医学影像技术学名词解释

合集下载

医学影像学名词解释(按拼音排序)

医学影像学名词解释(按拼音排序)

医学影像学名词解释(按拼音排序)一、a1.cT扫描(computed Tomography):一种使用X射线进行断层扫描的影像学技术,以人体或物体的详细横断面图像。

2.doppler超声(doppler Ultrasound):一种利用多普勒效应来测量血液流速和方向的超声技术,常用于检测动脉或静脉血管的异常。

3.MRi(Magnetic Resonance imaging):一种通过使用强磁场和无线电波来创建详细的身体内部图像的影像学技术。

二、b1.b超(b-modeUltrasonography):一种使用超声波来人体或物体的实时图像的影像学技术,常用于产前检查、肝胆、子宫和乳腺等器官的检查。

三、c1.闪电式cT(flashcT):一种高速cT扫描技术,能够实时全身器官的三维图像。

2.放射性同位素扫描(Radionuclideimaging):一种使用放射性同位素来人体或器官的图像的影像学技术,常用于心脏、骨骼和甲状腺等器官的检查。

四、d1.dSa(digital Subtractionangiography):一种使用数字技术来减除骨骼和其他组织的影响,以更清楚地显示血管的影像学技术。

五、e1.超声心动图(echocardiography):一种使用超声波来心脏实时图像、检测心脏功能和结构的影像学技术。

六、f1.胸部X线摄影(chest X-ray):一种使用X射线来拍摄胸部器官图像的影像学技术,常用于肺部疾病和骨折的诊断。

七、M1.乳腺摄影(Mammography):一种使用低剂量X射线来拍摄乳房图像,用于早期发现和筛查乳腺肿瘤的影像学技术。

2.核磁共振胃肠道造影(Magnetic Resonance enterography):一种使用MRi技术来检查胃肠道疾病的影像学技术。

八、N1.脑电图(electroencephalography):一种通过记录大脑电活动来诊断脑功能和疾病的影像学技术。

医学影像学常见名词解释

医学影像学常见名词解释

2. CTA:是静脉内注射对比剂,当含对比剂的血流通过靶器官时,行螺旋CT容积扫描并三维重建该器官的血管图像。

3. MRA:磁共振血管造影,是指利用血液流动的磁共振成像特点,对血管和血流信号特征显示的一种无创造影技术。

常用方法有时间飞跃、质子相位对比、黑血法。

4. MRS:磁共振波谱,是利用MR中的化学位移现象来确定分子组成及空间分布的一种检查方法,是一种无创性的研究活体器官组织代谢、生物变化及化合物定量分析的新技术。

5. MRCP:是磁共振胆胰管造影的简称,采用重T2WI水成像原理,无须注射对比剂,无创性地显示胆道和胰管的成像技术,用以诊断梗阻性黄疽的部位和病因。

6. PTC:经皮肝穿胆管造影;在透视引导下经体表直接穿刺肝内胆管,并注入对比剂以显示胆管系统。

适应症:胆道梗阻;肝内胆管扩张。

7. ERCP:经内镜逆行胆胰管造影;在透视下插入内镜到达十二指肠降部,再通过内镜把导管插入十二指肠乳头,注入对比剂以显示胆胰管;适应症:胆道梗阻性疾病;胰腺疾病。

8. 数字减影血管造影(DSA):用计算机处理数字影像信息,消除骨骼和软组织影像,使血管成像清晰的成像技术。

9. 造影检查:对于缺乏自然对比的结构或器官,可将高于或低于该结构或器官的物质引入器官内或其周围间隙,使之产生对比显影。

10. 血管造影:是将水溶性碘对比剂注入血管内,使血管显影的X线检查方法。

11. HRCT:高分辨CT,为薄层(1~2mm)扫描及高分辨力算法重建图像的检查技术。

12. CR:以影像板(IP)代替X线胶片作为成像介质,IP上的影像信息需要经过读取、图像处理从而显示图像的检查技术。

13. T1:即纵向弛豫时间常数,指纵向磁化矢量从最小值恢复至平衡状态的63%所经历的弛豫时间。

14. T2:即横向弛豫时间常数,指横向磁化矢量由最大值衰减至37%所经历的时间,是衡量组织横向磁化衰减快慢的尺度。

15. MRI水成像:又称液体成像是采用长TE技术,获取突出水信号的重T2WI,合用脂肪抑制技术,使含水管道显影。

医学影像技术学名词解释

医学影像技术学名词解释

医学影像技术学名词解释医学影像技术是现代医学中不可或缺的一个重要领域,它通过使用各种影像设备,如X光、CT扫描、磁共振成像(MRI)和超声波等,来获取人体内部的图像信息。

它提供了一种非侵入性和非破坏性的方法,可以帮助医生准确地诊断疾病,制定治疗方案,以及监测疾病的进展。

在本篇文章中,我们将解释一些常见的医学影像技术学名词,帮助读者更好地理解和应用这些技术。

1. X光:X光技术是最早被广泛应用的医学影像技术之一。

它通过使用X射线穿过人体,然后被接收器接收并转化为图像。

X光可以用于检查骨骼结构、肺部和胸部疾病的诊断。

然而,X光无法提供关于软组织结构的详细信息。

2. CT扫描:计算机断层扫描(CT)是一种使用X射线和计算机技术生成具有高分辨率的三维图像的影像技术。

通过在不同角度上扫描身体部位,CT扫描可以提供关于器官、骨骼和血管等结构的详细信息。

它在肿瘤的诊断和手术规划中得到了广泛应用。

3. 磁共振成像(MRI):磁共振成像是一种通过使用强磁场和无损耗的无辐射影像技术,可以产生人体内部详细的解剖结构图像。

MRI可以提供关于器官、血管和软组织的丰富信息,对于诊断脑部和神经系统疾病、肿瘤和骨骼疾病具有很高的准确性。

4. 超声波:超声波是一种使用高频声波产生人体内部图像的影像技术。

超声波被广泛应用于妇产科、心脏病学和肝脏疾病等诊断领域。

它可以提供实时图像,并且不会产生辐射。

超声波在手术指导和组织活检中也起着重要的作用。

5. 核医学:核医学是一种使用放射性同位素制备药物,并通过摄取这些药物来检测人体内的生物过程和疾病的影像技术。

它通常用于癌症诊断和治疗过程中。

核医学包括单光子发射计算机断层扫描(SPECT)和正电子发射计算机断层扫描(PET)等技术。

6. 心电图:心电图是用于记录和显示心脏电活动的图像技术。

它通过将多个电极连接到患者的胸部、四肢和颈部,测量和记录心脏电信号的变化。

心电图可以帮助医生诊断心脏病和心律失常等疾病。

医学影像技术名词解释

医学影像技术名词解释

医学影像技术名词解释医学影像技术是一种通过使用射线、声波、磁场等物理力学原理对人体进行无创、准确、直观的影像检查、诊断和治疗的技术。

下面将介绍几个医学影像技术的名词解释。

1. X线造影:X线造影是一种利用X射线通过人体组织的不同部位产生影像的技术。

在这种技术中,医生将辐射X射线通过人体,然后使用检测器捕捉X射线通过人体后所产生的影像。

通过X线造影,医生可以检测到骨骼和某些软组织的异常情况。

2. CT扫描:CT(Computed Tomography)扫描是一种利用X射线和计算机技术生成横断面图像的成像技术。

在CT扫描中,患者需要躺在扫描床上,通过一种圆环状的机器进行扫描。

扫描时机器会以位于患者体内的X射线探测器为中心,绕患者旋转,同时发射X射线,并收集经不同角度探测器通过的射线,然后通过计算机处理得到图像。

CT扫描可以检测脑部、胸部、腹部和盆腔等器官的异常情况。

3. 磁共振成像(MRI):磁共振成像(Magnetic Resonance Imaging)利用磁场和无线电波的相互作用原理生成人体内部的影像。

在MRI检查中,患者需要躺在装有磁体的机器中,磁体会产生强大的磁场,然后通过体内的无线电波信号获取图像。

MRI可以提供高分辨率的图像,对柔软组织如脑、脊柱、关节等进行观察。

4. 超声波检查:超声波检查是一种利用超声波的传播和反射原理对人体内部进行检查和诊断的技术。

在超声波检查中,医生在人体上通过轻轻地移动探头,探测器会发射超声波经皮肤进入体内,然后根据超声波在不同组织中的传播和反射信息获取图像。

超声波检查可以检测和评估内脏器官、血管、肌肉骨骼等的情况。

5. 核医学影像:核医学影像是一种利用放射性核素注入人体,再通过探测器捕获核素发出的放射性粒子产生图像的技术。

核医学影像包括正电子发射断层扫描(PET)和单光子发射计算机断层扫描(SPECT)。

核医学影像可以检测和评估心脏、肺部、肾脏、骨髓等内部器官的功能和病变。

医学影像学名词解释

医学影像学名词解释

医学影像学名词解释第一章成像技术与临床应用1. X 线:波长极短,肉眼看不见的电磁波。

波长范围为0.0006~50nm。

2.自然对比:人体组织结构基于密度上的差别,可产生X 线对比,这种自然存在的差别,称为自然对比。

依靠自然对比所获的X 线图像,称为平片。

3.人工对比:缺乏自然对比的组织或器官,可人为引入在密度上高于或低于它的物质,使之产生对比,称为人工对比。

这种引入的物质称为造影剂。

4.造影检查:用人工对比方法进行的X 线检查称为造影检查。

5.CT:用X线摄影,对X线束对人体层面进行扫描,取得信息,经计算机处理而获得该层面的重建图像,是数字化成像。

6.磁共振成像(MRI):是利用人体中的氢原子核在磁场中受到射频脉冲的激励而发生核磁共振现象,产生磁共振信号,经过信号采集和计算机处理而获得重建断层图像的成像技术。

7.多普勒效应:超声遇到运动的反射界面时,反射波的频率发生改变。

第二章骨骼与肌肉系统1.骨龄:在骨的发育过程中,骨的原始骨化中心和继发骨化中心的出现时间;骨骺与干骺端骨性愈合的时间及其形态的变化都有一定的规律性,这种规律以时间来表示即骨龄。

2.骨质疏松:是指一定单位体积内正常钙化的骨组织减少,即骨组织的有机成分和钙盐都减少,但骨的有机成分和钙盐含量比例仍正常。

3.骨质软化:是指一定单位体积内的骨组织有机成分正常,而矿物质含量减少。

4.骨质破坏:是局部骨质为病理组织所代替而造成骨组织的消失。

5.骨质增生硬化:指一定单位体积内的骨量增多。

6.骨膜异常:包括骨膜反应和骨膜新生骨,是由骨膜受刺激,骨膜水肿、增厚,内层成骨细胞活动增加,最终形成骨膜新生骨,常提示病变存在。

7.Codman 三角:即骨膜三角,引起骨膜增生的病变进展,已形成的骨膜新生骨可被破坏,破坏区两侧的残留骨膜新生骨呈三角形,称为骨膜三角。

8.骨质坏死:是骨组织局部代谢停止,坏死的骨质,称为死骨。

9.关节肿胀:常由关节积液或关节囊及其周围组织充血、水肿、出血和炎症所致。

医学影像技术名词解释

医学影像技术名词解释

第一篇总论1.穿透作用:是指X线穿过物质时不被吸收的本领,X线的穿透力与管电压相关,与物质的密度和厚度相关。

穿透性是X线成像的基础。

2.荧光作用:X线能激发荧光物质产生荧光,它是进行透视检查的基础。

3.感光作用:由于电离作用,X线照射到胶片,使胶片上的卤化银发生光化学反应,出现银颗粒沉淀,称X线的感光作用。

感光效应是X 线摄影的基础。

4.电离作用:物质受到X线照射,原子核外电子脱离原子轨道,这种作用称为电离作用。

5.造影检查:用人工的方法将高密度或低密度物质引入体内,使其改变组织器官与邻近组织的密度差,以显示成像区域内组织器官的形态和功能的检查方法。

6.对比剂:引入人体产生影像的化学物质。

7.阴性对比剂:原子序数低、吸收X线少,是一种密度低、比重小的物质。

影像显示低密度或黑色。

包括空气、氧气、二氧化碳等。

8.阳性对比剂:原子序数高、吸收X线多,是一种密度高、比重大的物质,影像显示高密度或白色。

包括钡制剂和碘制剂9.直接引入法:通过人体自然管道、病理瘘管或体表穿刺等途径,将对比剂直接引入造影部位的检查方法。

包括口服法、灌注法、穿刺注入法。

10.间接引入法:通过口服或静脉注射将对比剂引入体内,利用某些器官的生理排泄功能将对比剂有选择性地排泄到需要检查的部位而第二篇普通X线成像技术1.实际焦点:X线管阳极靶面实际接受电子撞击的面积称之为实际焦点。

2.有效焦点:实际焦点在X线摄影方向上的投影。

3.标称焦点:实际焦点垂直于X线长轴方向的投影。

X线管规格特性表中标注的焦点为标称焦点。

其焦点的大小值称为有效焦点的标称值。

4.听眶线:外耳孔上缘与眼眶下缘的连线。

5.听眦线:外耳孔中点与眼外眦的连线。

6.听鼻线:外耳孔中点与鼻前棘的连线。

7.瞳间线:两侧瞳孔间的连线。

8.听眉线:外耳孔中点与眶上缘的连线。

9.眶下线:两眼眶下缘的连线。

10.中心线:X线束居中心的那一条线。

11.斜射线:X线中心线以外的线。

12.焦-片距:X线管焦点到胶片(探测器)的距离。

医学影像技术名词解释

医学影像技术名词解释

名词解释第一篇总论1.穿透作用:是指X线穿过物质时不被吸收的本领,X线的穿透力与管电压相关,与物质的密度和厚度相关。

穿透性是X线成像的基础。

2.荧光作用:X线能激发荧光物质产生荧光,它是进行透视检查的基础。

3.感光作用:由于电离作用,X线照射到胶片,使胶片上的卤化银发生光化学反应,出现银颗粒沉淀,称X线的感光作用。

感光效应是X 线摄影的基础。

4.电离作用:物质受到X线照射,原子核外电子脱离原子轨道,这种作用称为电离作用。

5.造影检查:用人工的方法将高密度或低密度物质引入体内,使其改变组织器官与邻近组织的密度差,以显示成像区域内组织器官的形态和功能的检查方法。

6.对比剂:引入人体产生影像的化学物质。

7.阴性对比剂:原子序数低、吸收X线少,是一种密度低、比重小的物质。

影像显示低密度或黑色。

包括空气、氧气、二氧化碳等。

8.阳性对比剂:原子序数高、吸收X线多,是一种密度高、比重大的物质,影像显示高密度或白色。

包括钡制剂和碘制剂9.直接引入法:通过人体自然管道、病理瘘管或体表穿刺等途径,将对比剂直接引入造影部位的检查方法。

包括口服法、灌注法、穿刺注入法。

10.间接引入法:通过口服或静脉注射将对比剂引入体内,利用某些器官的生理排泄功能将对比剂有选择性地排泄到需要检查的部位而第二篇普通X线成像技术1.实际焦点:X线管阳极靶面实际接受电子撞击的面积称之为实际焦点。

2.有效焦点:实际焦点在X线摄影方向上的投影。

3.标称焦点:实际焦点垂直于X线长轴方向的投影。

X线管规格特性表中标注的焦点为标称焦点。

其焦点的大小值称为有效焦点的标称值。

4.听眶线:外耳孔上缘与眼眶下缘的连线。

5.听眦线:外耳孔中点与眼外眦的连线。

6.听鼻线:外耳孔中点与鼻前棘的连线。

7.瞳间线:两侧瞳孔间的连线。

8.听眉线:外耳孔中点与眶上缘的连线。

9.眶下线:两眼眶下缘的连线。

10.中心线:X线束居中心的那一条线。

11.斜射线:X线中心线以外的线。

医学影像学名词解释集锦

医学影像学名词解释集锦

医学影像学名词解释集锦一、放射学放射学是通过放射线和其他形式的辐射,如X射线、核磁共振、超声波等,对人体进行诊断和治疗的一门医学专业。

通过这些方法,医生可以获得内部结构的影像,以帮助诊断疾病和指导治疗。

二、超声波超声波是通过高频声波在人体组织中的传播和反射,产生影像来诊断疾病的一种医学技术。

它可以用于检查器官、血管和组织的形态和功能,如超声心动图、超声腹部检查等。

三、X射线X射线是一种利用高能量X射线通过人体组织形成影像的医学技术。

它可以用于检查骨骼和柔软组织,如胸部X射线、骨密度测量等。

X射线可以帮助医生检测骨折、肿瘤、肺部疾病等。

尽管X射线具有一定的辐射风险,但它在医学影像学中仍然是最常用的方法之一。

四、磁共振成像(MRI)磁共振成像技术利用磁场和无线电波来生成详细的人体内部结构影像。

它可以提供高对比度和高分辨率的图像,并不需要使用X射线。

MRI常用于检测脑、脊椎和关节等器官和组织的异常。

由于没有辐射,MRI被认为是一种安全无创伤的检查方法。

五、计算机断层扫描(CT扫描)计算机断层扫描技术是一种利用X射线辐射和计算机处理方法来生成人体内部结构的三维影像的医学技术。

CT扫描可以提供更准确和详细的图像,特别适用于检测肿瘤、出血、器官损伤等疾病。

然而,由于辐射的使用,需要注意辐射剂量控制。

六、放射性同位素检查放射性同位素检查是利用放射性同位素在人体内发出的放射线来检查器官和组织的功能和代谢状态的一种医学技术。

常见的放射性同位素检查包括骨扫描、甲状腺扫描、肺通气灌注扫描等。

七、核医学核医学是利用放射性同位素和相关的影像技术来诊断疾病和指导治疗的一种医学专业。

核医学常见的应用包括放射性同位素扫描、单光子发射计算机断层扫描(SPECT)和正电子发射计算机断层扫描(PET)等。

八、造影剂造影剂是一种被引入人体用于增强影像的物质。

它可以通过口服、静脉注射或直接注入到特定部位,以提供更清晰的影像。

造影剂通常含有X射线可见物质或其他对放射线具有高吸收能力的成分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X线片的密度:胶片中的感光乳剂在光作用下致黑的程度称为照片密度。

密度分辨率(CT):低对比度的情况下,图像对两种组织间最小密度差别的分辨能力。

空间分辨率:高对比度的情况下,密度分辨率大于10%时图像对组织结构空间大小的鉴别能力。

康普顿效应:入射光子与原子外层轨道电子相互作用,光子将部分能量传递给电子,电子获得能量后摆脱原子核的束缚,从原子中射出,而入射光子损失一部分能量后改变了频率和方向后散射了出去,这种过程称为康普顿效应。

X线强度:单位时间内,垂直于X线传播方向的单位面积上通过的光子数目和能量总和。

IP板:是CR关键元件,是信息记录,实现模数转换的载体,代替传统的屏-片系统。

滤线栅的栅比:铅条高度和铅条之间间隔的比值,值越大,吸收散射线越好。

静脉肾盂造影(IVP):静脉注射造影剂,经过肾脏排泄至尿路使其显影,病人痛苦小,适合结石,结核,肿瘤,先天性畸形等。

mask像(DSA):不含对比剂的,在打入对比剂之前的摄片。

重复时间(TR):从第一个RF激励脉冲出现到下一个周期同样激励脉冲出现经历的时间。

回波时间(TE):从第一个RF激励脉冲开始到采集回拨信号之间的时间。

反转时间(TI):指施加180度反转脉冲使磁化矢量反转到负Z轴方向到施加90度激励脉冲中间的时间段。

减影:通过计算机把血管影像上的骨与软组织影像消除而凸出血管的技术。

注射流率:单位时间内经导管注入对比剂的量。

T1加权像:SE序列中,通过采用短TR短TE的办法得到的重在反映组织T1特征的图像。

T2加权像:SE序列中,通过采用长TR长TE的办法得到的重在反映组织T2特征的图像。

质子密度加权像:SE序列中,通过采用长TR短TE的办法得到的重在反应组织质子密度特征的图像。

纵向弛豫:高能态自旋将能量传到周围环境中的过程。

横向弛豫:自旋质子自身产生的磁场相互干扰导致的彼此相位一致性丧失。

静态显像:显像剂在脏器组织和病灶达到分布平衡时的显像。

动态显像:显像剂引入人体后,以一定的速度连续或间断地多幅成像,用以显示显像剂随血流流经或灌注的脏器,并被组织不断摄取与排泄在器官内反复充盈和射出的过程所造成的脏器内放射性在数量或位置上随时间发生的变化的显像。

阴性显像:正常器官和组织细胞可选择性摄取某种放射性药物,能够显示出该脏器和组织的形态及大小,病灶失去正常组织的功能,故常常不能摄取显影剂,呈现放射性分布稀疏或缺失,又称冷区显像。

阳性显像:病灶部位的放射性活度高于正常组织器官的显像,又称为“热区”显像。

信噪比(SNR):平均信号强度与平均噪声强度的比值,是衡量图像质量的重要指标。

化学位移(CHESS):相同质子处在相同分子的不同位置,或处在不同分子中会引起其共振频率略有所不同,这种共振频率差异大小与外加磁场强度大小有关。

点解析波普技术(PRESS):通过CHESS选择性饱和技术进行抑制后,采集序列依次施加90度-180度-180度三个射频脉冲,三个脉冲位于特定的相互垂直的三个平面内,最终得到所选择的兴趣区的回波。

激励回波采集方式(STEAM):通过CHESS技术进行水抑制,采集回波的部分信号,信噪比低,采用90度RF脉冲代替PRESS序列的180度脉冲。

X线产生的三个条件:电子源、高速电子流、靶物质。

在X线诊断和治疗中主要利用X线的穿透特性、荧光特性、电离作用、感光特性、生物特性等特性。

X线的质是通过管电压的大小来反应的,X线的量是由毫安秒来表示。

适合于诊断的照片密度范围在0.25-2.0之间,密度范围在0.7-1.5时信息比较丰富,直接接收X线照射的区域其密度值约为3.0,胶片本底灰雾的密度值一般小于0.2。

诊断用X线产生的效率在0.3-1.11%之间,其余大部分变成了热。

直接医用X线胶片的构成为乳剂膜、保护膜、片基和结合膜。

髋关节前后位摄影时下肢伸直,双足应轻内斜10-15度,使拇指并拢,中心线应对准髂前上棘至耻骨联合线中点向下、向后各2.5厘米处入射。

乳突25度侧位(许氏位)摄影时,中心线应通过外耳后2.5厘米、上2.5厘米射入暗盒中心。

腕关节外展摄影主要是检查腕舟骨病变,摄影时玩不应平放暗盒上,手尽量向尺侧偏移。

头颅正位(前后位)摄影时X线中心应通过眉间射入暗盒中心。

疑有肠梗阻、胃肠道穿孔观察肠腔内液平或腹腔内游离气体的患者,腹部摄影应采取的体位是腰椎前后位。

疑有腰椎峡部裂的患者,应采用的体位是腰椎斜位。

腰椎椎间盘突出的影像学检查方法应选择MR和CT。

DSA检查中常见的矩阵512×512和1024×1024。

肝脏增强一般需要扫动脉期和门脉期,为了鉴别肝癌和肝血管瘤,还需加扫实质期。

截断伪影可以通过增加扫描矩阵方法抑制。

MR部分容积效应可通过薄层扫描方法抑制。

CR为数字X线摄影,将传统的X线胶片上的信息通过转换形成数字图像的过程。

SPECT最常用的断层影像重建方法是:投影,反投影和滤波反向投影。

核磁矩是的大小是原子核的固有特性,决定了MRI信号的敏感性。

H核是最简单的原子核,只有一个质子,具有最强的核磁矩,并且在人体中含量最丰富,,成为MRI的首选靶原子核。

实际上横向磁化的自然弛豫现象过程并不是在理想的均匀磁场中,它经历着自旋-自旋弛豫和因为磁场的不均所引起的弛豫的双重效应,两者共同作用的结果称T2*弛豫。

MRI磁体系统主要有三种类型,即永磁型、常导型和超导型。

在梯度回波脉冲序列中,使用反转梯度来产生回波信号,它的作用与SE序列中180度相位重聚脉冲作用类似。

在颈椎MR成像中,预饱和技术常用抑制吞咽运动伪影。

在腰椎MR成像中,预饱和技术常用抑制腹部呼吸运动伪影。

在胸椎MR成像中,预饱和技术常用抑制心脏搏动伪影。

MR水成像使用的是重度T2加权技术,使具有长T2的静态液体呈高信号。

影像增强器主要由输入屏和输出屏。

DSA图像的处理过程主要经过对数变换、时间滤波、对比度增强处理。

流率型高压注射器的主要组成部分为注射头、控制台、多项移动臂及机架。

动脉DSA检查时动态DSA球管检测器围绕被检者作规律运动。

短时反转恢复序列STIR常用来脂肪抑制。

图像存档与传输系统(PACS)的功能①存储与管理功能。

②图像调阅及后处理功能。

③简化胶片的复制。

④连接功能。

⑤PACS 平台上实现临床、教学、科研的有机结合,推动医院的发展和经济、社会效益的提高。

⑥实现远程会诊与交流。

胸部正位摄影体位及注意事项体位:被检查者面对摄片架站立,前胸对准并靠近暗盒,两足分开与肩平。

身体正中矢状面对准冰垂直与暗盒中线,头部稍后仰,胶片上缘超出肩部软组织3cm。

两肘弯曲,手背放于髋部,两肩尽量内旋紧靠暗盒,使两侧肩胛骨拉向外方,不与肺野重叠,两肩尽量放平,不要高耸,锁骨呈水平位,以便显示肺尖。

深吸气后屏气曝光,中心线对准第五胸椎垂直于暗盒入射。

注意事项:①宜采用高mA,短时间深吸气后屏气曝光,并且训练好病人。

②摄影距离应为170-180cm,心脏为200cm。

③尽量取站立位,千伏值的选择除了根据体厚外,还应根据患者体质和病理情况。

高千伏摄影优缺点优点:①层次丰富,信息量大,扩大了诊断范围。

②高千伏,相应的减小了mAs,缩短了曝光时间,提高了照片质量。

③使用小焦点,提高了照片清晰度。

④mAs减小,X线管产生热量随之减小,延长X线管寿命。

⑤改善了肢体厚薄不同和组织密度不同所致的影像不均。

缺点:影像的对比度差。

静脉肾盂造影方法①造影前的准备(清洁肠腔,碘实验)。

②摄腹部平片。

③静脉注射造影剂分别摄5分,15分,30分和减压片。

螺旋CT主要优点①提高了多平面和三维图像重建的质量。

②一次屏息完成一个部位的扫描,不会遗漏病灶。

③可进行任意层面回顾性重建。

④提高了扫面速度,使增强扫面的意义加强。

CR成像系统的优点①X线剂量比常规X线摄影显著降低。

②可与原有的X线摄影设备匹配工作。

③具有多种处理功能,如测量、局部放大、缩小、反转、多幅显示和减影等。

④显示信息变化大,满足临床诊断要求。

⑤可数字化存储,可并入网络系统,节省胶片,无片库。

X线与物质相互作用的主要形式及发生几率①相干放射(5%)。

②康普顿效应(25%)。

③光电效应(70%)。

④电子对效应。

⑤光蜕变。

显影液的主要成分与作用①显影剂(对苯二酚、米吐尔和菲尼酮)。

②保护剂(常用亚硫酸钠)。

③促进剂(常用碳酸钠、氢氧化钠、硼砂)。

④抑制剂(常用溴化钾、苯骈三氮唑)。

定影液的主要成分与作用①定影剂(常用硫代硫酸钠)。

②保护剂(常用亚硫酸钠)。

③中和剂(常用酸剂为醋酸和硼酸)。

④坚膜剂(常用钾矾和铬矾)。

CT成像的基本原理CT成像的物理学基础是物体对X线的吸收存在差异。

高度垂直的X线束对人体某部位按一定厚度进行扫描→穿过人体的X线有探测器接收→经放大变为电子流→A/D转换→输入计算机处理→计算机通过运算得出该断面上各体素X线吸收值,冰排列成数字矩阵→经D/A 转换后用不同灰度等级在显示器上显示即获得该部位横断面或冠状断面的CT图像。

影响MR图像分辨率的因素①质子密度。

②弛豫时间长短。

③血液和脑脊液的流动。

④顺磁性物质。

⑤蛋白质。

DSA的伪影①运动伪影。

②设备伪影。

③饱和伪影。

CR成像的过程①潜影的形成:信息X线对IP激发形成潜影。

②潜影的读取:IP被激励后以紫外线的姓氏释放存储的能量,叫做光激励发光(PSL)。

③光电转换:利用光电倍增管将发射光转换为电信号并放大。

④重建图像处理图像。

⑤用强光消除IP上的潜影,备下次使用。

扩散成像的原理利用水分子的热运动进行成像。

正常情况下人体内的水的扩散运动强度是一个常数,而在病理条件下组织内水分子的分布状态发生改变,其扩散强度也发生改变,水分子的扩散运动在双极梯度场产生净相位,利用对扩散运动敏感的序列(GRE,EPI序列)来检测扩散运动强度的改变。

灌注成像的原理对比剂团注示踪法原理:用团注磁共振顺磁性对比剂所产生的“质子-电子-电子偶极质子”效应,对比剂瞬间通过时,使成像组织T1,T2值缩短,以T2值缩短明显。

波谱成像(MRS)原理由于化学位移的存在,人体内各种化合物的共振频率会略有不同,在病理条件下,人体内各种化合物的含量会发生改变,利用一些特殊的序列(GRE,EPI序列)来无创性检测这种化合物含量的改变,从而提供人体内相关的代谢信息改变。

磁化传输对比(MTC)原理在人体组织内存在着自由水质子(自由池)和结合水质子(结合池),MR成像中只有自由池质子才能直接产生磁共振信号,但两个池的质子通过“偶极-偶极交换作用”进行着稳定速率的磁化交换,使两个池的磁化程度保持一个平衡状态。

如果一个池的磁化被饱和,那么平衡被打破,通过磁化传递作用使另一个池也出现饱和,从而形成一种新对比。

CT的窗口技术、包含、对图像的影响人眼不能分辨微小灰度差异,为了提高组织结构的细微显示效果,分辨相邻组织差别,突出显示诊断需要的图像信息(感性趣区),通常通过调节图像的对比度和亮度来完成,这种技术称为窗口技术。

相关文档
最新文档