见方法

利用基本不等式求最值的常见方法利用基本不等式求最值是一种常见的数学方法,适用于解决许多最值问题。

基本不等式是指一个关于两个变量的不等式,例如AM-GM不等式、Cauchy-Schwarz不等式等。

这些不等式通过将变量与其平方、乘积等进行比较,从而得到最值的上限或下限。

其中最常用的基本不等式是AM-GM不等式。

AM-GM不等式指出,对于非负实数$x_1,x_2,...,x_n$,有以下不等式成立:$$\frac{x_1+x_2+...+x_n}{n} \geq \sqrt[n]{x_1x_2...x_n}$$将这个不等式应用于最值问题时,常用的方法如下:1.确定可变参数的范围:首先,确定问题中的可变参数范围,并将其表示为一个或多个变量(通常用$x$表示)。

这些变量可以是任意从一个集合中取值的实数或正整数。

2. 构造一个函数:将问题转化为一个函数问题,其中目标函数和约束条件由可变参数表示。

通常,要求最大化或最小化的数值表示为目标函数(通常用 $f(x)$ 表示),而由可变参数表示的约束条件表示为 $g(x) \leq k$ 或 $g(x) \geq k$ 的形式。

3. 在约束条件下,应用AM-GM不等式:根据问题的约束条件,应用AM-GM不等式。

根据AM-GM不等式,可以将目标函数表示为对应于AM-GM 不等式的形式。

例如,如果AM-GM不等式为 $\frac{a+b}{2} \geq\sqrt{ab}$,则可以通过对目标函数的一部分应用这个不等式,得到$\frac{f(x)}{g(x)} \geq \sqrt[h]{k}$ 的形式。

4.求导并解方程:将目标函数分别对可变参数求导,然后解方程。

这是为了找到使目标函数达到最大或最小值的可变参数的值。

对于一些复杂的问题,可能需要应用一些高等数学技巧,如极值判别法或拉格朗日乘数法等。

5.验证最优解:找到使得目标函数达到最大或最小值的可变参数的值后,将其代入目标函数和约束条件,以验证是否满足最值条件。

基本不等式求最值技巧解析

基本不等式求最值技巧解析

基本不等式求最值技巧解析技巧一:凑项例1:已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项,5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。

评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

技巧二:凑系数例1. 当时,求(82)y x x =-的最大值。

解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。

变式:设230<<x ,求函数)23(4x x y -=的最大值。

解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。

技巧三: 分离例3. 求2710(1)1x x y x x ++=>-+的值域。

解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。

技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。

22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t =时,4259y t t≥⨯+=(当t =2即x =1时取“=”号)。

利用基本不等式求最值的常见方法

利用基本不等式求最值的常见方法

即(x+y) 8, max 当且仅当x y 4时,等号成立.
总结与提升:
类型一:配凑定值法;
特征:函数能化成“积”或“和”为定值的形式
类型二:常数代换法;
特征:已知ax by c,求 d + e(a,b, c, d, e为非零常数)形式 xy
类型三:函数单调性法;拆项法 y ax2 bx c
3x 4 y 1 (3x 4 y)( 3 1 )
5
xy
3x
当且仅当

y

12 y x
即x
x 3y 5xy
1,
y

1 2
时,等号成立.
类型三:函数单调性法 (拆项法求函数的最值)
x 例3.已知xx>13, 求f (x) 2 2 的最小值.
x 1
2 3+2 解:f (x) (x1)2 2(x 1) 3 (x 1) 3 2
记t xy(t 0)
则(*)式可化为:t 2 2t 8 0,
可解得:t 4或t -2(舍),
即(xy) 16, min
当且仅当x y 4时,等号成立.
类型四:和积转化法
例4(. 1)已知x 0, y 0, xy x y 8,求xy的最小值;
(2)已知x 0, y 0, xy x y 8,求x y的最大值.
类型四:和积转化法
例4(. 1)已知x 0, y 0, xy x y 8,求xy的最小值; (2)已知x 0, y 0, xy x y 8,求x y的最大值.
解:(1)因为x 0, y 0, 所以xy x y 8 2 xy (8 *)

利用基本不等式求最值的常见方法

利用基本不等式求最值的常见方法

利用基本不等式求最值的常见方法基本不等式是数学中常用的一种推断和求解最值的方法之一、基本不等式包括均值不等式、柯西-施瓦茨不等式和几何平均与算术平均不等式等。

这些不等式的推导和使用方法可以帮助我们解决各种数学和实际问题。

下面将介绍一些利用基本不等式求最值的常见方法。

1.均值不等式法:均值不等式是最常用的基本不等式之一、它包括算术平均数与几何平均数的关系、算术平均数与谐波平均数的关系等。

通过运用均值不等式,我们可以将一个问题中的复杂表达式或不等式进行简化,从而方便进行求解或判断最值。

例如,当我们需要求解一组数据的算术平均数时,可以通过均值不等式推导出一个简化的不等式,从而确定平均数的范围。

2.柯西-施瓦茨不等式法:柯西-施瓦茨不等式是一种用于求解内积和范数的不等式。

通过柯西-施瓦茨不等式,我们可以推导出两个向量内积的最值以及两个向量范数的关系等。

在实际问题中,柯西-施瓦茨不等式可以用于求解线性规划问题、最小二乘法问题等。

例如,当我们需要求解两个向量的内积最大值时,可以通过柯西-施瓦茨不等式推导出一个简化的不等式来确定最大值。

3.几何平均与算术平均不等式法:几何平均与算术平均不等式是一种常用的不等式关系。

通过几何平均与算术平均不等式,我们可以推导出一组数的平方和与它们的几何平均的关系,或者一组数的立方和与它们的算术平均的关系等。

在实际问题中,几何平均与算术平均不等式可以用于求解数据的平均值、方差、标准差等。

例如,当我们需要求解一组数据的方差时,可以通过几何平均与算术平均不等式推导出一个简化的不等式,从而确定方差的范围。

4.归纳法:归纳法是一种常用的数学推导方法。

利用归纳法,我们可以通过已知条件和不等式的性质来推导出一组数的最值。

在实际问题中,归纳法可以用于求解复杂的不等式,例如任意n个数的幂和与它们的算术平均的关系等。

例如,当我们需要求解一组数据的幂和与它们的算术平均的关系时,可以通过归纳法证明一个定理,从而确定幂和与平均值的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档