操作系统实验存储管理程序设计
操作系统存储器管理实验报告.doc

一目的与要求(1) 请求页式虚存管理是常用的虚拟存储管理方案之一。
(2) 通过请求页式虚存管理中对页面置换算法的模拟,加深理解虚拟存储技术的特点。
(3) 模拟页式虚拟存储管理中硬件的地址转换和缺页中断,并用先进先出调度算法(FIFO)处理缺页中断.二实验内容或题目(1)本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。
(2)虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。
(3)要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。
(4)程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。
三实验步骤与源程序(1)实验步骤1、理解好相关实验说明。
2、根据实验说明,画出相应的程序流程图。
3、按照程序流程图,用C语言编程并实现。
(2)流程图如下:①虚页和实页结构在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。
pfn代表实页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页的实页号pfn。
time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。
在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。
pfn代表实页号,取值范围(0—n-1)由动态指派的实页数n所决定。
next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。
②程序流程图如下:(3)源程序如下:#include<iostream.h>#define M 40int N;struct Pro{int num,time;};int Input(int m,Pro p[M]){cout<<"请输入实际页数:";do{cin>>m;if(m>M)cout<<"数目太多,请重试"<<endl;else break;}while(1);//cout<<"请输入各页面号:";for(int i=0;i<m;i++){cout<<"第"<<i<<"个页面号为:";cin>>p[i].num;p[i].time=0;}return m;}void print(Pro *page1)//打印当前的页面{Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)cout<<page[i].num<<" ";cout<<endl;}int Search(int e,Pro *page1 ){Pro *page=new Pro[N];page=page1;for(int i=0;i<N;i++)if(e==page[i].num)return i; return -1;}int Max(Pro *page1){Pro *page=new Pro[N];page=page1;int e=page[0].time,i=0;while(i<N)//找出离现在时间最长的页面{if(e<page[i].time)e=page[i].time;i++;}for( i=0;i<N;i++)if(e==page[i].time)return i;return -1;}int Compfu(Pro *page1,int i,int t,Pro p[M]){Pro *page=new Pro[N];page=page1;int count=0;for(int j=i;j<M;j++){if(page[t].num==p[j].num )break;else count++;}return count;}int main(){cout<<"可用内存页面数:";cin>>N;Pro p[M];Pro *page=new Pro[N];char c;int m=0,t=0;float n=0;m=Input(m,p);do{for(int i=0;i<N;i++)//初试化页面基本情况{page[i].num=0;page[i].time=2-i;}i=0;cout<<"************************"<<endl;cout<<"*****f:FIFO页面置换*****"<<endl;cout<<"*****l:LRU页面置换******"<<endl;cout<<"*****o:OPT页面置换******"<<endl;cout<<"*****按其它键结束*******"<<endl;cout<<"************************"<<endl;cout<<"请选择操作类型(f,l,o):";cin>>c;if(c=='f')//FIFO页面置换{n=0;cout<<"页面置换情况: "<<endl;while(i<m){if(Search(p[i].num,page)>=0)i++;//找到相同的页面else{if(t==N)t=0;else{n++;//page[t].num=p[i].num;print(page);t++;}}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }if(c=='l')//LRU页面置换{ n=0;cout<<"页面置换情况: "<<endl;while(i<m){int k;k=t=Search(p[i].num,page);if(t>=0)page[t].time=0;else{n++;t=Max(page);page[t].num=p[i].num;page[t].time=0;}if(t==0){page[t+1].time++;page[t+2].time++;}if(t==1){page[2].time++;page[0].time++;}if(t==2){page[1].time++;page[0].time++;}if(k==-1) print(page); i++;}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl;}if(c=='o')//OPT页面置换{n=0;while(i<m){if(Search(p[i].num,page)>=0)i++;else{int temp=0,cn;for(t=0;t<N;t++){if(temp<Compfu(page,i,t,p)){temp=Compfu(page,i,t,p); cn=t;}}page[cn]=p[i];n++;print(page);i++;}}cout<<"缺页次数:"<<n<<" 缺页率:"<<n/m<<endl; }}while(c=='f'||c=='l'||c=='o');return 0;});四测试数据与实验结果五结果分析与实验体会通过上机,我了解了许多关于操作系统的专业知识。
操作系统实验报告存储管理

操作系统上机实验报告实验名称:存储管理实验目的:通过请求页式存储管理页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理页面置换算法。
实验内容:1.设计一个虚拟存储区和内存工作区;例如内存工作区大小为9个内存块,假设系统中最多可运行3个进程,每个进程分配3个内存块;2.模拟实现FIFO、LRU、OPT算法,给出页面走向,可计算缺页率;3.根据实验结果比较几种算法的差别。
实验步骤及分析:(一)FIFO算法实现提示定义一个常量total_instruction来记录页面总共使用的次数;定义一个变量diseffect记录总共换入页面的次数。
利用公式diseffect/total_instruction*100%可以得到缺页率。
(1)初始化。
设置两个数组page[ap]和pagecontrol[pp]分别表示进程页面数和内存分配的页面数,并产生一个随机数序列pageorder[total_instruction ](这个序列由page[]的下标随机构成)表示待处理的进程页面顺序,diseffect置0。
(2)看pageorder[]中是否有下一个元素,若有,就由pageorder[]中获取该页面的下标,并转到(3);如果没有就转到(7)。
(3)如果该page已在内存中,就转到(2);否则就到(4),同时未命中的diseffect加1。
(4)观察pagecontrol是否占满,如果占满须将使用队列中最先进入的pagecontrol单元“清干净”,同时将对应的page[]单元置为“不在内存中”。
(5)将该page[]与pagecontrol[]建立关系。
可以改变pagecontrol[]的标志位,也可以采用指针链接,总之至少要使对应的pagecontrol单元包含两个信息:一是它被使用了,二是哪个page[]单元使用的。
Page[]单元也包含两个信息:对应的pagecontrol 单元号和本 page[]单元已在内存中。
操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的本次实验的目的是通过编写一段程序,实现对内存的分配和回收操作,并验证算法的正确性和性能。
二、实验内容1.实现首次适应算法首次适应算法是一种动态分配的内存管理算法,通过从低地址往高地址内存块,找到第一个满足需求的空闲块进行分配。
具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,根据需求大小找到第一个合适的空闲块,并在其前后设置相应的标志位;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。
2.实现最佳适应算法最佳适应算法是一种动态分配的内存管理算法,通过整个内存空间,找到最小的满足需求的空闲块进行分配。
具体实现过程如下:(1)初始化内存空间,设置内存块的大小和地址范围;(2)编写一个函数,实现内存的分配操作,遍历整个内存空间,找到满足需求且大小最小的空闲块进行分配;(3)编写一个函数,实现内存的回收操作,根据释放块的地址,将其前后的标志位进行合并;(4)模拟应用程序的运行,测试内存的分配和回收操作。
三、实验结果1.首次适应算法经过测试,首次适应算法能够正确地进行内存的分配和回收操作,并且算法的性能良好。
尽管首次适应算法在分配过程中可能会产生碎片,但是由于它从低地址开始,可以在较短的时间内找到满足需求的空闲块。
在实际应用中,首次适应算法被广泛采用。
2.最佳适应算法经过测试,最佳适应算法能够正确地进行内存的分配和回收操作,并且算法的性能较好。
最佳适应算法会整个内存空间,找到大小最小的满足需求的空闲块。
因此,在分配过程中不会产生很多的碎片,但是算法的执行时间较长。
四、实验总结通过本次实验,我们成功地实现了首次适应算法和最佳适应算法,并对算法的正确性和性能进行了验证。
两种算法在内存的分配和回收过程中都表现出良好的性能,可广泛应用于实际场景中。
操作系统实验四存储管理实验(1)

操作系统课程实验年级2012 级专业计算机科学与技术(应用型)姓名学号指导教师日期实验四、存储管理实验一、关键问题1、实验目的理解内存分配和回收原理。
2、实验环境Ubuntu 8.0或者以上,Eclipse集成开发环境3、实验内容3.1 在控制台内观察Linux内存分配情况3.2存储管理模拟实验要求:写一动态分区管理程序,使其内存分配采用最佳适应分配算法。
老师所给的例子为内存分配算法是最先适应分配算法的系统模拟动态分区管理方案,而问题的关键就是如何把最先适应分配算法改为最佳适应分配算法。
二、设计修改思路struct freearea* min1=NULL;//定义了一个符合条件的最小空白块链表首先我们在分配内存函数中需要定义一个记录符合条件的最小空白块的链表结构指针,对当前空闲分区链进行遍历,找到符合条件的最小空白块并记录。
系统为作业分配内存时,根据指针freep查找空闲分区链。
当找到一块可以满足请求中最小的空闲分区时便分配。
当空间被分配后剩余的空间大于规定的碎片,则形成一个较小的空闲分区留在空闲链中。
三、实现修改的关键代码//有两个链:空白块链及作业链.空白块链描述空白块,链首指针freep,初始为一大块空白块.//作业链按从高址到低址的顺序链接,链首指针jobp//为作业jn分配jl大小内存,起始地址为javoid ffallocation(int jl,char jn[10],int* ja){struct mat* jp=NULL;//作业链当前节点struct mat* jp2=NULL;//新的作业节点struct mat* jp1=NULL;//struct freearea* fp=NULL;//当前空白块struct freearea* min1=NULL;//定义了一个符合条件的最小空白块链表int flag=0;int i;*ja=-1;if (totalfree<jl) //剩余空间大小不能满足作业要求return;fp=freep;while (fp!=NULL){if (fp->freesize>jl){ min1=fp;flag=1;break;}fp=fp->next;}if(freep->next!=NULL&&flag==0) {*ja=0;return;}fp=min1->next;while (fp!=NULL){if (fp->freesize>jl&&fp->freesize<min1->freesize)min1=fp;fp=fp->next;//当前空白块大小不满足要求}jobnumber++;totalfree=totalfree-jl;jp2=calloc(1,sizeof(struct mat));//在节点上登记为该作业分配的内存空间// for (i=0;i<10;i++) (jp2->jobname)[i]=' ';i=-1;while(jn[++i])(jp2->jobname)[i]=jn[i];(jp2->jobname)[i]='\0';jp2->joblength=jl;jp2->jobaddress=min1->freeaddress;//登记该作业的起始地址(块的最低地址)*ja=jp2->jobaddress;//将节点jp2插入作业链jobp,按高址到低址的顺序。
实验四 操作系统存储管理实验报告

实验四操作系统存储管理实验报告一、实验目的本次操作系统存储管理实验的主要目的是深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握内存分配、回收、地址转换等关键技术,提高对操作系统存储管理机制的认识和应用能力。
二、实验环境操作系统:Windows 10开发工具:Visual Studio 2019三、实验原理1、内存分配方式连续分配:分为单一连续分配和分区式分配(固定分区和动态分区)。
离散分配:分页存储管理、分段存储管理、段页式存储管理。
2、内存回收算法首次适应算法:从内存低地址开始查找,找到第一个满足要求的空闲分区进行分配。
最佳适应算法:选择大小最接近作业需求的空闲分区进行分配。
最坏适应算法:选择最大的空闲分区进行分配。
3、地址转换逻辑地址到物理地址的转换:在分页存储管理中,通过页表实现;在分段存储管理中,通过段表实现。
四、实验内容及步骤1、连续内存分配实验设计一个简单的内存分配程序,模拟固定分区和动态分区两种分配方式。
输入作业的大小和请求分配的分区类型,程序输出分配的结果(成功或失败)以及分配后的内存状态。
2、内存回收实验在上述连续内存分配实验的基础上,添加内存回收功能。
输入要回收的作业号,程序执行回收操作,并输出回收后的内存状态。
3、离散内存分配实验实现分页存储管理的地址转换功能。
输入逻辑地址,程序计算并输出对应的物理地址。
4、存储管理算法比较实验分别使用首次适应算法、最佳适应算法和最坏适应算法进行内存分配和回收操作。
记录不同算法在不同作业序列下的内存利用率和分配时间,比较它们的性能。
五、实验结果与分析1、连续内存分配实验结果固定分区分配方式:在固定分区大小的情况下,对于作业大小小于或等于分区大小的请求能够成功分配,否则分配失败。
内存状态显示清晰,分区的使用和空闲情况一目了然。
动态分区分配方式:能够根据作业的大小动态地分配内存,但容易产生内存碎片。
2、内存回收实验结果成功回收指定作业占用的内存空间,内存状态得到及时更新,空闲分区得到合并,提高了内存的利用率。
操作系统存储管理实验报告

操作系统实验·报告
typedef struct pfc_struct pfc_type; (2)模块结构 (伙伴系统) # define Inital 1024 //初始时的总内存
NODE root=(memory_node *)malloc(1*sizeof(memory_node));//根节点 int chip=0; // 记录总的碎片大小
total = 256 use =127 remain_max = 0 flag = 0 pid =0
total = 256 use = 0 remain_max = 256 flag = 0 pid =-1
total = 1024 use = 0 remain_max = 512 flag = 1 pid =-1
total = 512 use = 0 remain_max = 512 flag = 0 pid =-1
total = 512 use = 267 remain_max = 0 flag = 0 pid = -1
6 / 37
操作系统实验·报告
三、实验理论分析
7 / 37
操作系统实验·报告
(伙伴算法) Buddy System 是一种经典的内存管理算法。在 Unix 和 Linux 操作系统中都有用到。其 作用是减少存储空间中的空洞、减少碎片、增加利用率。避免外碎片的方法有两种: a.利用分页单元把一组非连续的空闲页框映射到非连续的线性地址区间。 b.开发适当的技术来记录现存的空闲连续页框块的情况,以尽量避免为满足对小块的 请 求而把大块的空闲块进行分割。 基于下面三种原因,内核选择第二种避免方法: a.在某些情况下,连续的页框确实必要。 b.即使连续页框的分配不是很必要,它在保持内核页表不变方面所起的作用也是不容 忽视的。假如修改页表,则导致平均访存次数增加,从而频繁刷新 TLB。 c.通过 4M 的页可以访问大块连续的物理内存,相对于 4K 页的使用,TLB 未命中率降 低,加快平均访存速度。 Buddy 算法将所有空闲页框分组为 10 个块链表,每个块链表分别包含 1,2,4,8,16,32,64,128,256,512 个连续的页框,每个块的第一个页框的物理地址是该块 大小的整数倍。如,大小为 16 个页框的块,其起始地址是 16*2^12 的倍数。 例,假设要请求一个 128 个页框的块,算法先检查 128 个页框的链表是否有空闲块, 如果没有则查 256 个页框的链表,有则将 256 个页框的块分裂两份,一 份使用,一份 插入 128 个页框的链表。如果还没有,就查 512 个页框的链表,有的话就分裂为 128, 128,256,一个 128 使用,剩余两个插入对应链 表。如果在 512 还没查到,则返回 出错信号。 回收过程相反,内核试图把大小为 b 的空闲伙伴合并为一个大小为 2b 的单独块,满足 以下条件的两个块称为伙伴: a.两个块具有相同的大小,记做 b。 b.它们的物理地址是连续的。 c.第一个块的第一个页框的物理地址是 2*b*2^12 的倍数。 该算法迭代,如果成功合并所释放的块,会试图合并 2b 的块来形成更大的块。 为了模拟 Buddy System 算法,我采用了数的数据结构,并使用了结构体,来记录各项 数据与标记,虽然不是真正的操作系统使用的方法,但成功模拟了插入和回收的过程。 在回收时我采用物理上的合并——即删除实际的物理节点,释放空间。然而实际中可 能根据需要仅仅是删除了标记项,使之标记成没用过的,从而避免了合并,会提高下 一次的插入操作。 碎片百分比 = 碎片总大小/总内存大小 (置换算法)
计算机操作系统实验三存储器管理

计算机操作系统实验三存储器管理引言存储器管理是计算机操作系统中非常重要的一部分。
它负责管理计算机中的存储器资源,以便有效地分配和管理内存。
在操作系统的设计和实现中,存储器管理的性能和效率对整个系统的稳定性和性能有着重要的影响。
本文档将介绍计算机操作系统实验三中的存储器管理的实验内容及相关的知识点。
我们将从内存分区管理、页式存储管理和段式存储管理三个方面进行讨论。
内存分区管理内存分区管理是一种常见的存储器管理方法,旨在将物理内存分成若干个不同大小的区域,以便为不同的进程分配内存。
在实验三中,我们将学习和实现两种内存分区管理算法:首次适应算法和最佳适应算法。
首次适应算法是一种简单直观的算法,它从内存的起始位置开始查找第一个满足要求的空闲分区。
而最佳适应算法则是通过遍历整个内存空间,选择最合适的空闲分区来满足进程的内存需求。
通过实验,我们将学习如何实现这两种算法,并通过比较它们的性能和效果来深入理解内存分区管理的原理和实现。
页式存储管理页式存储管理是一种将物理内存分成固定大小的页框(page frame)和逻辑地址分成固定大小的页面(page)的管理方法。
在操作系统中,虚拟内存通过将进程的地址空间划分成大小相等的页面,并与物理内存中的页框相对应,实现了大容量的存储管理和地址空间共享。
在实验三中,我们将学习和实现页式存储管理的基本原理和算法。
我们将了解页表的结构和作用,以及如何通过页表将逻辑地址转换为物理地址。
此外,我们还将学习页面置换算法,用于处理内存不足时的页面置换问题。
段式存储管理段式存储管理是一种将逻辑地址分成不同大小的段并与物理内存中的段相对应的管理方法。
在操作系统的设计中,段式存储管理可以提供更灵活的地址空间管理和内存分配。
实验三将介绍段式存储管理的基本原理和实现方法。
我们将学习段表的结构和作用,以及如何通过段表将逻辑地址转换为物理地址。
同时,我们还将探讨段的分配和释放过程,并学习如何处理外部碎片的问题。
操作系统存储管理实验报告

操作系统存储管理实验报告一、实验目的操作系统的存储管理是计算机系统中非常重要的组成部分,它直接影响着系统的性能和资源利用率。
本次实验的目的在于深入理解操作系统中存储管理的基本原理和方法,通过实际操作和观察,掌握存储分配、回收、地址转换等关键技术,并对不同存储管理策略的性能进行分析和比较。
二、实验环境本次实验在 Windows 10 操作系统下进行,使用 Visual Studio 2019 作为编程环境,编程语言为 C++。
三、实验内容(一)固定分区存储管理1、原理固定分区存储管理将内存空间划分为若干个固定大小的分区,每个分区只能装入一道作业。
分区的大小可以相等,也可以不等。
2、实现创建一个固定大小的内存空间数组,模拟内存分区。
为每个分区设置状态标志(已分配或空闲),并实现作业的分配和回收算法。
3、实验结果与分析通过输入不同大小的作业请求,观察内存的分配和回收情况。
分析固定分区存储管理的优缺点,如内存利用率低、存在内部碎片等。
(二)可变分区存储管理1、原理可变分区存储管理根据作业的实际需求动态地划分内存空间,分区的大小和数量是可变的。
2、实现使用链表或数组来管理内存空间,记录每个分区的起始地址、大小和状态。
实现首次适应、最佳适应和最坏适应等分配算法,以及分区的合并和回收算法。
3、实验结果与分析比较不同分配算法的性能,如分配时间、内存利用率等。
观察内存碎片的产生和处理情况,分析可变分区存储管理的优缺点。
(三)页式存储管理1、原理页式存储管理将内存空间和作业都划分为固定大小的页,通过页表将逻辑地址转换为物理地址。
2、实现设计页表结构,实现逻辑地址到物理地址的转换算法。
模拟页面的调入和调出过程,处理缺页中断。
3、实验结果与分析测量页式存储管理的页面置换算法(如先进先出、最近最少使用等)的命中率,分析其对系统性能的影响。
探讨页大小的选择对存储管理的影响。
(四)段式存储管理1、原理段式存储管理将作业按照逻辑结构划分为若干个段,每个段有自己的名字和长度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本科实验报告课程名称:操作系统B实验项目:存储管理程序设计实验地点:专业班级:学号:学生姓名:指导教师:2011年11月目录存储管理程序设计一、实验目的和要求 (1)二、实验内容及原理 (1)三、实验仪器及设备 (3)四、操作方法与实验步骤 (3)五、实验数据记录和处理 (3)六、实验结果分析 (8)七、实验感想 (9)实验三存储管理程序设计一、实验目的和要求(一)目的存储管理的主要功能之一是合理地分配主存空间。
请求页式管理是一种常用的虚拟存储管理技术。
本实验的目的是通过请求页式存储管理中页面置换算法的模拟设计,来了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。
(二)要求模拟页式虚拟存储管理中硬件的地址转换和缺页中断的处理过程,并用先进先出调度算法(FIFO)处理缺页中断。
二、实验内容及原理(1)为了装入一个页面而必须调出一页时,如果被选中调出的页面在执行中没有修改过,则不必把该页重新写到磁盘上(因磁盘上已有副本)。
因此,在页表中可以增加是否修改过的标志,当执行“存”指令、“写”指令时把对应页的修改标志置成“1”,表示该页修改过,否则为“0”,表示该页未修改过。
页表格式如表3-1所示。
表3-1 页表格式(2)设计一个地址转换程序来模拟硬件的地址转换和缺页中断处理过程。
当访问的页在主存时则形成绝对地址,但不去模拟指令的执行,可用输出转换后的绝对地址来表示一条指令已完成。
当访问的页不在主存时则输出“*该页页号”来表示硬件产生了一次缺页中断。
模拟地址转换的程序流程如图3-1所示。
(3)编制一个FIFO页面调度程序。
FIFO页面调度算法总是先调出作业中最先进入主存的那一页,因此,可以用一个数组来构成页号队列。
数组中每个元素是该作业已在主存的页面号,假定分配给作业的主存块数为m,且该作业开始的m页已装入主存,则数组可由m个元素组成:P[0],P[1],…,P[m-1]它们的初值为P[0]∶=0,P[1]∶=1,…,P[m-1]∶= m-1用一指针k指示当要装入新页时应调出的页在数组的位置,k的初值为“0”。
图3-1 地址转换和FIFO 页面调度流程当产生缺页中断后,操作系统总是选择P[k]所指出的页面调出,然后执行P[k]∶=要装入的新页页号 k ∶=(k+1)mod m在实验中不必实际地启动磁盘执行调出一页和装入一页的工作,而用输出“OUT 调出的页号”和“IN 要装入的新页页号”来模拟一次调出和装入的过程。
模拟程序的流程见图3-1。
(4) 假定主存的每块长度为1024个字节,现有一个共7页的作业,其副本已在磁盘上。
系统为该作业分配了4块主存块,且该作业的第0页至第3页已经装入主存,其余3页尚未装入主存,该作业的页表见表3-2所示。
j ∶= P[k]j 页的修改标志=1?输出“OUTj ” P[k]∶=L k ∶=(k+1) mod m 修改页表输出“IN L ”取一条指令 开始 页标志=1?输出绝对地址 取一条指令输出“﹡页号”取指令中访问的页号=>L查页表 形成绝对地址置L 页修改标志”1” 结束是”存”指令?有后继指令?否(产生缺页中断)是否否否是是模拟硬件地址转换模拟FIFO 页面调度是表3-2 作业的页表如果该作业依次执行的指令序列如表3-3所示。
表3-3 作业依次执行的指令序列依次执行上述的指令序列来调试你所设计的程序(仅模拟指令的执行,不必考虑指令序列中具体操作的执行)(5)为了检查程序的正确性,可自行确定若干组指令序列,运行设计的程序,核对执行结果。
三、实验仪器及设备计算机一台、c++6.0编程软件四、操作方法与实验步骤1.编写源程序2. 编译运行五、实验数据记录和处理源程序:#include <iostream>#include <iostream.h>#include <iomanip.h>#include <ctype.h>#define N 6//实验中假定的页表长度#define M 4//主存物理块数struct{int lnumber; //页号int flag; //表示该页是否在主存,"1"表示在主存,"0"表示不在主存int pnumber; //该页所在主存块的块号int write; //该页是否被修改过,"1"表示修改过,"0"表示没有修改过int dnumber; //该页存放在磁盘上的位置,即磁盘块号}page[N]; //页表定义int p[M];//用数组模拟]FIFO算法中的队列(使用循环队列)int head;void initial(void);int do_mmap(int);//模拟地址转换void do_page_fault(int);//缺页中断处理程序void run_first_instructon(int);//执行进程的第一条指令void run_a_instruction(int);//CPU执行一条指令void print_page_and_fifoqueue(void);//输出页表和FIFO队列main(){int laddress, paddress;//逻辑地址,物理地址int lnumber, ad, pnumber;//页号,页内地址和物理块号initial();print_page_and_fifoqueue();//输出页表和FIFO队列run_first_instructon(0x0000);//运行进程的第一条指令的地址cout<<"输入下一条指令的逻辑地址(0~32767)(-1 to end)"<<endl;cin>>laddress;while(laddress>32767){cout<<"输入错误! 请重新输入下一条指令的逻辑地址(0~32767)(-1 to end)"<<endl;cin>>laddress;}while(laddress!=-1){lnumber=laddress>>10;//取逻辑地址的页号lnumberif(page[lnumber].flag==1){//指令所在的页面已装入在内存中paddress=do_mmap(laddress);//形成物理地址cout<<paddress<<"输出转换后的物理地址"<<endl;run_a_instruction(paddress);cout<<"此指令执行是否修改所在页lnumber="<<lnumber<<"(y/n?) ";char change;cin>>change;if(tolower(change)=='y'){page[lnumber].write=1;print_page_and_fifoqueue();}}else{//缺页中断cout<<lnumber<<"输出该页的页号--表示硬件产生缺页中断"<<endl;do_page_fault(lnumber);//直接转去缺页中断处理continue;//本循环结束,重新执行指令}cout<<"输入下一条指令的逻辑地址((0~32767),-1 to end)\n";cin>>laddress;while(laddress>32767){//输入正确性检测cout<<"输入错误! 请重新输入下一条指令的逻辑地址(0~32767)(-1 to end)"<<endl;cin>>laddress;}}cout<<"进程运行结束!"<<endl;system("PAUSE");return 0;}//手工初始化页表和p[M]队列void initial(void){int i;for(i=0; i<=5; i++){page[i].lnumber=i;if(i<=M-1){//预装入算法初始化页表的前四项cout<<"输入页号为"<<i<<" 所在内存的物理块号(预装入前四个页面):";cin>>page[i].pnumber;page[i].flag=1;//存在标志置1}}//初始化FIFO的队列head=0;for(i=0; i<=M-1; i++)p[i]=i;}//输出页表和FIFO队列void print_page_and_fifoqueue(void){int i;cout<<"输出页表!\n";cout<<setw(10)<<"lnumber"<<setw(9)<<"flag"<<setw(10)<<"pnumber"<<setw(10)<<"write"<<setw(10)<<"dnumber"<<endl;for(i=0; i<=N-1; i++)cout<<setw(7)<<page[i].lnumber<<setw(10)<<page[i].flag<<setw(10)<<page[i].pnumber <<setw(10)<<page[i].write<<setw(10)<<page[i].dnumber<<endl;cout<<"输出FIFO对列:\n";cout<<setw(10)<<"NO"<<setw(40)<<"page(已在主存的页号lnumber)\n";cout<<"head="<<head<<endl;for(i=0; i<=M-1;i++)cout<<setw(10)<<i<<setw(15)<<p[i]<<endl;}//模拟地址转换int do_mmap(int laddress){int lnumber, ad, pnumber, paddress;lnumber=laddress>>10;//取逻辑地址的页号lnumberad=laddress&0x3ff;//页内地址pnumber=page[lnumber].pnumber;//从页表中取得块号pnumberpaddress=pnumber<<10|ad;return paddress;}//CPU执行一条指令,输出物理地址表示指令执行完成void run_a_instruction(int paddress){cout<<paddress<<" 输出物理地址--表示指令执行完成"<<endl;}//执行进程的第一条指令void run_first_instructon(int laddress){int lnumber, ad, pnumber, paddress;lnumber=laddress>>10;//取逻辑地址的页号if(page[lnumber].flag==1)paddress=do_mmap(laddress);//形成物理地址cout<<paddress<<"输出转换后的物理地址"<<endl;run_a_instruction(paddress);cout<<"此指令执行(0x0000)是否修改所在页面lnumber="<<lnumber<<"(y/n?) ";char change;cin>>change;if(tolower(change)=='y'){//若指令执行完时修改了页面,则置write标志位位1 page[lnumber].write=1;print_page_and_fifoqueue();}cout<<"********第一条指令执行完成(地址为0x0000)***********"<<endl;}//页面写回磁盘void write_to_harddisk(int j){cout<<j<<"输出已修改的淘汰的页号--表示该页写回了磁盘"<<endl;}//缺页中断处理程序void do_page_fault(int lnumber){int j;//j是选择淘汰的页j=p[head];p[head]=lnumber;//lnumber是新装入的页号head=(head+1)%M;//若淘汰出主存的页j已修改,则写会磁盘if(page[j].write==1)write_to_harddisk(j);//页j写回磁盘//修改页表page[j].flag=0;//页表中第j页的存在标志为0page[lnumber].flag=1;//页表第lnumber的存在标志为1page[lnumber].write=0;//页表第lnumber的修改标志为0page[lnumber].pnumber=page[j].pnumber;//第拉怒目布尔页的主存块号为第j页原主存块号cout<<lnumber<<"输出该页--表示该页调入了主存"<<endl;cout<<"按任意键将查看“页面置换”之后的页表page[N]和FIFO队列信息"<<endl;system("PAUSE");print_page_and_fifoqueue();}六、实验结果分析七、实验感想本实验是通过请求页式存储管理中页面置换算法的模拟设计,来了解虚拟存储技术的特点,掌握请求页式存储管理页面置换算法。