线代考试(重点)

合集下载

线性代数重要考点总结

线性代数重要考点总结

线代重要考点总结: 一 求逆序数练习:1.135…(2n-1)246…(2n) 2.135…(2n-1)(2n)(2n-2)…2 3.245318764.246...(2n) (2n-1) (531)二 写出行列式含有某些项的项 练习:1.四阶行列式)det(ij a 展开中含有因子2411a a 且带正号的项为2.写出四阶行列式中含有因子2311a a 的项 三 判断项的符号 练习 1 n11)-2(n 1n ...a a a2 41342213a a a a3选择k ,l ,使.a 5a a a a a ij 5l 42342k 13中带有负号的项阶行列式成为四 计算行列式练习:1.计算4阶行列式2010411063143211111;231111311113111133.计算n 阶行列式xa a a x aa a x.4.计算n 阶行列式 D n =12211000000000100001a x a a a a x x x x n n n+-----5.0a a a a 1111a 1111a 1n 21n21≠+++ ,其中63333222d c b a dcbad c b a 11112711111000000000000032211n n a a a a a a a ----五、余子式,代数余子式 练习1已知A=34653021864212963,求44424144424132,32M M M A A A ++++六、矩阵运算 练习1、设,计算:,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101012121234B 432112122121A (1)2A+3B ;(3)T T AB BA - 1若三阶矩阵A的伴随矩阵为*A ,已知21=A ,则=-*-A A 2)3(1 。

2.设Λ=-AP P 1,其中⎥⎦⎤⎢⎣⎡-=Λ⎥⎦⎤⎢⎣⎡-=2001,114-1P ,则=11A 。

线性代数知识点归纳

线性代数知识点归纳

线性代数知识点归纳线性代数复习要点第一部分行列式1.排列的逆序数2.行列式按行(列)展开法则3.行列式的性质及行列式的计算行列式的定义行列式的计算:①(定义法)②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.③(化为三角型行列式)上三角、下三角行列式等于主对角线上元素的乘积④若都是方阵(不必同阶)则⑤关于副对角线:⑦型公式:⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨(递推公式法)对阶行列式找出与或,之间的一种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的方法称为递推公式法.(拆分法)把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩(数学归纳法)2.对于阶行列式,恒有:,其中为阶主子式;3.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值.4.代数余子式和余子式的关系:第二部分矩阵矩阵的运算性质矩阵求逆矩阵的秩的性质矩阵方程的求解矩阵的定义由个数排成的行列的表称为矩阵.记作:或(同型矩阵:两个矩阵的行数相等、列数也相等.(矩阵相等:两个矩阵同型,且对应元素相等.(矩阵运算a.矩阵加(减)法:两个同型矩阵,对应元素相加(减).b.数与矩阵相乘:数与矩阵的乘积记作或,规定为.c.矩阵与矩阵相乘:设,,则,其中注:矩阵乘法不满足:交换律、消去律,即公式不成立.a.分块对角阵相乘:b.用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量d.两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,⑤矩阵的转置:把矩阵的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a.对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b.分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余子式.,,.分块对角阵矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立) 2.逆矩阵的求法方阵可逆.①伴随矩阵法:②初等变换法③分块矩阵的逆矩阵:④,⑤配方法或者待定系数法(逆矩阵的定义)行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵初等变换与初等矩阵对换变换、倍乘变换、倍加(或消法)变换初等变换初等矩阵初等矩阵的逆初等矩阵的行列式 () () () ?矩阵的初等变换和初等矩阵的关系:(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.矩阵的秩关于矩阵秩的描述:①、,中有阶子式不为0,阶子式(存在的话)全部为0;②、,的阶子式全部为0;③、,中存在阶子式不为0;矩阵的秩的性质:①;;≤≤②③④⑤≤⑥若、可逆,则;即:可逆矩阵不影响矩阵的秩.⑦若;若⑧等价标准型.⑨≤,≤≤⑩,求秩矩阵方程的解法):设法化成第三部分线性方程组1.向量组的线性表示2.向量组的线性相关性3.向量组的秩4.向量空间5.线性方程组的解的判定6.线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系)(2)非齐次线性方程组的解的结构(通解)线性表示:对于给定向量组,若存在一组数使得,则称是的线性组合,或称称可由的线性表示.线性表示的判别定理:可由的线性表示由个未知数个方程的方程组构成元线性方程:①、有解②、③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)2.设的列向量为的列向量为,,为的解可由线性表示.即:的列向量能由的列向量线性表示,为系数矩阵. 同理:的行向量能由的行向量线性表示,为系数矩阵. 即:线性相关性判别方法:法1法2法3推论线性相关性判别法(归纳)线性相关性的性质零向量是任何向量的线性组合零向量与任何同维实向量正交单个零向量线性相关;单个非零向量线性无关部分相关整体必相关;整体无关部分必无关原向量组无关接长向量组无关;接长向量组相关原向量组相关两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关向量组中任一向量≤都是此向量组的线性组合若线性无关,而线性相关则可由线性表示且表示法一向量组的秩向量组的极大无关组所含向量的个数,称为这个向量组的秩.记作矩阵等价经过有限次初等变换化为向量组等价和可以相互线性表示记作:矩阵的行向量组的秩列向量组的秩阶梯形矩阵的秩等于它的非零行的个数矩阵的初等变换不改变矩阵的秩且不改变行向量间的线性关系向量组可由向量组线性表示且,则线性相关向量组线性无关且可由线性表示则.向量组可由向量组线性表示且则两向量组等价任一向量组和它的极大无关组等价向量组极大无关组若两个线性无关的向量组等价则它们包含的向量个数相等设是矩阵若,的行向量线性无关;线性方程组的矩阵式向量式(1)解得判别定理(2)线性方程组解的性质:判断是的基础解系的条件:①线性无关;②是的解;③.(4)求非齐次线性方程组Ax=b的通解的步骤(5)其他性质一个齐次线性方程组的基础解系不唯一.√若是的一个解,是的一个解线性无关√与同解(列向量个数相同):①它们的极大无关组相对应从而秩相等②它们对应的部分组有一样的线性相关性③它们有相同的内在线性关系与的行向量组等价齐次方程组与同解(左乘可逆矩阵);矩阵与的列向量组等价(右乘可逆矩阵).第四部分方阵的特征值及特征向量1.施密特正交化过程2.特征值、特征向量的性质及计算3.矩阵的相似对角化,尤其是对称阵的相似对角化1.(标准正交基个维线性无关的向量两两正交每个向量长度为1与的内积(.记为:④向量的长度⑤是单位向量的向量.2.内积的性质:①正定性:②对称性:③线性:(设A是一个n阶方阵,若存在数和n维非零列向量,使得,则称是方阵A的一个特征值,为方阵A的对应于特征值的一个特征向量.(的特征矩阵).(的特征多项式).④是矩阵的特征多项式⑤,称为矩阵的迹.⑥上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素若则为的的基础解系即为属于的线性无关的特征向量.⑧一定可分解为=、,从而的特征值为:,.为各行的公比,为各列的公比.⑨若的全部特征值,是多项式,则:①若满足的任何一个特征值必满足②的全部特征值为;.⑩与有相同的特征值,但特征向量不一定相同.特征值与特征向量的求法(1)写出矩阵A的特征方程,求出特征值.(2)根据得到A对应于特征值的特征向量.设的基础解系为其中.则A对应于特征值的全部特征向量为其中为任意不全为零的数.(与相似(为可逆矩阵)(与正交相似(为正交矩阵)(可以相似对角化与对角阵相似.(称是的相似标准形)6.相似矩阵的性质:①,从而有相同的特征值,但特征向量不一定相同.是关于的特征向量,是关于的特征向量.②③从而同时可逆或不可逆④⑤若与相似,则的多项式与的多项式相似.矩阵对角化的判定方法①n阶矩阵A可对角化(即相似于对角阵)的充分必要条件是A有n 个线性无关的特征向量.这时,为的特征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.设为对应于的线性无关的特征向量,则有:.②可相似对角化,其中为的重数恰有个线性无关的特征向量.:当为的重的特征值时,可相似对角化的重数基础解系的个数.③若阶矩阵有个互异的特征值可相似对角化.实对称矩阵的性质:①特征值全是实数,特征向量是实向量;②不同特征值对应的特征向量必定正交;:对于普通方阵,不同特征值对应的特征向量线性无关;③一定有个线性无关的特征向量.若有重的特征值,该特征值的重数=;④必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑥两个实对称矩阵相似有相同的特征值.9.正交矩阵正交矩阵的性质①;②;③正交阵的行列式等于1或-1④是正交阵则也是正交阵⑤两个正交阵之积仍是正交阵⑥的行(列)向量都是单位正交向量组.10.11.施密特线性无关单位化:其中为对称矩阵,(与合同.()(正惯性指数二次型的规范形中正项项数负惯性指数二次型的规范形中负项项数符号差(为二次型的秩)④两个矩阵合同它们有相同的正负惯性指数他们的秩与正惯性指数分别相等.⑤两个矩阵合同的充分条件是:与等价⑥两个矩阵合同的必要条件是:2.经过化为标准形.(正交变换法(配方法(1)若二次型含有的平方项,则先把含有的乘积项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过非退化线性变换,就得到标准形;若二次型中不含有平方项,但是(),则先作可逆线性变换,化二次型为含有平方项的二次型,然后再按(1)中方法配方.(初等变换法3. 正定二次型不全为零,.正定矩阵正定二次型对应的矩阵.4.为正定二次型(之一成立):(1),;(2)的特征值全大于;(3)的正惯性指数为;(4)的所有顺序主子式全大于;(5)与合同,即存在可逆矩阵使得;(6)存在可逆矩阵,使得;5.(1)合同变换不改变二次型的正定性.(2)为正定矩阵;.(3)为正定矩阵也是正定矩阵.(4)与合同,若为正定矩阵为正定矩阵(5)为正定矩阵为正定矩阵,但不一定为正定矩阵. 半正定矩阵的判定一些重要的结论:全体维实向量构成的集合叫做维向量空间.√关于:①称为的标准基,中的自然基,单位坐标向量;②线性无关;③;④;⑤任意一个维向量都可以用线性表示.7第1页共20页。

线性代数知识重难点和常考题型汇总

线性代数知识重难点和常考题型汇总

②、

a11 a21

a12
a22

a1 n a2 n



x1
x2



b1
b2


Ax
b
(向量方程,
A为mn
矩阵, m
个方程, n 个未知数)
am1
am 2

amn xm
bm
⑦、 r( AB) min(r( A), r(B)) ;(※)⑧、如果 A 是 m n 矩阵, B 是 n s 矩阵,且 AB 0 ,则:(※) Ⅰ、 B 的列向量全部是齐次方程组 AX 0 解(转置运算后的结论); 3
Ⅱ、 r( A) r(B) n ⑨、若 A 、 B 均为 n 阶方阵,则 r( AB) r( A) r(B) n ;
③、 a1
a2



an


x1
x2



(全部按列分块,其中



b1 b2




);



xn
bn
④、 a1 x1 a2 x2 an xn (线性表出)
⑤、有解的充要条件: r( A) r( A, ) n ( n 为未知数的个数或维数)
③、某行(列)的元素乘以该行(列)元素的代数余子式为 A ;
3,代数余子式和余子式的关系:
M ij (1)i j Aij
Aij (1)i j M ij
4,设 n 行列式 D :
n ( n 1)

大学数学易考知识点线性代数与概率论

大学数学易考知识点线性代数与概率论

大学数学易考知识点线性代数与概率论大学数学易考知识点:线性代数与概率论线性代数是大学数学中非常重要且基础的一门学科,它涉及到向量空间、矩阵、行列式、线性方程组等内容。

概率论则是研究随机事件发生的概率及其规律性的数学学科。

在大学数学考试中,线性代数与概率论是比较易于考察且知识点较为独立的部分。

本文将介绍大学数学考试中线性代数与概率论的一些常见易考知识点。

一、线性代数1. 向量空间与线性变换向量空间是线性代数的核心概念之一,在考试中常涉及到向量空间的基本性质、子空间、线性组合、线性相关性、线性无关性等内容。

此外,线性变换也是考察的重点,包括线性变换的定义、性质、矩阵表示及其相关定理等。

2. 矩阵与行列式矩阵是线性代数的重要工具,考试中经常涉及到矩阵的基本运算、特殊矩阵、矩阵的秩与逆等知识点。

行列式也是考试的常见题型,包括行列式的定义、性质、展开及其应用等内容。

3. 线性方程组与解空间线性方程组是线性代数的基本问题之一,考试中常涉及到线性方程组的求解、解的结构、解的个数等知识点。

此外,解空间也是考查的重点,包括零空间、列空间、行空间等相关概念及其性质。

4. 特征值与特征向量特征值与特征向量是线性代数中重要的概念,考试中常涉及到特征值与特征向量的定义、性质、求解、对角化等知识点。

矩阵的对角化定理也是考查的重点,需掌握其条件与应用。

二、概率论1. 随机变量与概率分布随机变量是概率论的基础,考试中常涉及到随机变量的定义、分类、概率分布、期望、方差等知识点。

常见的离散型随机变量包括二项分布、泊松分布等;常见的连续型随机变量包括均匀分布、正态分布等。

2. 大数定律与中心极限定理大数定律与中心极限定理是概率论的重要定理,考试中常涉及到大数定律的弱/强收敛形式、伯努利大数定律、切比雪夫大数定律等;中心极限定理的常见形式包括林德伯格-列维中心极限定理、中心极限定理的矩形式等。

3. 随机过程与马尔可夫链随机过程是概率论的重要内容,考试中常涉及到随机过程的定义、分类、马尔可夫性质等知识点。

考研数学线性代数重点整理

考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。

以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。

2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。

3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。

4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。

5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。

6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。

7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。

8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。

9. 乘法单位元:对于任意的矢量v,有1v = v。

二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。

以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。

2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。

- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。

3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。

对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。

4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。

考研数学线性代数重点知识

考研数学线性代数重点知识

考研数学线性代数重点知识线性代数是考研数学中非常重要的一部分,对于许多考生来说,掌握好线性代数的重点知识是取得高分的关键。

下面我们就来详细梳理一下线性代数中的重点知识。

一、行列式行列式是线性代数中的基本概念之一,它有着多种计算方法和重要的性质。

计算行列式的方法包括:按行(列)展开法、三角化法、利用行列式的性质化简等。

其中,利用行列式的性质将其化为上三角或下三角行列式是比较常用且有效的方法。

行列式的性质包括:行列式与其转置行列式相等;对换两行(列),行列式变号;某行(列)元素乘以 k,等于用 k 乘以此行列式;若某行(列)元素是两数之和,则行列式可拆分为两个行列式之和等。

行列式在求解线性方程组、判断矩阵可逆性等方面有着重要的应用。

二、矩阵矩阵是线性代数的核心概念,包括矩阵的运算、逆矩阵、矩阵的秩等内容。

矩阵的运算有加、减、乘、数乘。

矩阵乘法需要注意其规则,不满足交换律。

逆矩阵是一个重要概念,如果矩阵 A 可逆,则存在 A 的逆矩阵A⁻¹,使得 AA⁻¹= A⁻¹A = E(单位矩阵)。

求逆矩阵的方法有伴随矩阵法和初等变换法。

矩阵的秩反映了矩阵的“有效信息”量,通过初等变换可以求出矩阵的秩。

三、向量向量部分包括向量组的线性相关性、极大线性无关组、向量组的秩等。

判断向量组的线性相关性有定义法、行列式法、矩阵秩法等。

极大线性无关组是向量组中“最核心”的部分,它不唯一,但所含向量个数是确定的。

向量组的秩等于其极大线性无关组所含向量的个数。

四、线性方程组线性方程组是线性代数的重点应用之一。

齐次线性方程组,当系数矩阵的秩等于未知数个数时,只有零解;当系数矩阵的秩小于未知数个数时,有非零解。

非齐次线性方程组,当增广矩阵的秩等于系数矩阵的秩时,有解;当增广矩阵的秩大于系数矩阵的秩时,无解。

求解线性方程组可以使用高斯消元法。

五、特征值与特征向量特征值和特征向量反映了矩阵的某种特性。

求特征值就是求解特征方程|λE A| = 0 的根,求特征向量则是通过解齐次线性方程组(λE A)X = 0 得到。

考研数学线代主要考点及要求

考研数学线代主要考点及要求

考研数学线性代数主要考点及要求前言线性代数是数学中的重要分支学科,几乎存在于所有数学应用领域。

在考研中,线性代数占有相当的比重,因此无论是对于数学专业考生还是非数学专业考生,都需要充分了解这一学科的主要考点与要求。

本文将详细介绍考研数学线性代数的主要考点以及历年考研数学中线性代数的考察情况,旨在为考生提供参考。

主要考点考研数学线性代数的主要考点如下:1.向量空间2.矩阵论3.行列式理论4.线性方程组5.特征值与特征向量6.内积空间下面将分别进行介绍。

向量空间向量空间是线性代数的核心概念,它是定义了向量加法和数乘运算的集合。

在考研中,需要掌握向量空间的基本定义及其相关概念,例如:•向量空间的基本性质•子空间的定义及判定•线性无关、极大线性无关子集、基的定义及其定理•维数的概念及相应的判别定理矩阵论矩阵论是线性代数中的一个重要组成部分,它主要涉及矩阵的定义、运算规则与性质,以及相关的定理。

在考研中,需要掌握以下几个方面的知识:•矩阵的基本概念与运算规则•行、列、秩、行列式的概念与计算方法•矩阵的逆、转置与伴随矩阵的定义及其计算方法•利用矩阵的运算规则与性质简化计算行列式理论行列式是矩阵论中的一个重要概念,它具有很多重要的性质与应用,例如:•行列式的定义与计算方法•行列式的性质,如交换性、性质、加减性等•Cramer法则及其应用线性方程组线性方程组是线性代数中的重要内容,它应用广泛,是解决实际问题中常用的一种数学方法。

在考研中,需要掌握以下几个方面的知识:•线性方程组的一般形式与矩阵形式•线性方程组的基本概念,如解的存在唯一性等•系数矩阵、增广矩阵与阶梯形矩阵间的关系及计算方法•利用初等变换化简线性方程组特征值与特征向量特征值与特征向量是线性代数中的核心概念,它们在科学工程、金融数学、信息学等领域中有广泛的应用。

在考研中,需要掌握以下几个方面的知识:•特征值与特征向量的概念及其性质•特征值与特征向量的计算方法•矩阵的相似与对角化•求解线性微分方程组内积空间内积空间是线性代数中的一个重要概念,它是定义了两个向量之间的乘积。

线代题型知识点总结

线代题型知识点总结

线代题型知识点总结在线性代数的学习中,有一些重要的知识点需要掌握,包括向量空间、线性变换、矩阵、行列式、特征值和特征向量等。

下面我们来对这些知识点进行总结。

1. 向量空间向量空间是线性代数的基本概念,它是集合中的元素按照一定的规则进行线性组合形成的空间。

向量空间必须满足一些基本的性质,包括封闭性、结合律、交换律、单位元和逆元等。

在向量空间中,我们可以定义加法和数乘运算,并且这两种运算满足线性性质。

向量空间的一些重要的性质包括线性相关和线性无关、基和维数、子空间等。

线性相关是指向量之间存在一定的线性关系,而线性无关则表示向量之间不存在线性关系。

基是指向量空间中的一组线性无关的向量,并且这组向量可以生成整个向量空间。

向量空间的维数是指生成向量空间的最小的基的大小。

2. 线性变换线性变换是线性代数中的一个重要概念,它是指一个向量空间到另一个向量空间的映射,并且满足一定的线性性质。

线性变换可以使用矩阵来表示,并且线性变换具有一些重要的性质,包括线性性、保持加法和数乘运算、保持零向量等。

线性变换的一些重要的性质包括核和像、秩和零化度等。

核是指线性变换的零空间,它包括所有被映射到零向量的向量,而像是指线性变换映射到的向量空间。

线性变换的秩是指像的维数,而零化度是指核的维数。

3. 矩阵矩阵是线性代数中的一个重要工具,它可以用来表示线性变换、解线性方程组等。

矩阵的一些重要的性质包括行空间和列空间、转置矩阵、逆矩阵等。

行空间是指矩阵的所有行张成的空间,而列空间是指矩阵的所有列张成的空间。

转置矩阵是将矩阵的行和列进行交换得到的矩阵,而逆矩阵是指矩阵的乘法逆元。

4. 行列式行列式是矩阵的一个重要的性质,它可以用来求解线性方程组的解、判断矩阵的逆是否存在等。

行列式的计算包括按照对角线元素进行乘积减去反对角线元素进行乘积,并且可以使用化简和展开等方法来计算。

行列式的一些重要的性质包括行列式的性质和余子式和代数余子式的关系等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线代考试相关内容
上星期杨淑玲老师说的题型,另外有的东西是我们几个上课捕获的信息,或许是老师想向我们透露的。

看她那样子好像试卷就是她出的。

一、填空题2*7=14分
二、选择题2*7=14分
三、计算行列式6*2=12

一个是四阶行列式而且是字母行列式;另一个是N阶行列式,一定是用定义法做。

四、矩阵方程10*1=10分
第二章
五、求向量组的极大无关组并用极大无关组表示其他向量10*1=10分
课件中第八次课例题15、例题16、例题17经典考题年年考
老师说填空选择题比较难,遇到卡壳的就先放一放
六、求含参数的线性方程组10*1=10分
七、求方阵的特征值和特征向量10*1=10分
八、求相似矩阵、方阵的对角化10*1=10分
九、证明题5*2=10分
一题是出自第二章的证明题;
(3.3练习题的判断题见课本P103老师特别提出了)
第五章第三节ppt例题9也即书本P170例15 ,此时老师讲的比较重,有意。

P185. 7老师在课堂上让我们做一下,初步揣摩有深意(见下)。

相关文档
最新文档