线性代数期末试题及答案

合集下载

(完整版)线性代数期末测试题及其答案.doc

(完整版)线性代数期末测试题及其答案.doc

线性代数期末考试题一、填空题(将正确答案填在题中横线上。

每小题 5 分,共 25 分)1 3 1 1.若0 5 x 0,则__________。

1 2 2x1 x2 x3 02.若齐次线性方程组x1 x2 x3 0 只有零解,则应满足。

x1x2x303.已知矩阵A,B,C (c ij )s n,满足 AC CB ,则 A 与 B 分别是阶矩阵。

4.已知矩阵A为 3 3的矩阵,且| A| 3,则| 2A|。

5.n阶方阵A满足A23A E 0 ,则A1。

二、选择题(每小题 5 分,共 25 分)6.已知二次型 f x12 x22 5x32 2tx1x2 2x1 x3 4x2 x3,当t取何值时,该二次型为正定?()A. 40 B.4 4C. 0 t4 4 1t5t D. t2 5 5 5 51 42 1 2 37.已知矩阵A 0 3 4 , B 0 x 6 ,且 A ~ B ,求x的值()0 4 3 0 0 5A.3B.-2C.5D.-58 .设 A 为 n 阶可逆矩阵,则下述说法不正确的是()A. A0B. A 1 0C.r (A) nD.A 的行向量组线性相关9 .过点( 0, 2, 4)且与两平面x 2z 1和 y 3z 2 的交线平行的直线方程为()1xy 2 z 4A.312xy 2 z 4C.31 2x y2 z 4B.32 2x y2 z 4D.322103 1 .已知矩阵 A, 其特征值为()51A. 12, 2 4 B. C.12,24D.三、解答题(每小题 10 分,共 50 分)1 12,2, 22441 1 00 2 1 3 40 2 1 30 1 1 011.设B, C 0 2 1 且 矩 阵满足关系式0 0 1 1 00 10 0 0 2T X(C B)E,求。

a1 12212. 问 a 取何值时,下列向量组线性相关?111, 2a ,3。

2 1 21 a22x 1 x 2x 3 313.为何值时,线性方程组x 1 x 2x 3 2有唯一解,无解和有无穷多解?当方x 1 x 2x 32程组有无穷多解时求其通解。

线性代数期末考试题及答案

线性代数期末考试题及答案

线性代数期末考试题及答案一、选择题1. 下列哪个不是线性代数的基本概念?A. 矩阵B. 向量C. 函数D. 行列式答案:C. 函数2. 矩阵A的转置记作A^T,则(A^T)^T等于A. AB. -AC. A^TD. 2A答案:A. A3. 对于矩阵A和B,满足AB = BA,则称A和B是A. 相似矩阵B. 对角矩阵C. 线性无关D. 对易矩阵答案:D. 对易矩阵4. 行列式的性质中,不能成立的是A. 行列式交换行B. 行列式某一行加上另一行不变C. 行列式等于数乘其中某一行对应的代数余子式的和D. 行列式的某一行的系数乘以另一行不变答案:D. 行列式的某一行的系数乘以另一行不变5. 给定矩阵A = [3, -1; 4, 2],则A的秩为A. 0B. 1C. 2D. 3答案:C. 2二、填空题1. 给定矩阵A = [2, 1; -3, 5],则A的行列式为______答案:132. 设矩阵A的逆矩阵为A^-1,若AA^-1 = I,其中I是单位矩阵,则A的逆矩阵为______答案:I3. 若矩阵的秩为r,且矩阵的阶数为n,若r < n,则该矩阵为______矩阵答案:奇异三、简答题1. 解释什么是线性相关性和线性无关性?答案:若存在不全为零的数k1, k2,...,kn,使得方程组中的向量k1v1 + k2v2 + ... + knvn = 0成立,则称向量组{v1, v2, ..., vn}线性相关;若该方程仅在k1 = k2 = ... = kn = 0时成立,则称向量组{v1, v2, ..., vn}线性无关。

2. 如何判断一个矩阵是对称矩阵?答案:若矩阵A的转置等于自身,即A^T = A,则称矩阵A是对称矩阵。

四、计算题1. 给定矩阵A = [1, 2; 3, 4],求A的逆矩阵。

答案:A的逆矩阵为1/(-2)[4, -2; -3, 1]2. 求向量v = [1, 2, 3]的模长。

线性代数期末考试试题及答案

线性代数期末考试试题及答案

线性代数期末考试试题及答案一、选择题(每题2分,共10分)1. 下列矩阵中,哪个是可逆矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 1]C. [1, 1; 1, 1]D. [0, 0; 0, 0]2. 如果向量v = (3, -2),那么其对应的单位向量是什么?A. (1, -2/3)B. (3/√13, -2/√13)C. (3/√29, -2/√29)D. (3/√10, -2/√10)3. 对于矩阵A,|A|表示其行列式,那么|A| = 0表示:A. A是单位矩阵B. A是零矩阵C. A不是满秩矩阵D. A是可逆矩阵4. 矩阵的特征值是什么?A. 矩阵的对角元素B. 矩阵的迹C. 满足Av = λv的非零向量v对应的λD. 矩阵的行列式5. 下列哪个矩阵是对称矩阵?A. [1, 2; 3, 4]B. [2, 0; 0, 2]C. [1, -1; 1, 1]D. [1, 0; 0, 1]二、填空题(每题3分,共15分)6. 如果矩阵A的秩为1,那么A的零空间的维数是_________。

7. 对于任意非零向量α和β,如果α + β和α - β都是零向量,那么向量α和β_________。

8. 一个向量空间的一组基的向量数量至少是_________。

9. 如果矩阵A是n阶方阵,且A^2 = I(单位矩阵),那么矩阵A是_________矩阵。

10. 对于实数域上的向量空间,任意两个非零向量的标量积是_________的。

三、简答题(每题10分,共20分)11. 解释什么是线性变换,并给出一个线性变换的例子。

12. 证明如果矩阵A和B是可交换的,即AB = BA,那么它们的行列式之积等于各自行列式的乘积,即|AB| = |A||B|。

四、计算题(每题15分,共30分)13. 给定矩阵A = [4, 1; 3, 2],求A的逆矩阵A^-1。

14. 设向量空间V是所有2x2实对称矩阵的集合,证明V是一个向量空间,并找出一组基。

线性代数期末试题

线性代数期末试题

线性代数试题(附答案)一、填空题(每题2分,共20分)1.行列式0005002304324321= 。

2.若齐次线性方程组⎪⎩⎪⎨⎧=++=++=-+00202kz y kx z ky x z y kx 有非零解,且12≠k ,则k 的值为 。

3.若4×4阶矩阵A 的行列式*=A A ,3是A 的伴随矩阵则*A = 。

4.A 为n n ⨯阶矩阵,且ο=+-E A A 232,则1-A 。

5. 321,,ξξξ和321,,ηηη是3R 的两组基,且32133212321122,2,23ξξξηξξξηξξξη++=++=++=,若由基321,,ξξξ到基321,,ηηη的基变换公式为(321,,ηηη)=(321,,ξξξ)A ,则A= 6.向量其内积为),1,0,2,4(),5,3,0,1(-=--=βa 。

7.设=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)(,111012111,321212113AB tr AB B A 之迹则 。

8.若的特征值分别为则的特征值分别为阶矩阵1,3,2,133--⨯A A 。

9.二次型x x x x x x f 23222132123),,(--=的正惯性指数为 。

10.矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1042024λλA 为正定矩阵,则λ的取值范围是 。

二、单项选择(每小题2分,共12分)1.矩阵()==≠≠⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)(,4,3,2,1,0,0,44342414433323134232221241312111A r i b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a A i i 则其中。

A 、1B 、2C 、3D 、4 2. 齐次线性方程组⎩⎨⎧=--=++-02023214321x x x x x x x 的基础解系中含有解向量的个数是( )A 、1B 、2C 、3D 、43.已知向量组=====k a a k a a 则线性相关,)1,2,0,0(),1,0,2,2(),1,0,,0(),0,1,1,1(4321 ( )A 、-1B 、-2C 、0D 、1 4. A 、B 则必有且阶矩阵均为,))((,22B A B A B A n -=-+( )A 、B=EB 、A=EC 、A=BD 、AB=BA5.已知=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==k A k a T 则的特征向量是矩阵,211121112)1,,1(( ) A 、1或2 B 、-1或-2 C 、1或-2 D 、-1或26.下列矩阵中与矩阵合同的是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-5000210002( ) A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---200020001 B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-500020003 C 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--100010001 D ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020002三、计算题(每小题9分,共63分)1.计算行列式),2,1,0(0000002211210n i a a c a c a c b b b a i nnnΛΛΛΛΛΛΛΛΛΛ=≠其中2.当⎪⎪⎩⎪⎪⎨⎧=+++=-++=+++=+++ax x x x x x x x x x x x x x x x a 4321432143214321710535105363132,线性方程组取何值时有解?在方程组有解时,用其导出组的基础解系表示方程组的通解。

线性代数--期末试题解析

线性代数--期末试题解析

,选A.
0 A 的逆 4.设A,B分别为m阶和n阶可逆矩阵,那么矩阵 B 0
矩阵等于
0 (A ) −1 B
[ B
0 A −1 , (B) −1 A 0 B −1 A −1 , (C) 0 0 B −1 0 , (D) 0 −1 B
5.设矩阵A和B都是3阶矩阵,如果有可逆矩阵P使P- 1AP =B, 当A的秩R(A)=2时, R(B)=( 二、选择题(15分)
1 − 3 4 1.如果矩阵A = 2 − 1 3 的秩是2, 则a必等于 −1 2 a
2
).
[
].
(A) -1,
(B) 1,
(C) -3,
=-λ(2-λ)2
所以 A的特征值为λ1=λ2=2, λ3=0
对λ1=λ2=2, 解方程(A-2E)x=0, 因为
−1 0 1 1 0 −1 A − 2E = 0 0 0 ~ 0 0 0 1 0 −1 0 0 0
12 0 得特征向量: e1 = 1 ,e2 = 0 1 0 2
A满足条件(2E-C-1B)AT=C,求 1. (2C-B)-1 ; 2. A .
1 2 3 1 0 0 1 2 3 1 − 2 1 解.1. (2C-B,E ) = 0 1 2 0 1 0~ 0 1 0 0 1 − 2 0 0 1 0 0 1 0 0 1 0 0 1
所以:
1 − 2 1 (2C-B)-1 = 0 1 − 2 0 0 1
2. 由(2E-C-1B)AT=C , 得 AT= (2C-B)-1C2 , 即
1 − 2 1 1 T A = 0 1 − 20 0 0 1 0 1 − 2 1 1 = 0 1 − 20 0 0 1 0

线性代数期末考试题及答案

线性代数期末考试题及答案

《线性代数》期末考试题及答案一、单项选择题(每小题3分,共24分).1.设行列式1112132122233132331a a a a a a a a a =,则111112132121222331313233234234234a a a a a a a a a a a a --=-( ). A. 6; B. -6; C. 8; D. -8.2.设B A ,都是n 阶矩阵,且0=AB , 则下列一定成立的是( ).A. 0A =或0B =;B. 0A =且0B =;C. 0=A 或0=B ;D. 0=A 且0=B .3.设A ,B 均为n 阶可逆矩阵,则下列各式中不正确...的是( ). A. ()T T T A B A B +=+; B . 111()A B A B ---+=+; C. 111()AB B A ---= ; D. ()T T T AB B A =.4.设12,αα是非齐次线性方程组Ax b =的解,是β对应的齐次方程组0Ax =的解,则Ax b =必有一个解是( ).A .21α+α;B .21α-α;C . 21α+α+β ;D .121122βαα++.5.齐次线性方程组123234 020x x x x x x ++=⎧⎨--=⎩的基础解系所含解向量的个数为( ).A. 1;B. 2;C. 3;D. 4. 6.向量组12,,αα…,s α(2)s ≥线性无关的充分必要条件是( ).A. 12,,αα…,s α都不是零向量;B. 12,,αα…,s α任意两个向量的分量不成比例;C. 12,,αα…,s α每一个向量均不可由其余向量线性表示;D. 12,,αα…,s α至少有一个向量不可由其余向量线性表示. 7.若( ),则A 相似于B .A. A B = ; B . 秩(A )=秩(B );C. A 与B 有相同的特征多项式;D. n 阶矩阵A 与B 有相同的特征值,且n 个特征值各不相同. 8.正定二次型1234(,,,)f x x x x 的矩阵为A ,则( )必成立.A. A 的所有顺序主子式为非负数;B. A 的所有顺序主子式大于零;C. A 的所有特征值为非负数;D. A 的所有特征值互不相同.二、填空题(每小题3分,共18分)1.设3阶矩阵100220333A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,*A 为A 的伴随矩阵,则*A A =_____________.2.1111n⎛⎫⎪⎝⎭=__________________(n 为正整数). 3.设a b A c d ⎛⎫= ⎪⎝⎭,且det()0A ad bc =-≠,则1A -=________________.4.已知4阶方阵A 的秩为2,则秩(*A )=_________________.5.已知向量组123(1,3,1),(0,1,1),(1,4,)a a a k ===线性相关,则k =____________.6.3阶方阵A 的特征值分别为1,-2,3,则1A -的特征值为_________.三、计算题(10分,共44分)1.(7分)计算行列式01231000100001x x a a a a ---2.(7分)设矩阵121348412363A a -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,问a 为何值时,(1) 秩(A )=1; (2) 秩(A )=2.3.(15分)给定向量组12103a -⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭=,21324a ⎛⎫⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,33021a ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭=,40149a ⎛⎫ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭=,试判断4a 是否为123,,a a a 的线性组合;若是,则求出组合系数4.(15分)λ取何实值时,线性方程组12233414x x x x x x x x λλλλλλλλ-=⎧⎪-=⎪⎨-=⎪⎪-+=⎩有唯一解、无穷多解、无解?在有无穷多解的情况求通解。

线代期末试题及答案

线代期末试题及答案

线代期末试题及答案一、选择题(每题3分,共30分)1. 在三维向量空间中,以下向量中线性无关的是:A) (1, 0, 0)B) (0, 1, 0)C) (0, 0, 1)D) (1, 1, 1)答案:D2. 设矩阵A = [a b; c d],若行列式det(A) = 0,则以下哪个等式成立?A) ad - bc = 0B) ab - bc = 0C) ac - bd = 0D) ad - bd = 0答案:A3. 给定矩阵A = [1 2 3; 4 5 6; 7 8 9],则A的逆矩阵为:A) [-1/6 -1/3 1/6; -1/6 2/3 -1/6; 1/6 -1/3 1/6]B) [-1 -2 -3; -4 -5 -6; -7 -8 -9]C) [1/6 1/3 -1/6; 1/6 -2/3 1/6; -1/6 1/3 -1/6]D) [1 2 3; 4 5 6; 7 8 9]答案:A4. 给定矩阵A = [2 0; 0 3],B = [1 2; 3 4],则A与B的乘积为:A) [2 4; 6 8]B) [2 0; 0 3]C) [1 2; 9 12]D) [4 6; 6 12]答案:B5. 给定向量a = (1, 2, 3)和b = (4, 5, 6),则a与b的内积为:A) 32B) 22C) 14D) 6答案:C6. 若向量a = (1, 2, 3),b = (4, -2, 5),c = (3, 1, -2),则以下哪个等式成立?A) a × b = cB) b × c = aC) c × a = bD) a × c = b答案:B7. 给定矩阵A = [1 2; 3 4],则A的特征值为:A) 1, 2B) 2, 3C) 3, 4D) 4, 5答案:A8. 设向量a = (1, 2, 3),b = (4, 5, 6),c = (2, 1, 3),则向量集合{a, b, c}的维数为:A) 1B) 2C) 3D) 4答案:C9. 给定矩阵A = [1 2; 3 4],A的转置矩阵为:A) [1 3; 2 4]B) [4 3; 2 1]C) [1 2; 3 4]D) [3 4; 1 2]答案:A10. 设矩阵A = [2 1; 3 4],则A的伴随矩阵为:A) [4 -1; -3 2]B) [2 -1; 3 4]C) [-4 1; 3 -2]D) [-2 1; -3 -4]答案:A二、计算题(共70分)1. 设矩阵A = [1 2; 3 4],求A的逆矩阵。

线性代数a期末考试题及答案

线性代数a期末考试题及答案

线性代数a期末考试题及答案一、选择题(每题5分,共20分)1. 以下哪个矩阵是可逆的?A. 零矩阵B. 单位矩阵C. 对角矩阵D. 奇异矩阵答案:B2. 矩阵的秩是指:A. 矩阵的行数B. 矩阵的列数C. 矩阵中非零行的最大数目D. 矩阵中非零列的最大数目答案:C3. 如果一个矩阵A的行列式为0,则:A. A是可逆的B. A是不可逆的C. A是正定的D. A是负定的答案:B4. 以下哪个选项不是线性方程组解的性质?A. 唯一性B. 存在性C. 零解D. 非零解答案:D二、填空题(每题5分,共20分)1. 矩阵的________是矩阵中所有元素的和。

答案:迹2. 如果一个向量组线性无关,则该向量组的________等于向量的个数。

答案:秩3. 对于一个n阶方阵A,如果存在一个非零向量x使得Ax=0,则称x为矩阵A的________。

答案:零空间4. 一个矩阵的________是指矩阵中所有行向量或列向量的最大线性无关组的个数。

答案:秩三、解答题(每题10分,共60分)1. 已知矩阵A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],求A的行列式。

答案:\[ \text{det}(A) = 1*4 - 2*3 = 4 - 6 = -2 \]2. 设A=\[\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}\],B=\[\begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}\],求AB。

答案:\[ AB = \begin{pmatrix} 1*2 + 2*1 & 1*0 + 2*3 \\ 3*2 +4*1 & 3*0 + 4*3 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 10 & 12 \end{pmatrix} \]3. 已知矩阵A=\[\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\],求A的特征值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

工程学院2011年度(线性代数)期末考试试卷样卷
一、填空题(每小题2分,共20分)
1.如果行列式233
32
31
232221
131211
=a a a a a a a a a ,则=---------33
32
31
232221
13
1211222222222a a a a a a a a a 。

2.设2
3
2
6219321862
131-=
D ,则=+++42322212A A A A 。

3.设1
,,4321,0121-=⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=A E ABC C B 则且有= 。

4.设齐次线性方程组⎪⎪⎪
⎭⎫
⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛000111111321x x x a a a 的基础解系含有2个解向量,则
=a 。

、B 均为5阶矩阵,2,2
1
==
B A ,则=--1A B T 。

6.设T )1,2,1(-=α,设T A αα=,则=6A 。

7.设A 为n 阶可逆矩阵,*A 为A 的伴随矩阵,若λ是矩阵A 的一个特征值,则*A 的一个特征值可表示为 。

8.若31212322
212232x x x tx x x x f -+++=为正定二次型,则t 的范围是 。

9.设向量T T )1,2,2,1(,)2,3,1,2(-=β=α,则α与β的夹角=θ 。

10. 若3阶矩阵A 的特征值分别为1,2,3,则=+E A 。

二、单项选择(每小题2分,共10分)
1.若齐次线性方程组⎪⎩⎪
⎨⎧=λ++=+λ+=++λ0
00321
321321x x x x x x x x x 有非零解,则=λ( )
A .1或2
B . -1或-2
C .1或-2
D .-1或2.
2.已知4阶矩阵A 的第三列的元素依次为2,2,3,1-,它们的余子式的值分别为
1,1,2,3-,则=A ( )
A .5
B .-5
C .-3
D .3
3.设A 、B 均为n 阶矩阵,满足O AB =,则必有( )
A .0=+
B A B .))B r A r ((=
C .O A =或O B =
D .0=A 或0=B
4. 设21β,β是非齐次线性方程组b X A =的两个解向量,则下列向量中仍为该方程组解的是
( )
A .21+ββ
B .
()21235
1
ββ+ C .()21221ββ+ D .21ββ-
5. 若二次型3231212
3222166255x x x x x x kx x x f -+-++=的秩为2,则=k ( )
A . 1
B .2
C . 3
D . 4
三、计算题 (每题9分,共63分)
1.计算n 阶行列式a
b
b
b a b b b a
D n
=
2. 设B A ,均为3阶矩阵,且满足B A E AB +=+2,若矩阵⎪⎪⎪

⎫ ⎝⎛-=101020101A ,
求矩阵B 。

3.已知向量组⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=769,103,321321ααα和⎪⎪⎪⎭
⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=01,12,110321b a βββ;
已知3β可以由321,,ααα线性表示, 且321,,ααα与321,,βββ具有相同的秩,求
a ,
b 的值。

4. 已知向量组⎪⎪⎪⎪
⎪⎭
⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=0221,8451,6352,2130,421154321ααααα
(1)求向量组54321,,,,ααααα的秩以及它的一个极大线性无关组; (2)将其余的向量用所求的极大线性无关组线性表示。

5. 已知线性方程组⎪⎩⎪
⎨⎧=+--=+++=+++a
x x x x x x x x x x x x 4321
432143219105363132
(1)a 为何值时方程组有解(2)当方程组有解时求出它的全部解(用解的结构表示).
6. 设矩阵⎪⎪⎭

⎝⎛-=⎪⎪⎭⎫
⎝⎛--=2001,1141D P ,矩阵A 由关系式D AP P =-1确定,试求5A
7.将二次型3231212322213214222),,(x x x x x x x x x x x x f +++++=化为标准形,并写
出相应的可逆线性变换。

四、证明题(7分)
已知3阶矩阵O B ≠,且矩阵B 的列向量都是下列齐次线性方程组的解
⎪⎩⎪
⎨⎧=-+=+-=-+0
3020
232
1321321x x x x x x x x x λ,
(1)求λ的值;(2)证明:0=B 。

参考答案与评分标准
一.
填空题
1.-16; 2. 0;3.⎪⎪⎭⎫ ⎝⎛21107; 4. 1; ; 6. ⎪
⎪⎪⎭
⎫ ⎝⎛----=121242121665
5A ; 7.λ1A ;8.3535
<<-
t ; 9. 2
π
; 10. 24。

二. 单项选择: 1. C ; 2. A ;3. D ; 4. B ; 5. C . 三.计算题:
1. a
b
b a b b b n a a b b
b a b b b a
D n
1
11]
)1([-+==
4分
1)]()1([0
001
]
)1([---+---+=n b a b n a b
a b a b b b n a
9分
2. B A E AB +=+2
⇒E A B AB -=-2
⇒))(()(E A E A B E A +-=-
3分
因为⎪⎪⎪

⎫ ⎝⎛-=-001010100E A 显然可逆
6分
则 ⎪⎪⎪

⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+=201030102101020101E E A B
9分
3. ,3/3/521000126093101713602931⎪⎪⎪⎭

⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛--b b b b 3分
即5=b ,且2),,(321=αααr 5分 那么2),,(321=βββr ,则
6分
⎪⎪⎪
⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛-0150130
121
501301*********a a b a ,即15=a 9分
4. ⎪⎪
⎪⎪



⎝⎛-→
⎪⎪⎪⎪⎪⎭⎫
⎝⎛-----→
⎪⎪⎪⎪⎪⎭⎫ ⎝
⎛---0000010000
02110
012
1
4422002110
16330
11
2
108624243122553111
2
1 4分 3),,,,(54321=αααααr
5分 其极大线性无关组可以取为521,,ααα
7分 且:521302αααα+-=,521402αααα++=
9分
5. ⎪⎪⎪

⎫ ⎝⎛+-→⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎭⎫ ⎝⎛--5000011210040011612602242013211910513163
11321
1a a a 当5-=a 时,线性方程组有解
4分
即⎩⎨⎧+-=-=4
3241214x x x x x ,特解为⎪⎪⎪⎪



⎝⎛=γ00100,
6分
其导出组的一般解为⎩⎨⎧+-=-=432
4
124x x x x x ,基础解系为⎪⎪⎪⎪⎪

⎫ ⎝⎛-=η⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=η1014,012021 8分 原线性方程组的通解为212
2110,(k k k k η+η+γ为任意常数)
9分 6. 由D AP P =-1,得1-=PDP A
2分 155-=P PD A
4分
⎪⎪⎭
⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=114131320011141114131200111415 7分 ⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=121144431141321128131 9分
7. f x x x x x x x x x x x x (,,)1231222321213232224=+++++ =x x x x x x x x x 12123232222322++++++()()
2分 =()()x x x x x x 123223232++++- 4分 令y x x x y x x y x 112322333=++=
+=⎧⎨⎪⎩⎪ 6分
即作线性变换x y y x y y x y 1122233
3=-=
-=⎧⎨⎪⎩⎪ 8分 可将二次型化成标准形f y y y =+-122232
9分
四.证明题:
因为O B ≠,所以齐次线性方程组有非零解,故其方程组的系数行列式 051131
2121
=λ=-λ--,所以0=λ 3分 (2)⎪⎪⎪⎭
⎫ ⎝⎛--→⎪⎪⎪⎭⎫ ⎝⎛---=000250121113012121A ,2)(=A r ,因此齐次线性方程组的基础解系所含解的个数为3-2=1,故1)(≤B r ,因而0=B 。

7分。

相关文档
最新文档