线性代数试卷及答案
线性代数试卷及答案

线性代数试卷及答案-CAL-FENGHAI.-(YICAI)-Company One1《线性代数A 》试题(A 卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:23的一组标准正34《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分)56二、填空题(每小题3分,共18分)1、 256;2、 132465798⎛⎫ ⎪--- ⎪ ⎪⎝⎭; 3、112211221122000⎛⎫⎪- ⎪ ⎪-⎝⎭; 4、 ; 5、 4; 6、 2 。
三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法:231211201012010*******121011411033110331023211027210027810027801141010144010144001103001103001103---⎛⎫⎛⎫⎛⎫⎪⎪⎪-−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭-⎛⎫⎛⎫⎛⎫⎪⎪⎪−−→--−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭―――――(6分)所以1278144103X A B -⎛⎫⎪==-- ⎪ ⎪⎝⎭.―――――(8分)四.解:对向量组12345,,,,ααααα作如下的初等行变换可得:1234511143111431132102262(,,,,)21355011313156702262ααααα--⎛⎫⎛⎫⎪ ⎪-----⎪ ⎪=→ ⎪ ⎪--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭7111431021*******113100000000000000000000--⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭――――(5分) 从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩12345{,,,,}ααααα=2(8分)且3122ααα=-,4123ααα=+,5122ααα=--――――(10分) 五.解:对方程组的增广矩阵进行如下初等行变换:221121121121110113011311101112002421120113400(2)(1)42p p p p p p p p p p p p p p p p p p p p p ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+--+⎝⎭⎝⎭⎝⎭-⎛⎫ ⎪−−→------- ⎪ ⎪-+-+⎝⎭(分)(1) 当10,(2)(1)0,p p p -≠-+-≠且时即1,2,p p ≠≠-且时系数矩阵与增广矩阵的秩均为3,此时方程组有唯一解.――――(5分)(2) 当1,p =时系数矩阵的秩为1,增广矩阵的秩为2,此时方程组无解.――――(6分)(3) 当2,p =-时此时方程组有无穷多组解. 方程组的增广矩阵进行初等行变换可化为81122112211221211033301112111033300001011011180000------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-−−→-−−→-- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭--⎛⎫⎪−−→------ ⎪ ⎪⎝⎭(分)故原方程组与下列方程组同解:132311x x x x -=-⎧⎨-=-⎩ 令30,x =可得上述非齐次线性方程组的一个特解0(1,1,0)T ξ=--;它对应的齐次线性方程组132300x x x x -=⎧⎨-=⎩的基础解系含有一个元素,令31,x =可得1(1,1,1)T ξ=为该齐次线性方程组的一个解,它构成该齐次线性方程组的基础解系.此时原方程组的通解为001101,,.k k k k ξξ+这里为任意常数――――(12分)六.解:(1)由于A的特征多项式2124||222(3)(6)421I A λλλλλλ----=-+-=+----故A 的特征值为13λ=-(二重特征值),36λ=。
线性代数期末试卷及详细答案

线性代数期末试卷及详细答案⼀、填空题(将正确答案填在题中横线上。
每⼩题2分,共10分)1、设1D =3512, 2D =345510200,则D =12D D OO =_____________。
2、四阶⽅阵A B 、,已知A =116,且=B ()1-12A 2A --,则B =_____________。
3、三阶⽅阵A 的特征值为1,-1,2,且32B=A -5A ,则B 的特征值为_____________。
4、若n 阶⽅阵A 满⾜关系式2A -3A-2E O =,若其中E 是单位阵,那么1A -=_____________。
5、设()11,1,1α=,()21,2,3α=,()31,3,t α=线性相关,则t=_____________。
⼆、单项选择题(每⼩题仅有⼀个正确答案,将正确答案的番号填⼊下表内,每⼩题2分,共20分)1、若⽅程13213602214x x x x -+-=---成⽴,则x 是(A )-2或3;(B )-3或2;(C )-2或-3;(D )3或2; 2、设A 、B 均为n 阶⽅阵,则下列正确的公式为(A )()332233A B+3AB +B A B A +=+;(B )()()22A B A+B =A B --;(C )()()2A E=A E A+E --;(D )()222AB =A B3、设A 为可逆n 阶⽅阵,则()**A=(A )A E ;(B )A ;(C )nA A ;(D )2n A A -;4、下列矩阵中哪⼀个是初等矩阵(A )100002?? ???;(B )100010011??;(C )011101001-?? ?- ? ?;(D )010002100??- ;5、下列命题正确的是(A )如果有全为零的数1,k 2k 3,,,m k k 使1122m m k k k αααθ+++= ,则1,α2α,,m α线性⽆关;(B )向量组1,α2α,,m α若其中有⼀个向量可由向量组线性表⽰,则1,α2α,,m α线性相关;(C )向量组1,α2α,,m α的⼀个部分组线性相关,则原向量组本⾝线性相关;(D )向量组1,α2α,,m α线性相关,则每⼀个向量都可由其余向量线性表⽰。
(完整版)线性代数测试试卷及答案

线性代数(A 卷)一﹑选择题(每小题3分,共15分)1。
设A ﹑B 是任意n 阶方阵,那么下列等式必成立的是( ) (A )AB BA = (B)222()AB A B = (C)222()2A B A AB B +=++ (D )A B B A +=+2。
如果n 元齐次线性方程组0AX =有基础解系并且基础解系含有()s s n <个解向量,那么矩阵A 的秩为( )(A) n (B) s (C ) n s - (D) 以上答案都不正确 3。
如果三阶方阵33()ij A a ⨯=的特征值为1,2,5,那么112233a a a ++及A 分别等于( ) (A) 10, 8 (B) 8, 10 (C) 10, 8-- (D) 10, 8--4。
设实二次型11212222(,)(,)41x f x x x x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭的矩阵为A ,那么( )(A) 2331A ⎛⎫=⎪-⎝⎭ (B) 2241A ⎛⎫= ⎪-⎝⎭ (C) 2121A ⎛⎫= ⎪-⎝⎭(D) 1001A ⎛⎫= ⎪⎝⎭ 5. 若方阵A 的行列式0A =,则( ) (A ) A 的行向量组和列向量组均线性相关 (B )A 的行向量组线性相关,列向量组线性无关 (C ) A 的行向量组和列向量组均线性无关 (D )A 的列向量组线性相关,行向量组线性无关 二﹑填空题(每小题3分,共30分)1 如果行列式D 有两列的元对应成比例,那么该行列式等于 ;2。
设100210341A -⎛⎫⎪=- ⎪⎪-⎝⎭,*A 是A 的伴随矩阵,则*1()A -= ; 3. 设α,β是非齐次线性方程组AX b =的解,若λαμβ+也是它的解, 那么λμ+= ; 4. 设向量(1,1,1)T α=-与向量(2,5,)T t β=正交,则t = ; 5。
设A 为正交矩阵,则A = ;6。
设,,a b c 是互不相同的三个数,则行列式222111ab c a b c = ; 7。
线性代数试题及答案

(试卷一)一、填空题(本题总计20分,每小题2分)1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________ 5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk 11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D)A.s r=B.s r ≤C.r s≤D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8 B.8-C.34D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R = D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
c)(A *kA )(B *A k n )(C *-A k n 1 )(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
线性代数试题与答案1

(试卷一)一、 填空题(本题总计20分,每小题2分) 1. 排列7623451的逆序数是_______。
2. 若122211211=a a a a ,则=16030322211211a a a a 3. 已知n 阶矩阵A 、B 和C 满足E ABC =,其中E 为n 阶单位矩阵,则CAB =-1。
4. 若A 为n m ⨯矩阵,则非齐次线性方程组AX b =有唯一解的充分要条件是_________5. 设A 为86⨯的矩阵,已知它的秩为4,则以A 为系数矩阵的齐次线性方程组的解空间维数为__2___________。
6. 设A 为三阶可逆阵,⎪⎪⎪⎭⎫ ⎝⎛=-1230120011A,则=*A 7.若A 为n m ⨯矩阵,则齐次线性方程组0Ax =有非零解的充分必要条件是8.已知五阶行列式1234532011111112140354321=D ,则=++++4544434241A A A A A 9. 向量α=(2,1,0,2)T-的模(范数)______________。
10.若()Tk11=α与()T121-=β正交,则=k二、选择题(本题总计10分,每小题2分) 1. 向量组r ααα,,,21 线性相关且秩为s ,则(D) A.s r = B.s r ≤C.r s ≤ D.r s <2. 若A 为三阶方阵,且043,02,02=-=+=+E A E A E A ,则=A (A)A.8B.8-C.34 D.34-3.设向量组A 能由向量组B 线性表示,则( d )A.)()(A R B R ≤ B.)()(A R B R <C.)()(A R B R =D.)()(A R B R ≥4. 设n 阶矩阵A 的行列式等于D ,则()*kA 等于_____。
c)(A *kA )(B *A k n)(C *-A k n 1)(D *A5. 设n 阶矩阵A ,B 和C ,则下列说法正确的是_____。
线性代数试卷及其答案

试卷一一、判断题。
在每小题后面的小括号内打“√”号或“×”号1.任何实对称矩阵都可以表成一系列初等矩阵的乘积。
( ) 2.方阵A 与其转置阵 T A 有相同的特征值,因此有相同的特征向量。
( ) 3.设ij A 为n 阶行列式||ij a D =中元素ij a 的代数余子式,若ij ij A a -=),,2,1,(n j i =,则0≠D 。
( )4.若r ηηη,,,21 为线性方程组0=AX 的基础解系,则与r ηηη,,,21 等价的向量组也为此方程组的基础解系。
( ) 5. 设c b a ,,是互不相等的数,则向量组),,,1(32a a a ,),,,1(32b b b ,),,,1(32c c c是线性无关的。
( )二、单项选择题1. 设n 阶方阵C B A ,, 满足关系式E ABC =,则 成立。
A. E ACB =; B. E CBA =; C. E BAC =; D. E BCA =.2. 设n 维向量)(,,,21n m m <ααα 线性无关,则n 维向量m βββ,,,21 线性无关的充要条件为 。
A. 向量组m ααα,,,21 可由向量组m βββ,,,21 线性表示;B. 向量组m βββ,,,21 可由向量组m ααα,,,21 线性表示;C. 向量组m ααα,,,21 与向量组m βββ,,,21 等价;D. 矩阵=A (m ααα,,,21 )与矩阵=B (m βββ,,,21 )等价。
3.设非齐次线性方程组b AX =的两个不同解为21,ββ,它的导出组的一个基础解系为21,αα,则线性方程组b AX =的通解X = (其中21,k k 为任意常数)。
A. )(21)(2121211ββααα-+++k k ;B. )(21)(2121211ββααα++-+k k ;C. )(21)(2121211ββββα-+++k k ;D. )(21)(2121211ββββα++-+k k .4. 设B A ,均为)2(≥n n 阶方阵,则必有 。
完整版)线性代数试卷及答案

完整版)线性代数试卷及答案线性代数A试题(A卷)试卷类别:闭卷考试时间:120分钟考试科目:线性代数学号:______ 姓名:______题号得分阅卷人一.单项选择题(每小题3分,共30分)1.设A经过初等行变换变为B,则(B)。
(下面的r(A),r(B)分别表示矩阵A,B的秩)。
A) r(A)。
r(B);(D)2.设A为n(n≥2)阶方阵且|A|=,则(C)。
A) A中有一行元素全为零;(B) A中必有一行为其余行的线性组合;(C) A有两行(列)元素对应成比例;(D) A的任一行为其余行的线性组合。
3.设A,B是n阶矩阵(n≥2),AB=O,则下列结论一定正确的是: (D)A) A=O或B=O。
(B) B的每个行向量都是齐次线性方程组AX=O的解。
(C) BA=O。
(D) R(A)+R(B)≤n.4.下列不是n维向量组α1,α2.αs线性无关的充分必要条件是(A)A) 存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs≠O;(B) 不存在一组不全为零的数k1,k2.ks使得k1α1+k2α2+。
+ksαs=O(C) α1,α2.αs的秩等于s;(D) α1,α2.αs 中任意一个向量都不能用其余向量线性表示。
5.设n阶矩阵(n≥3)A=,若矩阵A的秩为n-1,则a必为()。
11;(C) -1;(D)。
(A) 1;(B)6.四阶行列式a1a2a3a4b1b2b3b4的值等于()。
A) a1a2a3a4+b1b2b3b4;(B) (a1a2-b1b2)(a3a4-b3b4);(C)a1a2a3a4-b1b2b3b4;(D) (a2a3-b2b3)(a1a4-b1b4)。
1.设A为四阶矩阵且A=b,则A的伴随矩阵A的行列式为b^3.(C)2.设A为n阶矩阵满足A+3A+In=O,In为n阶单位矩阵,则A=−A−3In。
(C)9.设A,B是两个相似的矩阵,则下列结论不正确的是A与B的行列式相同。
《线性代数》试卷A及答案

《线性代数》试卷A适用专业: 试卷类型:闭卷 考试时间:120分钟 总分100分 考试日期: 一.选择题(2分×6=12分)1.排列4 1 3 2 5 的逆序数为( ) A.4 B.1 C.3 D.22. 设0λ是可逆矩阵A 的一个特征值,则13-A 必有特征值( )A.021λ B. 023λ C.30λ D. 20λ 3. 设A 为n 阶可逆阵,则下列成立的是( ) A.112)2(--=A A B. 11)2()2(--=T T A AC. [][]1111)()(----=TTA A D.[][]TTT AA 111)()(---=4.如果333231332221131211a a a a a a a a a =d,则行列式131211232221333231222333a a a a a a a a a ---=( )A. –6dB. 6dC. 4dD. –4d5.设A 为3阶方阵,且2=A ,则A 2=( ) A.4 B.8 C.16 D.216.已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=403212221A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11a α,且αA 与α线性相关,则=a ( )。
A.1-B.1C. 2D.3二.填空题(2分×11=22分)1.设A 、B 均为3阶方阵,且|A |=3,|B |=-2,则|AB |=2. 设A 为方程组⎩⎨⎧=+=+02121x x x x λλ有非零解,则λ=3.已知3阶方阵A 的特征值为1,1,2-,则方阵2A 的特征值是 、 、4.向量组⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321,211的正交化向量为5. A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321,B=[1,2,3],则BA= 6.设32212221321424),,(x x x x x x x x x f -++-=,则二次型矩阵为7.设y x ,为实数,则当=x , 且=y 时,010100=---yx y x8.设⎥⎦⎤⎢⎣⎡--=x A 112与⎥⎦⎤⎢⎣⎡=Λ31相似,则=x 三. 计算题:(总共66分)1.计算 600300301395200199204100103=D (6分) 2.求13211A -⎥⎦⎤⎢⎣⎡--=(4分)院系________________ 姓名_____________ 班级________________ 序号_______________3.设3351110243152113-----=D ,(1)求行列式D的值 ,(2)求4443424123A A A A +-+ (12分)4.讨论λ为何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x 有:1)唯一解; 2)无解; 3)无穷多解?此时求出其通解(12分)5.求矩阵E A 2-的逆矩阵,其中A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡300041003 ( 10分)7.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=101121002A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数A 》试题(A 卷)
试卷类别:闭卷考试时间:120分钟考试科目:线性代数考试时间:学号:姓名:
3的一组标准正交基,=___________
《线性代数A》参考答案(A卷)一、单项选择题(每小题3分,共30分)
二、填空题(每小题3分,共18分)
1、 256;
2、 132465798⎛⎫ ⎪
--- ⎪ ⎪⎝⎭; 3、112
2
112
21122
000⎛⎫
⎪- ⎪ ⎪-⎝⎭
; 4、
; 5、 4; 6、 2 。
三. 解:因为矩阵A 的行列式不为零,则A 可逆,因此1X A B -=.为了求1A B -,可利用下列初等行变换的方法:
2312112
01012
010*******
12101
141103311033102321102721
002781
002780
11410
101440
10144001103001103001103---⎛⎫⎛⎫⎛⎫
⎪
⎪
⎪
-−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝
⎭⎝
⎭⎝
⎭-⎛⎫⎛⎫⎛⎫
⎪
⎪
⎪
−−→--−−→-−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
―――――(6分)
所以1
278144103X A B -⎛⎫ ⎪==-- ⎪ ⎪⎝⎭
.―――――(8分)
四.解:对向量组12345,,,,ααααα作如下的初等行变换可得:
12345111
4
3111431132102262(,,,,)21355011313156702262ααααα--⎛⎫⎛⎫
⎪ ⎪
----- ⎪ ⎪
=
→ ⎪ ⎪
--- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭
11
1
431
2
12011310
1131000000
0000000000
0000--⎛⎫⎛⎫
⎪
⎪
---- ⎪ ⎪
→→
⎪ ⎪
⎪ ⎪
⎪ ⎪⎝
⎭⎝⎭――――(5分)
从而12345,,,,ααααα的一个极大线性无关组为12,αα,故秩
12345{,,,,}ααααα=2(8分)
且3122ααα=-,4123ααα=+,5122ααα=--――――(10分) 五.解:对方程组的增广矩阵进行如下初等行变换:
22
1121121
1211101130
11311101112002421120113400(2)(1)42p p p p p p p p p p p p p p p p p p p p p ---⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪−−→--−−→-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--+--+⎝
⎭⎝⎭⎝
⎭
-⎛⎫ ⎪−−→------- ⎪ ⎪-+-+⎝⎭
(分)
(1) 当10,(2)(1)0,p p p -≠-+-≠且时即1,2,p p ≠≠-且时系数矩阵
与增广矩阵的秩均为3,此时方程组有唯一解.――――(5分) (2) 当1,p =时系数矩阵的秩为1,增广矩阵的秩为2,此时方程组无
解.――――(6分)
(3) 当2,p =-时此时方程组有无穷多组解. 方程组的增广矩阵进行初等行变换可化为
11
221122112212110333011121110333000010110
11180000------⎛⎫⎛⎫⎛⎫
⎪ ⎪ ⎪-−−→-−−→-- ⎪ ⎪ ⎪
⎪ ⎪ ⎪---⎝
⎭⎝⎭⎝⎭--⎛⎫
⎪
−−→------ ⎪ ⎪⎝⎭
(分)
故原方程组与下列方程组同解:
1
323
11x x x x -=-⎧⎨
-=-⎩ 令30,x =可得上述非齐次线性方程组的一个特解0(1,1,0)T
ξ=--;
它对应的齐次线性方程组13230
x x x x -=⎧⎨
-=⎩的基础解系含有一个元素,令
31,x =可得
1(1,1,1)T ξ=为该齐次线性方程组的一个解,它构成该齐次线性方程组的基
础解系.
此时原方程组的通解为001101,,.k k k k ξξ+这里为任意常数――――(12分)
六
.
解
:(
1
)
由
于
A
的特征多项式
21
24
||2
2
2(3)(6)4
2
1
I A λλλλλλ----=-+-=+----
故A 的特征值为13λ=-(二重特征值),36λ=。
――――(3分)
当13λ=-时,由1()I A X O λ-=,即:123424*********x x x ---⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥---=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦
得基础解系为12[1,2,0],[1,0,1]T T
αα=-=-,故属于特征值13λ=-的所有
特征向量为1122k k αα+,12,k k 不全为零的任意常数。
――――(6分)
当36λ=时,由3()I A X O λ-=,即:123524028204250x x x --⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦
得基
础解系为3[2,1,2]T
α=,故属于特征值2 6λ=的所有特征向量为33k α,3k
为非零的任意常数。
------(8分) (2)
将
12
,αα正交化可得:
211122111,42
[1,2,0],
[,,1],55
T T
αββαβαβββ<>==-=-
=--<>。
再将其
单位化
得
:
121212,
5515153T
T
ββηηββ⎡⎤⎡==-==--⎢⎥⎢⎣⎦
⎣⎦
将3α单位化得:3212,,333T
η⎡⎤
=⎢⎥⎣⎦。
――――(12分)
则123,,ηηη是A 的一组单位正交的特征向量,令
[
]23
1123323,,0T ηηη⎡⎤
⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦
则T 是一个正交矩阵,且1
336T AT --⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦。
――――(14分) 七.证明:(1) 因为()()T T T T T T A A A A A A +=+=+, 因此T A A +为
对称矩阵。
――――(2分) 同理,因为
()()()
T T T T T T T A A A A A A A A -=-=-=--,因此
T A A -为反对称矩阵。
――――(4分)
(2) 因为11
()(),22
T T A A A A A =
++-――――(6分) 而由(1) 知1()2T A A +为对称矩阵, 1()2
T
A A -为反对称矩阵,因此任何
矩阵A 都可以表示为一个对称矩阵和一个反对称矩阵之和。
――――(8
分)。