BP神经网络详解与实例

合集下载

LabVIEW中BP神经网络的实现及应用

LabVIEW中BP神经网络的实现及应用

LabVIEW中BP神经网络的实现及应用
0 引言LabVIEW 是美国NI 公司开发的高效图形化虚拟仪器开发平台,它的图形化编程具有直观、简便、快速、易于开发和维护等优点,在虚拟仪器设计和测控系统开发等相关领域得到了日益广泛的应用,它无需任何文本程序代码,而是把复杂、繁琐的语言编程简化成图形,用线条把各种图形连接起来。

BP 神经网络属于前馈神经网络,它广泛应用函数逼近、模式识别、分类和数
据压缩等领域,若将神经网络与虚拟仪器有机结合,则可以为提高虚拟仪器测控系统的性能提供重要的依据。

1 BP 神经网络学习算法BP 模型是一种应用最广泛的多层前向拓扑结构,以三层BP 神经网络作为理论依据进行编程,它由输入层、隐层和输出层构成。

设输入层神经元个数为I,隐层神经元个数为J,输出层神经元个数为K,学习样本有N 个(x,Y,)向量,表示为:输入向量
X{x1,x2,…,xI},输出向量l,{Y1,Y2,…,Yx),理想输出向量为
T{tl,t2,…,tK}。

(1)输入层节点i,其输出等于xi(i=1,2,…,I,将控制变量值传输到隐含层,则隐层第j 个神经元的输入:
其中:Wji 是隐层第J 个神经元到输入层第i 个神经元的连接权值。

(2)隐层第J 个神经元的输出:
(3)神经网络输出层,第k 个神经元的输入为:
其中:Vkj 是输出层第k 个神经元到隐层第j 个神经元的连接权值。

(4)神经网络输出层,第志个神经元的输出为:
(5)设定网络误差函数E:
(6)输出层到隐层的连接权值调整量△Vkj:
(7)隐层到输入层的连接权值调整量wji:。

BP神经网络介绍

BP神经网络介绍

BP神经网络介绍
一、什么是BP神经网络
BP神经网络(Back Propagation Neural Network),简称BP网络,是一种多层前馈神经网络。

它对神经网络中的数据进行反向传播,以获得
最小化计算误差的参数,进而得到最终的分类结果。

一般来说,BP网络
由输入层、隐藏层和输出层组成,输入层将输入数据传递给隐藏层,隐藏
层再将这些数据传递给输出层,最终由输出层输出最终的类别结果。

BP网络的运算原理大致可以分为三个步骤:前向传播、误差反向传
播和参数调整。

在前向传播阶段,BP网络从输入层开始,将输入数据依
次传递给各个隐藏层,并将这些数据转化为输出结果。

在误差反向传播阶段,BP网络从后面向前,利用误差函数计算每层的误差,即:将误差从
输出层一层一层向前传播,以计算各层的权值误差。

最后,在参数调整阶段,BP网络以动量法更新网络中的权值,从而使网络更接近最优解。

二、BP神经网络的优缺点
1、优点
(1)BP神经网络具有非线性分类能力。

BP神经网络可以捕捉和利用
非线性的输入特征,从而进行非线性的分类。

(2)BP神经网络可以自动学习,并能够权衡它的“权衡”参数。

第三讲-BPnn

第三讲-BPnn
E wij wij
学习规则
1.隐含层与输出层之间的权值修正量
( 2) wij
E ( 2) wij
E E ( 2) ( 2) wij I i
( 2) I i ( 2) wij
I i( 2) ( 2 ) (1) ( 2) ( w O b l i ) ( 2) ( 2 ) il wij wij l
BP 算法的基本原理是梯度最速下降法,它的中 心思想是调整权值使网络总误差最小。运行 BP 学习 算法时,包含正向和反向传播两个阶段。 正向传播 输入信息从输入层经隐含层逐层处理,并传向输出 层,每层神经元的状态只影响下一层神经元的状态。 反向传播 将误差信号沿原来的连接通道返回,通过修改各层 神经元的权值,使误差信号最小。
net pi 计算一个样本各单元净输入
a pi 和输出
e Ti a pi 计算目标值与实际输出误差
pi 计算输出单元的一般化误差
Wij 计算各个权重变化
(k ) ( k 1) ( k 1) wij i( k )O(j k 1) i( k ) f ( I i( k ) ) p wpi
bi( k )

(k ) i
p
误差反向传播
BP算法总结
权值和偏置值修正量为
w
(k ) ij

(k ) i
O
( k 1) j
(1) ( 2) ( 2) f1 ( I i ) k wki k
误差反向传播
误差反向传播示意图
w
x1 x2 x3 xm

( 2) i
(1) ij

(1) i
( 2) wij

( 2) 1 ( 2) 2

bp神经网络的应用综述

bp神经网络的应用综述

bp神经网络的应用综述近年来,人工神经网络(ANN)作为一种神经网络形式在不断发展,因其计算能力强,对现实世界较好地识别和适应能力,已得到越来越广泛的应用,其中,BP神经网络是最典型的人工神经网络之一。

BP神经网络是指以马尔可夫随机过程为基础的反向传播算法,具有自组织学习、泛化、模糊推理的特点,具有非常广泛的应用场景。

它可以用来解决实际问题。

首先,BP神经网络可以用来解决分类问题。

它可以根据给定的输入向量和输出向量,训练模型以分类相关的输入特征。

这种模型可以用来解决工业控制问题、专家系统任务等。

例如,BP神经网络可以用来识别照片中的面孔,帮助改进自动门的判断等。

此外,BP神经网络还可以用于计算机视觉,即以计算机图像识别的形式进行图像处理。

通常,计算机视觉技术需要两个步骤,即识别和分析。

在识别步骤中,BP神经网络可以被用来识别图片中的特征,例如物体的形状、大小、颜色等;在分析步骤中,BP神经网络可以用来分析和判断图片中的特征是否满足要求。

此外,BP神经网络还可以用于机器人技术。

它可以用来识别机器人环境中的物体,从而帮助机器人做出正确的动作。

例如,利用BP神经网络,机器人可以识别障碍物并做出正确的行动。

最后,BP神经网络还可以用于未来的驾驶辅助系统中。

这种系统可以利用各种传感器和摄像机,搜集周围环境的信息,经过BP神经网络分析,判断当前环境的安全程度,及时采取措施,以达到更好的安全驾驶作用。

综上所述,BP神经网络具有自组织学习、泛化、模糊推理的特点,拥有非常广泛的应用场景,可以用于分类问题、计算机视觉、机器人技术和驾驶辅助系统等。

然而,BP神经网络也存在一些问题,例如训练时间长,需要大量的训练数据,容易受到噪声攻击等。

因此,研究人员正在积极改进BP神经网络,使其能够更好地解决各种问题。

基于BP神经网络的应用及实现

基于BP神经网络的应用及实现
1 B P神经 网络 的简介 基于误差反 向传播 ( B a c k p r o p a g a t i o n )  ̄法 的多层前馈 网络 ( Mu l i t p l e — l a y e r f e e d f o r w a r d n e t - w o r k , 简记为 B P网络) 【 1 ] , 是 目前 应用 最多也是 最成 功的网络之一 ,构造一个 B P网络需要确定 其处 理单元——神经元 的特性 和网络的拓扑结构 。B P网络可 以简单地看作是一个 多层的感知器 , 其 输人输出关系与单层感 知器完全相 同 , 前一层 的输 出是下 一层 的输入。神经 网络学 习 算法 要求 神经元模 型 的传递 函数为有 界连续 可微 函数如 s i g — mo i d函数 , 通过学 习可以用一个 连续 的超 曲面 ( 而不仅仅 是一 个超平面 ) 来 完成划分输入样本 空间的功 能。 神经 网络 的拓扑结构是指神经元之间的互 连结构 。 图1 是 个B P网络结构 。B P网络 由输 入层 、 输 出层以及一 个或多个 隐含层互连而成 的一种 多层 网 , 这种结构使 多层 前馈 网络可在
2 B P 网络 的应 用 实 例
下面采用 B P算法 , 在 Ma t l a b中编程 , 建立 B P神经 网络模 型, 对其进行训练 , 最后用 于对癌细胞 的检测 。 图1 检测 的基 本原理[ 6 , 7 1 : 由于气体分子 或 固体 、 液体 的蒸气受 到一定 能量的电子流轰击或强 电场作用 , 丢失价 电子生成分子 离子 ; 同时 , 化学 键也发 生某些 有规律 裂解 , 生成 各种碎 片离 子。 这些带正 电荷 的离子在 电场和磁场作用下 , 按质荷 比( 即质 量 和电荷 比值 M/ Z) 的大小分开 , 排列成谱 , 记 录下来即为质谱 ( m a s s s p e c t r u m) 。因此 , 可 以根据质谱 中离子的强度判断其血 清蛋 白质样本有无癌症细胞 。 实 例 中的数据 是采用 F D A — N C I诊所 蛋 白质项 目中的数 据库 中的数据 。程序主要完成三部分功能 :一是通过 r a n k f e a — 图2 t u r e s 0 函数 , 从 1 5 0 0 0个 的特征 中选取 1 0 0 个影 响较大 的特征 ; 二是 通过神经 网络 的专用 函数 n e w f 0 建立 B P网络 , 并 对其进 T r a i n b r 函数对网络进行训 练。训练效果如图 2所示 。 行训练 和建模 ; 三是给 出测试的结果 。 表 1 列出 了上述实验 的关键数据 。分析可 知 : 基本梯 度下降算 2 . 1特征 的提取 法 ( T r a i n g d ) ,迭代次数多 ,耗时长 ,收敛 速度慢 ;共轭梯度算法 在数据集 中共有 2 1 6个病人 ,其 中有 1 2 1 个 卵巢癌患者 和 9 5 T r a i n c g p ) 和变梯 度法 与拟牛顿 法 的折 中算 法 ( T r a i n o s s ) 迭代 次数 个正常 的病人 。 每个病人的输入是其 具体 特征 ( M/ Z ) 下 的离子浓度 , ( 耗 时少 , 收敛速度 较快 ; 改进型 L M算法 ( T r i a n b r ) 虽然迭代 次数 由于数 据 中共有 1 5 0 0 0个特征用 于判 断 , 计 算量 过于庞大 , 而且 在 少 , 这些特征 当中也没有哪一种特征可以决定正确的分类 , 。 因此 , 需要 较少 ,但是 每 个训 练周 期很 长 ,网络 输 出与实 际输 出的均方 差 MS E) 偏大 。 个分类器— — T a n k f e a t u r e s 0 i  ̄数 , 用来从 1 5 0 0 0 个 特征中选取 1 0 0 ( 2 - 3神经 网络的性能测试 个重要 的特征用于分类 ; 每个病 人的输出则是一个二值矩 阵 , “ 0 ” 表 将 1 0 0个 测试结果 样本分别 输入到经过 训练 的 B P神经 网络 , 示正常病人 , “ 1 ” 表示患有癌症的病人。 其测试结果如表 2所示 。 2 . 2 B P神 经网络 的构建及训练 3 结 论 文 中用 于 癌症 检测 的神 经 网络含 有 一个 输 入层 ,节点 数 为 本文用 B P神经 网络对病 人样 本进行检测 ,在用大量的真实数 1 0 0 ; 一个输 出层 , 节点数为 2 1 6 ; 一个 隐含层 , 节点数为 l 0 。由于其 据进行训 练后 , 得到满足误差指标 的 B P神经网络 ; 根据不同的算法 输 出函数在 0到 1 之间 ,所 以隐含层和输 出层得 激励 函数 为 s i g — 训 练 网络 ,得 到 的训练 模 型的效 果也 不尽 相 同。结 果表 明使 用 m o i d对数 函数和线性函数。t r a i n根据在 n e w f函数 中确定的训练函

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。

它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。

1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。

输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。

线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。

非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。

激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。

2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。

常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。

3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。

反向传播算法的核心思想是使用链式法则。

首先计算输出层的梯度,即损失函数对输出层输出的导数。

然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。

接着继续向输入层传播,直到更新输入层的权重和偏置。

在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。

4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。

权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。

梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。

bp神经网络算法步骤结合实例

bp神经网络算法步骤结合实例

bp神经网络算法步骤结合实例
BP神经网络算法步骤包括以下几个步骤:
1.输入层:将输入数据输入到神经网络中。

2.隐层:在输入层和输出层之间,通过一系列权值和偏置将输入数据进行处理,得到输出
数据。

3.输出层:将隐层的输出数据输出到输出层。

4.反向传播:通过反向传播算法来计算误差,并使用梯度下降法对权值和偏置进行调整,
以最小化误差。

5.训练:通过不断地进行输入、隐层处理、输出和反向传播的过程,来训练神经网络,使
其达到最优状态。

实例:
假设我们有一个BP神经网络,它的输入层有两个输入节点,隐层有三个节点,输出层有一个节点。

经过训练,我们得到了权值矩阵和偏置向量。

当我们给它输入一组数据时,它的工作流程如下:
1.输入层:将输入数据输入到神经网络中。

2.隐层:将输入数据与权值矩阵相乘,再加上偏置向量,得到输出数据。

3.输出层:将隐层的输出数据输出到输出层。

4.反向传播:使用反向传播算法计算误差,并使用梯度下降法调整权值和偏置向量,以最
小化误差。

5.训练:通过不断地输入、处理、输出和反向传播的过程,来训练神经网络,使其达到最
优状态。

这就是BP神经网络算法的基本流程。

在实际应用中,还需要考虑许多细节问题,如权值和偏置的初始值、学习率、激活函数等。

但是,上述流程是BP神经网络算法的基本框架。

bp神经网络

bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。

(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。

(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。

(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。

2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。

输出模型又分为:隐节点输出模型和输出节点输出模型。

下面将逐个介绍。

(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。

一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。

(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(5)a0 ( j) 表示输入的第j个分量.
在上述假定下网络的输入输出关系可以表示为:
N0
u1 (i) w1 (i, j)a 0 ( j) 1 (i),
j 1
a1 (i) f (u1 (i)),
N1
u 2 (i)
a2
(i)
w2 (i, j)a1 ( j) 2 (i),
j 1
• 得到的结果见图1
• 图1飞蠓的触角长和翼长
❖ 思路:作一直线将两类飞蠓分开
• 例如;取A=(1.44,2.10)和 B=(1.10,1.16), 过A B两点作一条直线:

y= 1.47x - 0.017
• 其中X表示触角长;y表示翼长.
• 分类规则:设一个蚊子的数据为(x, y) • 如果y≥1.47x - 0.017,则判断蚊子属Apf类; • 如果y<1.47x - 0.017;则判断蚊子属Af类.
(1)ANN研究受到脑科学研究成果的限制。 (2)ANN缺少一个完整、成熟的理论体系。 (3)ANN研究带有浓厚的策略和经验色彩。 (4)ANN与传统技术的接口不成熟。
人工神经网络概述
❖ 什么是人工神经网络? ❖ T.Koholen的定义:“人工神经网络是由 具有
适应性的简单单元组成的广泛并行互连的网络, 它的组织能够模拟生物神经系统对真实世界物 体所作出的交互反应。”
人工神经网络 (Artificial Neuron Nets=ANN)

• 1981年生物学家格若根(W. Grogan)和维什(W.Wirth)发现了两 类蚊子(或飞蠓midges).他们测量了这两类蚊子每个个体的翼长和触角 长,数据如下:
• 翼长 • 1.78 • 1.96 • 1.86 • 1.72 • 2.00 • 2.00 • 1.96 • 1.74
从人的思维活动和智能行为的心理学特 性出发,利用计算机系统来对人脑智能进行宏 观功能的模拟,即符号处理方法。
ANN研究的目的和意义
(1)通过揭示物理平面与认知平面之间的映射,了 解它们相互联系和相互作用的机理,从而揭示思 维的本质,探索智能的本源。
(2)争取构造出尽可能与人脑具有相似功能的计算 机,即ANN计算机。
人工神经网络
(Artificial Neural Netwroks -----ANN)
-----HZAU 数模基地
引言
❖ 利用机器模仿人类的智能是长期以来人们认识自 然、改造自然和认识自身的理想。
❖ 研究ANN目的: ❖ (1)探索和模拟人的感觉、思维和行为的规律,
设计具有人类智能的计算机系统。 ❖ (2)探讨人脑的智能活动,用物化了的智能来
考察和研究人脑智能的物质过程及其规律。ห้องสมุดไป่ตู้
ANN的研究内容
(1)理论研究:ANN模型及其学习算法,试图从数 学上描述ANN的动力学过程,建立相应的ANN模 型,在该模型的基础上,对于给定的学习样本, 找出一种能以较快的速度和较高的精度调整神经 元间互连权值,使系统达到稳定状态,满足学习 要求的算法。
(2)实现技术的研究:探讨利用电子、光学、生物 等技术实现神经计算机的途径。
算法的目的:根据实际的输入与输出数据,计算模型的参 数(权系数) 1.简单网络的B-P算法
图6 简单网络
❖ 假设有P个训练样本,即有P个输入输出对
❖ (Ip, Tp),p=1,…,P, 其中
输入向量为 :
Ip(ip 1,..ip .m ) ,T
目标输出向量为(实际上的):
T p ( tp 1 , . . tp .) n ,T
• 哪一分类直线才是正确的呢?
• 因此如何来确定这个判别直线是一个值得研究的 问题.一般地讲,应该充分利用已知的数据信息 来确定判别直线.
❖ 再如,如下的情形已经不能用分类直线的办法:
• 新思路:将问题看作一个系统,飞蠓的数据作为 输入,飞蠓的类型作为输出,研究输入与输出的 关系。
c
k l
c
k j
(3)研究仿照脑神经系统的人工神经网络,将在模 式识别、组合优化和决策判断等方面取得传统计 算机所难以达到的效果。
神经网络研究的发展
(1)第一次热潮(40-60年代未) 1943年,美国心理学家W.McCulloch和数学家
W.Pitts在提出了一个简单的神经元模型,即MP模型。 1958年,F.Rosenblatt等研制出了感知机 (Perceptron)。 (2)低潮(70-80年代初): (3)第二次热潮
(7)
定理2 对于具有多个隐层的前馈神经网络;设激发函数为S
函数;且指标函数取 P
E Ep
(8)
p 1
其中 E p1 2i N L 1(t(p)(i)aL (p)(i)2 ) (9)
则每个训练循环中按梯度下降时;其权重迭代公式为
w l ( p ) ( i ,j ) w l ( p 1 ) ( i ,j ) l ( p ) a l ( p 1 ) ( j )(, 10 )
触角长 类别 1.14 Apf 1.18 Apf 1.20 Apf 1.24 Af 1.26 Apf 1.28 Apf 1.30 Apf 1.36 Af
• 翼长 • 1.64 • 1.82 • 1.90 • 1.70 • 1.82 • 1.82 • 2.08
触角长 类别 1.38 Af 1.38 Af 1.38 Af 1.40 Af 1.48 Af 1.54 Af 1.56 Af
l1,..L .,,
wl(p)(i, j) 表示第-1层第个元对第层第个元输入的第 次迭代时的权重
L ( p ) ( i ) ( t ( p ) ( i ) a L ( p ) ( i )f'( ) u L ( p ) ( i )() 11)
wk(i,j) 表示从第k-1层第j个元到第k层第i个元的权重,
a k (i) 表第k层第i个元的输出
假设:
(3)设层与层间的神经元都有信息交换(否则,可设它们 之间的权重为零);但同一层的神经元之间无信息传 输. (4) 设信息传输的方向是从输入层到输出层方向;因此称为 前向网络.没有反向传播信息.
❖ 问:如果抓到三只新的蚊子,它们的触角长和 翼长分别为(l.24,1.80); (l.28,1.84);(1.40, 2.04).问它们应分别属于哪一个种类?
解法一:
• 把翼长作纵坐标,触角长作横坐标;那么每个 蚊子的翼长和触角决定了坐标平面的一个点.其 中 6个蚊子属于 APf类;用黑点“·”表示;9个 蚊子属 Af类;用小圆圈“。”表示.
❖ 分类结果:(1.24,1.80),(1.28,1.84)属于Af类; (1.40,2.04)属于 Apf类.
图2 分类直线图
•缺陷:根据什么原则确定分类直线?
• 若取A=(1.46,2.10), B=(1.1,1.6)不变,则分类直线 变为 y=1.39x+0.071
分类结果变为: (1.24,1.80), (1.40,2.04) 属于Apf类; (1.28,1.84)属于Af类
图4神经元的数学模型
❖ 其中x=(x1,…xm)T 输入向量,y为输出,
wi是权系数;输入与输出具有如下关系: m
y f( wixi ) i1
• θ为阈值,f(X)是激发函数;它可以是线性
函数,也可以是非线性函数.
例如,若记 m z wi xi i1
取激发函数为符号函数
1, x0, sgnx)( 0, x0.
(2)
• Delta学习规则: 记 wij 表示递推一次的修改量,则有
w ij w ij w ij
(3)
P
P
w ij (tpiop) iipj
i pipj (4)
p 1
p 1
pi
tpi opi
称为学习的速率
注:由(1) 式,第i个神经元的输出可表示为
m
opi f ( wijipj) j1
ipm= -1 , wim= (第i个神经元的阈值) (5)
特别当f是线性函数时
m
opi a( wijipj)b j1
(6)
2.多层前馈网络
假设:
图7 多层前馈网络
(l)输入层不计在层数之内,它有N0个神经元.设网络 共有L层;输出层为第L层;第 k层有Nk个神经元.
(2) 设 u k ( i ) 表示第k层第i神经元所接收的信息
(1)
• 参数识别:假设函数形式已知,则可以从已有的 输入输出数据确定出权系数及阈值。
2、神经网络的数学模型
❖ 众多神经元之间组合形成神经网络,例如下图 的含有中间层(隐层)的B-P网络
c
k l
c
k j
c
k q
… … c1 Wp1
W1j cj Wpj
W1q cq
输出层LC
W11 Wi1
Wij
Wiq Wpq W
(3)应用的研究:探讨如何应用ANN解决实际问题, 如模式识别、故障检测、智能机器人等。
研究ANN方法
(1)生理结构的模拟:
用仿生学观点,探索人脑的生理结构, 把对人脑的微观结构及其智能行为的研究结合 起来即人工神经网络(Artificial Neural Netwroks,简称ANN)方法。 (2)宏观功能的模拟:
f (u 2 (i)),
.......... .......... .......... .........
N L 1
u
L
(i)
w L (i, j)a L1 ( j) L1 (i),
j 1
a L (i) f (u L (i)),
1 i N1, 1 i N2, 1 i NL,
• 其中表示第k层第i个元的阈值.
… b1 Vn1
Vh1 V11
V1i bi Vhi
相关文档
最新文档