MATLAB在微积分中的应用实验报告

合集下载

实验六 matlab数值微分积分实验

实验六 matlab数值微分积分实验

软件学院 MATLAB 程序设计 课程实验报告 201 ~201 学年 第 学期 级 专业班级: 学号: 姓名:实验六 数值微分积分实验一、实验目的1.掌握基本的插值与拟合方法2.掌握使用数学工具Matlab 进行实际问题的插值和拟合建模二、实验内容1.解微分方程2. 求解积分三、实验环境1.工具软件:MATLAB2012b四、实验步骤1. 解微分方程(1)微分方程的解析解dsolve(‘方程1’, ’方程2’,…‘方程n ’, ‘初始条件…’, ‘自变量’)求微分方程的特解⎪⎩⎪⎨⎧===++15)0(',0)0(029422y y y dx dy dx y d(2)求微分方程组的通解⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=+-=+-=z y x dtdz z y x dt dy zy x dt dx 244354332(3)常微分方程的数值解[t ,x]=solver (’f ’, ts, x0, options )解微分方程组⎪⎪⎩⎪⎪⎨⎧===-=-==1)0(,1)0(,0)0(51.0'''321213312321y y y y y y y y y y y y(4)实例-微分方程设位于坐标原点的甲舰向位于x 轴上点A(1, 0)处的乙舰发射导弹,导弹头始终对准乙舰.如果乙舰以最大的速度v 0(是常数)沿平行于y 轴的直线行驶,导弹的速度是5v 0,求导弹运行的曲线方程,并绘图表示。

2. 求解积分(1) quad 函数、quadl 函数quad8函数来求定积分例:被积函数f(x)=x*sin(x)/(1+cos(x)*cos(x)),x 的范围自定义(2) 梯形积分函数trapzX = sort(rand(1,101)*pi);Y = sin(X);Z = trapz(X,Y);(3)dblquad 函数用于求二重积分的数值解自变量范围:pi <= x <= 2*pi, 0 <= y <= pi ;被积函数z = y*sin(x)+x 2*cos(y)(4)triplequad 函数用于求三重积分的数值解五、分析与思考1、什么是解析解?什么是数值解?六、实验总结。

用matlab对微分方程求解实验报告.

用matlab对微分方程求解实验报告.

o 《高等数学》上机作业(三一、上机目的1、学会用 M a t l a b 求简单微分方程的解析解。

2、学会用 M a t l a b 求微分方程的数值解。

二、上机内容1、求简单微分方程的解析解.2、求微分方程的数值解.3、数学建模实例.4、上机作业. 三、上机作业1. 求微分方程:在初值条件下的特解,并画出解函数的图形. 命令>> y =d s o l v e ('x *D y +y -e x p (x =0','y (1=2*e x p (1','x ' 运行结果:y = 1/x *e x p (x +1/x *e x p (1'xxy y e +-=12(y e =函数图象:2. 求微分方程的特解.22450(00,'(110d y dyy dx dx y y ?+-=???==?命令>> y=dsolve('D2y+4*Dy-5*y=0','y(0=0,Dy(1=10','x' 运行结果:y=10/(exp(1+5*exp(-5*exp(x-10/(exp(1+5*exp(-5*exp(-5*x3. 鱼雷追击问题一敌舰在某海域内沿着正北方向航行时,我方战舰恰好位于敌舰的正西方向 1 公里处.我舰向敌舰发射制导鱼雷,敌舰速度为0.42 公里/分,鱼雷速度为敌舰速度的2倍。

试问敌舰航行多远时将被击中?M文件x0=0; xf=0.9999999999999; [x,y]=ode15s('eq1',[x0 xf],[0 0]; plot(x,y(:,1,'b.'hold on;y=0:0.1:1;plot(1,y, '*'运行结果图像:结论:大概在y=0.67处击中敌方舰艇!(选做一个慢跑者在平面上沿椭圆以恒定的速率v=1跑步,设椭圆方程为:x=10+20cost, y=20+5sint. 突然有一只狗攻击他. 这只狗从原点出发,以恒定速率w跑向慢跑者,狗的运动方向始终指向慢跑者.分别求出w=20,w=5时狗的运动轨迹.W=20M文件代码function dy=eq3(t,ydy=zeros(2,1;dy(1=20*(10+20*cos(t-y(1/sqrt((10+20*cos(t-y(1^2+(2 0+15*sin(t-y(2^2;dy(2=20*(20+15*sin(t-y(2/sqrt((10+20*cos(t-y(1^2+(2 0+15*sin(t-y(2^2;运行命令t0=0;tf=10;[t,y]=ode45('eq3',[t0 tf],[0 0];T=0:0.1:2*pi;X=10+20*cos(T;Y=20+15*sin(T;plot(X,Y,'-'hold onplot(y(:,1,y(:,2,'r*'运行结果:利用二分法更改tf tf=5时tf=2.5时tf=3.15时:所以在t=3.15时刻恰好追上!W=5M文件代码function dy=eq4(t,ydy=zeros(2,1;dy(1=5*(10+20*cos(t-y(1/sqrt((10+20*cos(t-y(1^2+(20 +15*sin(t-y(2^2; dy(2=5*(20+15*sin(t-y(2/sqrt((10+20*cos(t-y(1^2+(20 +15*sin(t-y(2^2; 命令:t0=0;tf=10;[t,y]=ode45('eq4',[t0 tf],[0 0]; T=0:0.1:2*pi;X=10+20*cos(T; Y=20+15*sin(T; plot(X,Y,'-'hold onplot(y(:,1,y(:,2,'*' 运行结果更改tf=20运行结果Tf=40 11所以永远追不上!四、上机心得体会高等数学是工科学生的主干科目,它应用于生产生活的方方面面,通过建模,计算可以求出实际问题的最优化问题!因此我们需要掌握建模和利用专业软件处理实际问题的能力! 12。

matlab在微积分中的应用

matlab在微积分中的应用

matlab在微积分中的应用MATLAB在微积分中的应用一、MATLAB在求导和积分中的应用MATLAB集成了丰富的数学函数库,可以在求导和积分等方面帮助学生更好地理解微积分知识。

举例来说,MATLAB中的diff函数可以对一个函数或矩阵进行求导,计算结果准确可靠。

通过MATLAB可以解决一些手动计算困难的问题,有助于提高学生对微积分的理解。

在数值积分过程中,MATLAB也可以很好地发挥作用。

MATLAB中的quad函数可以用来求解函数在给定区间内的数值积分,通过对函数的积分计算,可以更好地理解微积分中的面积和曲线等概念。

在讲解微积分的面积和曲线时,使用MATLAB可以展示较多的面积和曲线实例,有助于学生理解具体实例。

二、MATLAB在微积分三维空间中的应用微积分中的三维空间部分,一般使用手工计算的方式进行,但是这种方式难度较大而且操作繁琐。

而MATLAB可以很方便地模拟三维空间中的曲线表面、曲面、向量场和曲线积分等,为学生提供更具体、直观的视觉体验。

MATLAB还可以使用画图函数,将许多计算步骤集成在一个命令窗口中,方便学生学习和理解三维空间的微积分。

三、MATLAB在微积分应用中的优点1. 计算精度高:MATLAB的计算精度非常高,可以解决许多手动计算困难的问题。

在使用MATLAB计算微积分时,可以快速得出精确的计算结果。

2. 操作简便:MATLAB界面友好,操作简便。

学生可以很容易地进行操作,快速理解微积分中的概念和原理。

3. 可视化更强:MATLAB可以将微积分的概念可视化,将微积分的理论和实际应用结合起来。

这样的教学方式更加形象直观,可以帮助学生更好地理解微积分的知识体系。

四、总结综合以上述,MATLAB在微积分中的应用,可以帮助学生更好地理解和掌握微积分的基本原理和概念,提高学生学习效率和学习兴趣。

MATLAB也为教师提供了一个新的教学工具,可以更加灵活地设计和授课,提高教学质量和教学效果。

数学建模实验二:微分方程模型Matlab求解与分析

数学建模实验二:微分方程模型Matlab求解与分析

实验二: 微分方程模型Matlab 求解与分析一、实验目的[1] 掌握解析、数值解法,并学会用图形观察解的形态和进行解的定性分析; [2] 熟悉MATLAB 软件关于微分方程求解的各种命令;[3] 通过范例学习建立微分方程方面的数学模型以及求解全过程; [4] 熟悉离散 Logistic 模型的求解与混沌的产生过程。

二、实验原理1. 微分方程模型与MATLAB 求解解析解用MATLAB 命令dsolve(‘eqn1’,’eqn2’, ...) 求常微分方程(组)的解析解。

其中‘eqni'表示第i 个微分方程,Dny 表示y 的n 阶导数,默认的自变量为t 。

(1) 微分方程 例1 求解一阶微分方程 21y dxdy+= (1) 求通解 输入:dsolve('Dy=1+y^2')输出:ans =tan(t+C1)(2)求特解 输入:dsolve('Dy=1+y^2','y(0)=1','x')指定初值为1,自变量为x 输出:ans =tan(x+1/4*pi)例2 求解二阶微分方程 221()04(/2)2(/2)2/x y xy x y y y πππ'''++-=='=-原方程两边都除以2x ,得211(1)04y y y x x'''++-= 输入:dsolve('D2y+(1/x)*Dy+(1-1/4/x^2)*y=0','y(pi/2)=2,Dy(pi/2)=-2/pi','x')ans =- (exp(x*i)*(pi/2)^(1/2)*i)/x^(1/2) +(exp(x*i)*exp(-x*2*i)*(pi/2)^(3/2)*2*i)/(pi*x^(1/2))试试能不用用simplify 函数化简 输入: simplify(ans)ans =2^(1/2)*pi^(1/2)/x^(1/2)*sin(x) (2)微分方程组例3 求解 d f /d x =3f +4g ; d g /d x =-4f +3g 。

用MATLAB求解常微分方程实验报告

用MATLAB求解常微分方程实验报告

实验五 利用Matlab 求解常微分方程(组)的实验报告学院:数计学院 班级:1003班 姓名:黄晓丹 学号:1051020144一.实验目的:熟悉Matlab 软件中关于求解常微分方程的各种命令. 掌握利用Matlab 软件进行常微分方程的求解。

二.相关知识在MATLAB 中,由函数dsolve()解决常微分方程(组)的求解问题,其具体格式如下:X=dsolve(‘eqn1’,’eqn2’,…)函数dsolve 用来解符号常微分方程、方程组,如果没有初始条件,则求出通解,如果有初始条件,则求出特解.用字符串方程表示,自变量缺省值为t 。

导数用D 表示,2阶导数用D2表示,以此类推。

S 返回解析解。

在方程组情形,s 为一个符号结构。

[tout,yout]=ode45(‘yprime’,[t0,tf],y0) 采用变步长四阶Runge-Kutta 法和五阶Runge-Kutta-Felhberg 法求数值解,yprime 是用以表示f(t,y)的M 文件名,t0表示自变量的初始值,tf 表示自变量的终值,y0表示初始向量值。

输出向量tout 表示节点(t 0,t 1, …,t n )T ,输出矩阵yout 表示数值解,每一列对应y 的一个分量。

若无输出参数,则自动作出图形.三.实验内容:例1 求下列微分方程的解析解(1)(2)(3)方程(1)求解的MATLAB 代码为:>>clear;>>s=dsolve('Dy=a*y+b')结果为s =-b/a+exp(a*t)*C1方程(2)求解的MATLAB 代码为:>>clear;>>s=dsolve('D2y=sin(2*x)-y','y(0)=0','Dy(0)=1','x')>>simplify(s) %以最简形式显示s结果为s =(-1/6*cos(3*x)-1/2*cos(x))*sin(x)+(-1/2*sin(x)+1/6*sin(3*x))*cos(x)+5/3*sin(x)ans =-2/3*sin(x)*cos(x)+5/3*sin(x)方程(3)求解的MATLAB 代码为:b ay y +='1)0(',0)0(,)2sin(''==-=y y y x y 1)0(',1)0(',','==-=+=g f f g g g f f>>clear;>>s=dsolve('Df=f+g','Dg=g-f','f(0)=1','g(0)=1')>>simplify(s,f) %s 是一个结构>>simplify(s.g)结果为ans =exp(t)*cos(t)+exp(t)*sin(t)ans =-exp(t)*sin(t)+exp(t)*cos(t)例2 求解微分方程先求解析解,再求数值解,并进行比较。

matlab求微分方程的解 实验报告四

matlab求微分方程的解 实验报告四

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

matlab求微分方程的解-实验报告四

matlab求微分方程的解-实验报告四

matlab求微分方程的解-实验报告四《matlab与数学实验》实验报告实验序号:实验四日期: 2015年 5 月 25 日班级132132002姓名彭婉婷学号 1321320057 实验名称求微分方程的解问题背景描述实际应用问题通过数学建模所归纳而得到的方程,绝大多数都是微分方程,另一方面,能够求解的微分方程也是十分有限的,特别是高阶方程和偏微分方程(组).这就要求我们既要研究微分方程(组)的解析解法(精确解),更要研究微分方程(组)的数值解法(近似解).实验目的本实验将主要研究微分方程(组)的数值解法(近似解),重点介绍 Euler 折线法.实验原理与数学模型MATLAB7.11.0主要内容(要点)1. 求微分方程0sin2')1(2=-+-xxyyx的通解.2. 求微分方程xeyyy x sin5'2''=+-的通解.3. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=-+=++yxdtdyyxdtdx在初始条件0|,1|====ttyx下的特解,并画出解函数()y f x=的图形.4. 分别用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为[0,2]t∈.利用画图来比较两种求解器之间的差异.5. 用 Euler 折线法求解微分方程初值问题⎪⎩⎪⎨⎧=-=1)0(,12'32yyxyy的数值解(步长h取0.1),求解范围为区间[0,2].选做:6. 用四阶 Runge-Kutta 法求解微分方程初值问题⎩⎨⎧=-=1)0(,cos'yxeyy x的数值解(步长h取0.1),求解范围为区间[0,3].迭代法实验过程记录(含基本步骤、主要程序清单及异常情况记录等)1.求微分方程0sin2')1(2=-+-xxyyx的通解.程序:clearsyms x yy=dsolve('(x^2-1)*Dy+2*x*y=sin(x)','x') 答案:y =-(C2 + cos(x))/(x^2 - 1)2.求微分方程xeyyy x sin5'2''=+-的通解.程序:clearsyms x yy=dsolve('D2y-2*Dy+5*y=exp(x)*sin(x)','x ')simplyify(x/y)weijiao答案:y =(exp(x)*sin(x))/6 - (sin(3*x)*exp(x))/8 + (sin(5*x)*exp(x))/24 + C4*cos(2*x)*exp(x) + sin(2*x)*exp(x)*(cos(x)/4 - cos(3*x)/12 + 1/6) + C5*sin(2*x)*exp(x)3. 求微分方程组⎪⎪⎩⎪⎪⎨⎧=-+=++00y x dt dy y x dt dx在初始条件0|,1|00====t t y x 下的特解,并画出解函数()y f x =的图形.程序:clearsyms x y t[x,y]=dsolve('Dx+x+y=0','Dy+x-y=0','x(0)=1','y(0)=0','t')ezplot(x,y,[0, 1])(t 的取值,t 是与x,y 相关的,如果不给范围,则会默认为一个较大的区间) simplify(x)simplify(y)答案:x =exp(2^(1/2)*t)/2 + 1/(2*exp(2^(1/2)*t)) - (2^(1/2)*exp(2^(1/2)*t))/4 +2^(1/2)/(4*exp(2^(1/2)*t))y =2^(1/2)/(4*exp(2^(1/2)*t)) -(2^(1/2)*exp(2^(1/2)*t))/4图形:4. 分别用 ode23、ode45 求上述第 3 题中的微分方程初值问题的数值解(近似解),求解区间为t .利用画图来比较两种求解器之间的差异.[0,2]先编写函数文件verderpol.m:clearfunction xprime=verderpol(t,x)xprime=[-x(1)-x(2); x(2)-x(1)];再编写命令文件cleary0=[1;0];[t,x] = ode45('verderpol',[0,2],y0);x1=x(:,1);x2=x(:,2);plot(x1,x2,'b-')hold ony0=[1;0];[t,x]=ode23('verderpol',[0,2],y0);x1=x(:,1);x2=x(:,2);plot(x(:,1),x(:,2),'r-');图形:两种求解器之间的差异:ode45大部分场合的首选算法ode23使用于精度较低的情形但在此题中并没有体现出差异。

Matlab微积分问题计算机求解实验

Matlab微积分问题计算机求解实验

>> q2=quad('quad1',0,1)
【例】求exp(-x2)在[0,1]上的积分。
数值积分
3、编写被积函数表达式,函数名为f=@(x).exp(-x.^2);
>> q2=quad(f,0,1)
数值积分
(2)梯形法(被积函数由一个表格定义)
trapz函数采用梯形法求取数值积分,适用于由表格形式定义的函数关系的求定积分问题,求值速度快, 但精度差。
syms x; f=abs(x)/x;%给出待展开的函数 xx=[-pi:pi/200:pi]; xx=xx(xx~=0); xx=sort([xx,-eps,eps]);
Fourier级数的Matlab程序
yy=subs(f,x,xx);%计算f(x)的值 for i=1:20
[A,B,F]=fseries(f,x,n); y=subs(F,x,xx); subplot(4,5,n); plot(xx,yy);%画出f(x)的图像 hold on plot(xx,y);%画出Fourier级数的图像 end
K ex2dx 0
计算积分
21
( x1)2
练习:
e 2 dx,
0 2
e2t 2 x 2 1
dx
cost (2 x 2 3 x 1)2
符号求和
symsum(u,n,n0,nn): symsum(f,a,b): 关于默认变量求和
例:计算级数
S 1 及其前100项的部2 分和 n n 1
>> syms n; f=1/n^2;
>> S=symsum(f,n,1,inf)
>> S100=symsum(f,n,1,100)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.求重积分
9.求两类曲线积分与曲面积分
10.多项式函数的代数运算与求零点
11.代数方程的求解、一阶微分方程(组)及高阶微分的求解
12.求函数的最值
四、实验程序、结果与数据处理
1、函数极限
syms x二重极限
y=(x-4)/x >> syms x y
y =(x-4)/x z=x.^2+y.^3
>> limit(y,x,2) z =x^2+y^3
有初始值
>> y=dsolve('D2y=-a^2*y','y(0)=1,Dy(pi/a)=0')
y =cos(a*t)
五.实验心得与实验结论
通过本次实验,熟悉了MATLAB中求函数的极限、导数、微分等运算的命令,掌握了在MATLAB中求函数的不定积分、定积分的命令;掌握了在MATLAB中进行数值微分、数值积分的命令;掌握了在MATLAB中求解非线性代数方程和微分方程的命令;熟悉了MATLAB中对各类函数的求导数、求泰勒展开式的命令;掌握了在MATLAB求函数的定积分的符号运算与数值运算的命令格式;掌握了在MATLAB中求解代数方程和微分方程及微分方程组的命令。只是初次接触该软件,对软件的一些操作还不是很熟悉,有待加强训练。
二、实验设备(环境)及要求
针对所给习题,编写程序。实验过程中,务必分析实验结果,按要求写
出实验报告。(建议同时网上提交电子版实验报告)
三、实验内容与步骤
1.求函数极限、求二重极限
2.求函数的一阶导数与高阶导数、求偏导
3.求隐函数的偏导数
4.求函数在某一点处的泰勒展式
5.对级数求和
6.求不定积分
7.求定积分
>> jaco=det(jaco);u_x=-det(jacobian(H,[u,v]))/jaco
u_x =
(-x^2-y^2)/(x^2+y^2)
4、函数在某一点处的泰勒展式
>> f=sin(x);taylor(f,x,0)
ans =
x-1/6*x^3+1/120*x^5
>> f=cos(x);taylor(f,9,x)
syms x y
int(int(x+y,y,1,x),x,2,5)
ans =93/2
9、求两类曲线积分与曲面积分
syms a t x y z
x=a*cos(t);y=sin(t);z=3*t;
F=[x*y,x-y,x^2];ds=[diff(x,t),diff(y,t),diff(z,t)]';
>> int(F*ds,t,0,pi)
>> syms a s
>> int(a*x,a)
ans =
1/2*a^2*x
>> y=log(x);int(y,x)
ans =
x*log(x)-x
7、求定积分
> syms a x
>> y=exp(a*x);int(y,x,a,2*a)
ans = -(exp(a^2)-exp(2*a^2))/a
8、求重积分
ans =-1 >> limit(limit(z,x,0),y,2)
ans =8
2.函数的一阶导高阶导
>> syms x y >> syms x y
>> y=x^2;diff(y,x) >> y=x^5;diff(y,x,4)
ans =2*x ans =120*x
3、隐函数的偏导数
>> syms x y >> syms x y z
ans =
1-1/2*x^2+1/24*x^4-1/720*x^6+1/40320*x^8
5、级数求和
>> s=x^2;symsum(s,x,1,5)
ans =
55
>> s=x^2;symsum(s,x,1,k)
ans =
1/3*(k+1)^3-1/2*(k+1)^2+1/6*k+1/6
6,、求不定积分
f=x^2+y^2;-diff(f,x)/diff(f,y) f=x*y*z-exp(z);zduix=-diff(f,x)/diff(f,z)
ans = -x/y zduix = -y*z/(x*y-exp(z))
二元隐函数组
>> syms x y u v
>> F=x*u-y*v;G=y*u+x*v-1;H=[F,G];jaco=jacobian(H,[u,v]);
六、教师评语
签名:
日期:
成绩
数学软件实验报告
实验序号:03实验项目名称:MATLAB在微积分中的应用
学 号
123456789
姓 名
XXX
专业、班
XXXXXX
实验地点
Xxxx
指导教师
XXX
时间
2013年10月日
一、实验目的及要求
1、熟悉MATLAB中求函数的极限、导数、微分等运算的命令;
2、掌握在MATLAB中求函数的不定积分、定积分的命令;
ans =-5.9425389001972427447344434486928
一阶微分方程(组)求解
>> y=dsolve('Dy=-a*y')
y =
C1*exp(-a*t)
高阶微分的求解
>> y=dsolve('D2y=-a*y')
y =
C1*sin(a^(1/2)*t)+C2*cos(a^(1/2)*t)
-0.6075
> m=[1 3 4 7];n=[1 1 1];
>> [q r]=deconv(m,n)
q = 1 2
r =0 0 1 5
11、代数方程的求解、一阶微分方程(组)及高阶微分的求解
>> y=dsolve('Dy=-a*y')
y =
C1*exp(-a*t)
代数方程的求解
>> solve('x+cos(x)+5=0','x')
ans =
1/2*a*pi+3/2*a^2*pi
10、多项式函数的代数运算与求零点
p=[1 -2 5 4]
p =
1 -2 5 4
>> y1=polyval(p,4)
y1 =56
>> y22=polyval(p,0)
y22 = 4
求零点
>> r=roots(p)
r =1.3038 + 2.2101i
1.3038 - 2.2101i
3、掌握在MATLAB中进行数值微分、数值积分的命令;
4.掌握在MATLAB中求解非线性代数方程和微分方程的命令;
5、熟悉MATLAB中对各类函数的求导数、求泰勒展开式的命令;
6、掌握在MTLAB中求解代数方程和微分方程及微分方程组的命令。
相关文档
最新文档