11年深圳市中考数学试题及答案.doc.deflate
2011年深圳中考数学试卷.

中考模拟卷(数学)考试时间:100分钟 满分120分一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
注意可以用多种不同的方法来选取正确答案。
1.实施低碳生活已然成为2011年杭州的热门话题,据估计每人平均一年的碳排放量为2.7吨,杭州人口数大约为660万,估计杭州一年的碳排放量用可用科学计数法表示为( ) A.51082.17⨯吨 B.61082.17⨯吨 C.710782.1⨯吨 D.610782.1⨯吨 【原创】 2. 下列计算错误的是( ) 【原创】 A.abab ab 21211=- B.3327±= C.333532x x x =+ D.1)1(2009-=- 3.下列图形中,不是中心对称图形的是( )A .B .C .D .4.已知⊙O 1与⊙O 2的半径分别为6cm 和3cm ,圆心距0201=8cm ,则两圆的位置关系为( )A .外离B .外切C .相交D .内切【原创】5.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是() A .45 B .35 C .25 D .156.如果用□表示1个立方体,用▇表示两个立方体重叠,用▇表示三个立方体重叠,那么,如图1,是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )7.如图,点A 在双曲线6y x=上,且O A =4,过A 作AC ⊥x 轴, 垂 足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( ) 【改编】 A .B .5C .D8.0132=--x x ,则31+-xx 的值为( ) 【原创】A .3B .0C .6D .-69. 如图甲,将三角形纸片ABC 沿EF 折叠可得图乙(其中EF ∥BC )。
已知图乙的面积与原三角形的面积比为3∶4,且阴影部分的面积为8cm 2 ,则原三角形的面积为( ) A .12cm 2 B .32cm 2C .20cm 2D .16cm 2 【原创】D.C.B.A.图1CAFA CF图甲 图乙10.如图,在等腰Rt△ABC 中,∠C=90º,AC=4,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD=CE ,连接DE 、DF 、EF 。
2011广东中考数学试题答案

2011年广东省初中毕业生学业考试数 学 参 考 答 案一选择题:1——5:DBACB二、填空题:6——10:256125227220-≥-x 三、解答题(一)11解:4-314-22181=+=⨯+=原式 12.解: 用数轴表示如下:不等式组的解为解得移项可得3323942128312≥∴⎩⎨⎧≥->⎩⎨⎧≤->⎩⎨⎧-≤-->+x x x xx x x x 13.证明:()CF AE EFCE EF AF CE,//=+=+=∴∆≅∆∴∠=∠=∠=∠∴即从而有又有AF ASA CBE ADF BD CB AD CA CB AD14.解:(1)如图有圆P 1,圆P 与圆P 1的关系为相切(2)扇形OAB 的面积为ππ=⨯224三角形OAB 的面积为22221=⨯⨯ 2-AB AB π围成的图形面积为与弦劣弧∴(1)由于抛物线与x 轴没有交点2121412>∴<⨯⨯-=∆∴c c(2)显然)经过点(直线1,01+=cx y ,又由(1)知21>c如图,直线1+=cx y 只能够在21l l 和之间∴直线经过一、二、三象限附:显然直线经过点(0,1)和点(0,1c -) 又01021<-∴>>c c连接点(0,1)和点(0,1c -)可以知道直线经过一、二、三象限四、解答题(二)16.解:设该箱饮料一箱有x 瓶,依题意有:()()10,10)(131001013013036.0326262=∴=∴-==∴=-+∴=-+=+-x x x x x x x x x x 意义代入分式方程可知它有不符合题意,舍去或通分化简的17.解:设AD=x()()m x x x BD CD BC x AD ADACD ADCD xADAD ABD AD BD CDADACD BD ADABD 3.681325135050333330t an t an 145t an t an t an ,t an 00≈+⨯=-=∴=-=-=∴===∠====∠=∴=∠=∠(1)此次调查的总体是李老师班上的50名学生(2)如图(3)路上时间花费在30分钟以上(含30分钟)的人数占全班人数的百分比是%10%1005014=⨯+ 19.解: (1)0301=∠=∠∴=C CFBF 000090303-180BDF 30C 12=⨯=∠∴=∠=∠=∠又 (2)0302BDF RT )1(=∠∆,知有由63c o s BD AB 3021903BAD RT 342cos 00=∠==∠-∠-=∠∆=∴∠∙=∴中,在BD BF BD五、解答题(三)20、解:(1)15864 (2)122222-+-n n n n(3)()()()12112222222-+-=-⨯++-n n n n n n n 21.解: (1)始终与AGC ∆相似的三角形有:HGA ∆∆和HAB(2)HAB AGC ∆∆~1)知由(x y y x HB AC AB CG 8199=∴==∴即 (3)HGA ~AGC 1∆∆)知由(()不是菱形四边形中在时,、当为菱形四边形中在时、当或解得即为平行四边形,只要要使得四边形显然)(即可以得到代入直线将)(即代入抛物线可得将即显然的函数关系式为直线的代入直线将即有得令得代入直线将即有得令对于抛物线的函数关系式为设直线BCMN 5CP MP CM RT 1,2)2,2(M 22BCMN BC25CP MP CM RT 2,23)23,1(,11212541545BC MN BCMN //NM )3()30(41545121141745121,M 121AB 141745,N 141745)0,(P ,OP )2(121AB 21AB B ),25B(3,,25,31AB A ,1,0A ,1,0141745AB )1(2222222222∴≠=+=∆==∴=∴==+=∆==∴====+-==∴≤≤+-=∴--++-==∴++==++-++-===+=∴======++-=+=BCMPC CP MP t MPC CP MP M t t t t t s BCt t t s t t t MN s t t t y t x t t t t t y t x t t x y a y x b y x x x y bax y。
2011年广东省中考数学试题及答案

2011年广东省初中毕业生学业考试数 学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数是( ) A .2 B .-2C .21D .21-2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨 3.将左下图中的箭头缩小到原来的21,得到的图形是( )4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出 一个球,摸到红球的概率为( ) A .51 B .31 C .85 D .835.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.已知反比例函数xky =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是______ _____. 8.按下面程序计算:输入3=x ,则输出的答案是_______________.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A=40º,则∠C=_____.A .B . D .C . 题3图输入x立方-x÷2答案10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取 △ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1 和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…, 则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.三、解答题(一)(本大题5小题,每小题6分,共30分) 11.计算:20245sin 18)12011(-︒+-.12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.13.已知:如图,E ,F 在AC 上,AD//CB 且AD=CB ,∠D=∠B .求证:AE=CF .题13图DAFE题10图(1)A 1BAFBA FB A FEB 1C 1F 1 D 1 E 1 A 1B 1C 1F 1 D 1 E 1 A 2B 2C 2F 2 D 2 E 2 题10图(2)题10图(3)①②14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由. 四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l. 小明测量出∠ACD=30º,∠ABD=45º,BC=50m. 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片ABCD中,AD//BC,∠A=90º,∠C=30º.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.(1)求∠BDF的度数;(2)求AB的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;(3)求第n 行各数之和.21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB=AC=EF=9,∠BAC=∠DEF=90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF(或它们的延长线)分别交BC(或它的延长线) 于G ,H 点,如图(2) (1)问:始终与△AGC 相似的三角形有 及 ;(2)设CG=x ,BH=y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由) (3)问:当x 为何值时,△AGH 是等腰三角形.题21图(1)BHFA (D )GCEC (E )BFA (D )题21图(2)22.如图,抛物线2517144y x x =-++与y 轴交于A点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x 轴,垂足为点C(3,0). (1)求直线AB 的函数关系式;(2)动点P 在线段OC 上从原点出发以每秒一个单位的速度向C 移动,过点P 作PN ⊥x 轴,交直线AB 于点M ,交抛物线于点N. 设点P 移动的时间为t 秒,MN 的长度为s 个单位,求s 与t 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O ,点C 重合的情况),连接CM ,BN ,当t 为何值时,四边形BCMN 为平行四边形?问对于所求的t 值,平行四边形BCMN 是否菱形?请说明理由.2011年广东省初中毕业生学业考试数 学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数是( ) A .2 B .-2 C .21D .21-【答案】D 。
2011年广东省中考数学试卷及答案(WORD版)

2011年广东省初中毕业生学业考试数 学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的倒数是( )A .2B .-2C . 21D .21- 2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨3.将左下图中的箭头缩小到原来的1,得到的图形是( ) 4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .51B .31C .85D .83 5.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.已知反比例函数xk y =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是______ _____.8.按下面程序计算:输入3=x ,则输出的答案是_______________.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A =40º,则∠C =_____.10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为A .B . D . 题3图 题9图 BC O A_________________.三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:20245sin 18)12011(-︒+-.12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.13.已知:如图,E 14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则题13图 B C DA F E 题14图题10图(1) E E C E 题10图(2) 题10图(3)买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30º,∠ABD =45º,BC =50m . 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落在点E处,BF 是折痕,且BF =CF =8.(1)求∠BDF 的度数;(2)求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;第17题图 ) 题19图 B CED AF 题18图(3)求第n 行各数之和.21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC 相似的三角形有及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由)(3)问:当x 为何值时,△AGH 是等腰三角形.22.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x (1(2)动点P 在线段OC 点M ,交抛物线于点N . 设点P 移动的时间为t 出t (3)设在(2)的条件下(不考虑点P 与点O BCMN 为平行四边形?问对于所求的t 2011一、1-5、DBACB二、6、-27、___ x ≥2__8、___12__9、__25º__ 10、2561 三、11、原式=-6 12、x ≥3 13、由△ADF ≌△CB E ,得AF =C E ,故得:AE=CF14、(1)⊙P 与⊙P 1外切。
广东省2011年中考数学试题(含解析)

广东省2011年中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)1、(2011•广东)﹣2的倒数是()A、﹣B、C、2D、﹣2考点:倒数。
分析:根据倒数的定义,即可得出答案解答:解:根据倒数的定义,∵﹣2×(﹣)=1,∴﹣2的倒数是﹣点评:本题主要考查了倒数的定义,比较简单2、(2011•广东)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为()A、5.464×107吨B、5.464×108吨C、5.464×109吨D、5.464×1010吨考点:科学记数法—表示较大的数。
专题:常规题型。
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将546400000用科学记数法表示为5.464×108.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3、(2011•广东)将下图中的箭头缩小到原来的,得到的图形是()A、B、C、D、考点:相似图形。
专题:应用题。
分析:根据相似图形的定义,结合图形,对选项一一分析,排除错误答案.解答:解:∵图中的箭头要缩小到原来的,∴箭头的长、宽都要缩小到原来的;选项B箭头大小不变;选项C箭头扩大;选项D的长缩小、而宽没变.故选A.点评:本题主要考查了相似形的定义,联系图形,即图形的形状相同,但大小不一定相同的变换是相似变换.4、(2011•广东)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A、B、C、D、考点:概率公式。
2011广东中考数学试卷及答案

2011年广东省初中毕业生学业考试数 学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的倒数是( )A .2B .-2C . 21D .21- 2.据中新社北京2010年12月8日电,2010年中国粮食总产量到达546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨 3.将左下图中的箭头缩小到原来的21,得到的图形是( )4.在一个不透亮的口袋中,装有5个红球3个白球,它们除颜色外都一样,从中随意摸出一个球,摸到红球的概率为( )A .51B .31C .85D .83 5.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.已知反比例函数xk y =的图象经过(1,-2),则=k . 7.使2-x 在实数范围内有意义的x 的取值范围是 .8.按下面程序计算:输入3=x ,则输出的答案是.9.如图,与⊙O 相切于点B ,的延长线交⊙O 于点C .若∠40º,则∠.A .B . D .第3题图题9图 B C O A10.如图(1),将一个正六边形各边延长,构成一个正六角星形,它的面积为1;取△和△各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影局部;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影局部;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为.三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:20245sin 18)12011(-︒+-.12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.13.已知:如图,E ,F 在上,且,∠∠求证:.14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并干脆推断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧与弦围成的图形的面积(结果保存π).15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由.题13图 B CD A FE 题14图题10图(1) E 题10图(2) 题10图(3)四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进展“买一送三”促销活动,若整箱购置,则买一箱送三瓶,这相当于每瓶比原价廉价了0.6元.问该品牌饮料一箱有多少瓶?17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条马路l ,是A 到l 的小路. 现新修一条路到马路l . 小明测量出∠30º,∠45º,50m . 请你帮小明计算他家到马路l 的间隔 的长度(准确到0.1m ;参考数据:414.12≈,732.13≈).18.李教师为理解班里学生的作息时辰表,调查了班上50名学生上学路上花费的时间,他发觉学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一局部(每组数据含最小值不含最大值).请依据该频数分布直方图,答复下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片中,,∠90º,∠30º.折叠纸片使经过点D ,点C 落在点E 处,是折痕,且8.(1)求∠的度数;(2)求的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开场的连续自然数组成,视察规律并完成各题的解答.第17题图) 题19图 B C ED AF 题18图12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最终一个数是,它是自然数的平方,第8行共有个数;(2)用含n 的代数式表示:第n 行的第一个数是,最终一个数是,第n 行共有个数;(3)求第n 行各数之和.21.如图(1),△与△为等腰直角三角形,与重合,9,∠∠90º,固定△,将△绕点A 顺时针旋转,当边与边重合时,旋转中止.现不考虑旋转开场和完毕时重合的状况,设,(或它们的延长线)分别交(或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△相像的三角形有 及 ;(2)设,,求y 关于x 的函数关系式(只要求依据图(2)的情形说明理由)(3)问:当x 为何值时,△是等腰三角形.22.如图,抛物线1417452++-=x y 与yB ,过点B 作⊥x 轴,垂足为点C (3,0).(1)求直线的函数关系式;(2)动点P C 挪动,过点P 作⊥x 轴,交直线于点M N . 设点P 挪动的时间为t 秒,的长度为s 的函数关系式,并写出t 的取值范围;(3)设在(2)的条件下(不考虑点P 与点O 连接,,当t 于所求的t2011年广东省初中毕业生学业考试题21图(1) BH F A (D ) G C E C (E ) B F A (D ) 题21图(2)数学参考答案一、1-5、二、6、-27、 x ≥28、129、25º 10、2561 三、11、原式6 12、x ≥3 13、由△≌△,得 ,故得:14、(1)⊙P 与⊙P 1外切。
2011年深圳市中考数学试题及答案.doc
深圳市2011年初中毕业生学业考试数学试卷1、说明,答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定位置上,将条形码粘贴好。
2、全卷分两部分,第一部分为选择题,第二部分为非选择题,共4页,满分100分,考试时间120分钟。
3、本卷试题,考生必须在答题卡上按规定作答;在试卷上、草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠。
第一部分 选择题(本部分共12小题,每题3分,共36分.每小题4个选项,只有一个是正确的)1、12-的相反数是 A. 12- B. 12C. 2-D.22、如图1所示的物体是一个几何体,其主视图是3、今年我市参加中考的毕业生学业考试的总人数约为56000人,这个数据用科学计数法表示为A.5.6×103B.5.6×104C.5.6×105D.0.56×1054、下列运算正确的是 A.235xx x += B.222()x y yx =++ C.236xx x ⋅= D.()362x x =5、某校开展为“希望小学”捐书活动,以下是八名学生的捐书册数 2 3 2 2 6 7 5 5,这组数据的中位数是A.4B.4.5C.3D.26、一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是A.100元B.105元C.108元D.118元7、如图2,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是8、如图3是两个可以自由转动的转盘,转盘各被等分成三 个扇形,分别标上1、2、3和6、7、8这6个数字,如果同 时转动这两个转盘各一次(指针落在等分线上重转),转盘停 止后,指针指向字数之和为偶数的是 A.12 B. 29 C. 49 D. 139、已知a 、b 、c 均为实数,且a>b ,c ≠0,下列结论不一定正确的是 A. a c b c +>+ B. c a c b -<- C.22abcc>D. 22ab ab >>10、对抛物线y =-x 2+2x -3而言,下列结论正确的是 A.与x 轴有两个交点 B.开口向上C.与y 轴交点坐标是(0,3)D.顶点坐标是(1,2) 11、下列命题是真命题的有①垂直于半径的直线是圆的切线 ②平分弦的直径垂直于弦③若12x y =⎧⎨=⎩是方程x -ay=3的解,则a=-1④若反比例函数3y x =-的图像上有两点(12,y 1)(1,y 2),则y 1 <y 2 A.1个 B.2个 C.3个 D.4个12、如图4,△ABC 与△DEF 均为等边三角形,O 为BC 、EF 的中点,则AD :BE 的值为 A.3:1 B. 2:1 C.5:3 D.不确定第二部分 非选择题填空题(本题共4小题,每题3分,共12分)13、分解因式:a 3-a= .14、如图5,在⊙O 中,圆心角∠AOB=120º,弦AB=23cm ,则OA= cm. 15、如图6,这是边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,第n 个图形的周长为 .鸹斃鹁剥态酝蛮骠曄濼絀峄詰极嘮狈萨缎寫龚渎鶘慫賑聩颡嘜镛腊狯颇讴鸲绽叶躓滠鍤鐋16、如图7,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标为(0,2),直线AC 的解析式为112y x =-,则tanA 的值是 .咙萦筚财殺属篩谭钬幀腻辊詎噯医櫪渌约鐮铭解答题(本题共七小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17、(5分)()013520112π-︒+---18、(6分)解分式方程:23211x x x +=+-19、(7分)某校为了解本校八年级学生的课外阅读喜好,随即抽取部分该校八年级学生进行问卷调查(每人只选一种书籍),图8是整理数据后画的两幅不完整的统计题,请你根据图中的信息,解答下列问题(1)这次活动一共调查了 名学生.(2)在扇形统计图中,“其它”所在的扇形圆心角为 度. (3)补全条形统计图(4)若该校八年级有600人,请你估计喜欢“科普常识”的学生有 人.20、(8分)如图9,在⊙O中,点C为劣弧AB的中点,连接AC并延长至D,使CA=CD,连接DB并延长交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图10,连接CE,⊙O的半径为5,AC长为4,求阴影部分面积之和.(保留∏与根号)21、(8分)如图11,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD折叠,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图12,再折叠一次,使点D与点A重合,的折痕EN,EN角AD于M,求EM的长.22、(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台相同型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台,运往B馆14台,运往A、B两馆运费如表1:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费y(元)与x(台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最少,最少为多少元?22、(9分)如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.深圳市2011 年初中毕业生学业考试数学试卷参考答案第一部分:选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B C B D A A B C D D C A第二部分:填空题13、(1)(1)a a a +-14、415、2n + 16、13解答题17、解:原式=618、解:方程两边同时乘以:(x +1)(x -1),得: 2x(x -1)+3(x +1)=2(x +1)(x -1) 整理化简,得 x =-5经检验,x =-5是原方程的根原方程的解为:x =-5(备注:本题必须验根,没有验根的扣2分)19、(1)200 (2)36 (3)如图1 (4)180(1)证明:如图2,连接AB 、BC , ∵点C 是劣弧AB 上的中点 ∴CA CB = ∴CA =CB 又∵CD =CA ∴CB =CD =CA ∴在△ABD 中,CB=12AD ∴∠ABD =90° ∴∠ABE =90° ∴AE 是⊙O 的直径(22)解:如图3,由(1)可知,AE 是⊙O 的直径 ∴∠ACE =90°∵⊙O 的半径为5,AC =4 ∴AE =10,⊙O 的面积为25π在Rt △ACE 中,∠ACE =90°,由勾股定理,得:CE=22221AB AC -=∴11422142122ACE S AC CE ∆=⨯⨯=⨯⨯= ∴112525421421222O ACE S S S ππ∆=-=⨯-=-⊙阴影21、(1)证明:如图4,由对折和图形的对称性可知, CD =C ′D ,∠C =∠C ′=90°在矩形ABCD 中,AB =CD ,∠A =∠C =90° ∴AB =C ’D ,∠A =∠C ’ 在△ABG 和△C ’DG 中,∵AB =C ’D ,∠A =∠C ’,∠AGB =∠C ’GD ∴△ABG ≌△C ’DG (AAS ) ∴AG =C ’G(2)解:如图5,设EM =x ,AG =y ,则有: C ’G =y ,DG =8-y , DM=12AD=4cm 在Rt △C ’DG 中,∠DC ’G =90°,C ’D =CD =6, ∴222''C G C D DG += 即:2226(8)y y +=- 解得: 74y = ∴C ’G =74cm ,DG =254cm 又∵△DME ∽△DC ’G∴DM ME DC CG =, 即:476()4x= 解得:76x =, 即:EM =76(cm )∴所求的EM 长为76cm 。
2011年深圳市中考数学试卷 (附答案)
2011年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣的相反数是()A .B .﹣ C.2 D.﹣22.(3分)如图所示的物体是一个几何体,其主视图是()A .B .C .D .3.(3分)今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为()A.5.6×103B.5.6×104C.5.6×105D.0.56×1054.(3分)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x65.(3分)某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,则这组数据的中位数为()A.4 B.4.5 C.3 D.26.(3分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元7.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A .B .C .D .8.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A .B .C .D .9.(3分)已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()A.a+c>b+c B.c﹣a<c﹣b C .D.a2>ab>b210.(3分)对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点 B.开口向上C.与y轴的交点坐标是(0,3) D.顶点坐标是(1,﹣2)11.(3分)下列命题是真命题的个数有()①垂直于半径的直线是圆的切线②平分弦的直径垂直于弦③若是方程x﹣ay=3的一个解,则a=﹣1④若反比例函数的图象上有两点,则y1<y2.A.1个B.2个C.3个D.4个12.(3分)如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A .:1B .:1 C.5:3 D.不确定二、填空题(共4小题,每小题3分,满分12分)13.(3分)分解因式:a3﹣a= .14.(3分)如图,在⊙O中,圆心角∠AOB=120°,弦AB=2cm,则OA= cm.15.(3分)如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是.16.(3分)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.三、解答题(共7小题,满分52分)17.(5分)计算:.18.(6分)解分式方程:.19.(7分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是人.20.(8分)如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O 于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)21.(8分)如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G .(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.22.(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费元y(元)与x (台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?23.(9分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线 PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.2011年广东省深圳市中考数学试卷--答案一、选择题(共12小题,每小题3分,满分36分)1.(3分)﹣的相反数是()A .B .﹣ C.2 D.﹣2【解答】解:根据概念得:﹣的相反数是.故选A.2.(3分)如图所示的物体是一个几何体,其主视图是()A .B .C .D .【解答】解:从物体正面看,看到的是一个等腰梯形.故选C.3.(3分)今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为()A.5.6×103B.5.6×104C.5.6×105D.0.56×105【解答】解:56000=5.6×104.故选B.4.(3分)下列运算正确的是()A.x2+x3=x5B.(x+y)2=x2+y2C.x2•x3=x6D.(x2)3=x6【解答】解:A、x2+x3≠x5,故本选项错误;B、(x+y)2=x2+y2+2xy,故本选项错误;C、x2•x3=x5,故本选项错误;D、(x2)3=x6,故本选项正确.故选D.5.(3分)某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,则这组数据的中位数为()A.4 B.4.5 C.3 D.2【解答】解:2,2,2,3,5,6,6,7在中间位置的是3和5,所以平均数是=4.故选A.6.(3分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是()A.100元B.105元C.108元D.118元【解答】解:设这件服装的进价为x元,依题意得:(1+20%)x=200×60%,解得:x=100,则这件服装的进价是100元.故选A7.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A .B .C .D .【解答】解:已知给出的三角形的各边AB、CB、AC 分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.8.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是()A .B .C .D .【解答】解:画树状图得:∴一共有9种等可能的结果,指针指向的数字和为偶数的有4种情况,∴指针指向的数字和为偶数的概率是:.故选C.9.(3分)已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()A.a+c>b+c B.c﹣a<c﹣b C .D.a2>ab>b2【解答】解:A,根据不等式的性质一,不等式两边同时加上c,不等号的方向不变,故此选项正确;B,∵a>b,∴﹣a<﹣b,∴﹣a+c<﹣b+c,故此选项正确;C,∵c≠0,∴c2>0,∵a>b.∴,故此选项正确;D,∵a>b,a不知正数还是负数,∴a2,与ab,的大小不能确定,故此选项错误;故选:D10.(3分)对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点 B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)【解答】解:A、∵△=22﹣4×(﹣1)×(﹣3)=﹣8<0,抛物线与x轴无交点,本选项错误;B、∵二次项系数﹣1<0,抛物线开口向下,本选项错误;C、当x=0时,y=﹣3,抛物线与y轴交点坐标为(0,﹣3),本选项错误;D、∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2),本选项正确.故选D.11.(3分)下列命题是真命题的个数有()①垂直于半径的直线是圆的切线②平分弦的直径垂直于弦③若是方程x﹣ay=3的一个解,则a=﹣1④若反比例函数的图象上有两点,则y1<y2.A.1个B.2个C.3个D.4个【解答】解:①经过半径的外端点并且垂直于这条半径的直线是圆的切线,故本选项错误,②平分弦(不是直径)的直径垂直于弦,故本选项错误,③若是方程x﹣ay=3的一个解,则a=﹣1,故本选项正确,④∵0<<1,当x>0时,反比例函数的图象y随x的增大而增大,∴y1<y2,故本选项正确,故选B.12.(3分)如图,△ABC与△DEF均为等边三角形,O为BC、EF的中点,则AD:BE的值为()A .:1B .:1 C.5:3 D.不确定【解答】解:连接OA、OD,∵△ABC与△DEF均为等边三角形,O为BC、EF的中点,∴AO⊥BC,DO⊥EF,∠EDO=30°,∠BAO=30°,∴OD:OE=OA:OB=:1,∵∠DOE+∠EOA=∠BOA+∠EOA即∠DOA=∠EOB,∴△DOA∽△EOB,∴OD:OE=OA:OB=AD:BE=:1.故选:A.二、填空题(共4小题,每小题3分,满分12分)13.(3分)分解因式:a3﹣a= a(a+1)(a﹣1).【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).14.(3分)如图,在⊙O中,圆心角∠AOB=120°,弦AB=2cm,则OA= 2 cm.【解答】解:过点O作OC⊥AB,∴AC=AB,∵AB=2cm,∴AC=cm,∵∠AOB=12O°,OA=OB,∴∠A=30°,在直角三角形OAC中,cos∠A==,∴OA==2cm,故答案为2.15.(3分)如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是2+n .【解答】解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n个图形的周长为:2+n.故答案为:2+n.16.(3分)如图,△ABC的内心在y轴上,点C的坐标为(2,0),点B的坐标是(0,2),直线AC的解析式为,则tanA的值是.【解答】解:根据三角形内心的特点知∠ABO=∠CBO,∵已知点C、点B的坐标,∴OB=OC,∠OBC=45°,∠ABC=90°可知△ABC为直角三角形,BC=2,∵点A在直线AC上,设A点坐标为(x,x﹣1),根据两点距离公式可得:AB2=x2+,AC2=(x﹣2)2+,在Rt△ABC中,AB2+BC2=AC2,解得:x=﹣6,y=﹣4,∴AB=6,∴tanA===.故答案为:.三、解答题(共7小题,满分52分)17.(5分)计算:.【解答】解:原式=+×+5﹣1=++5﹣1=6.故答案为:6.18.(6分)解分式方程:.【解答】解:去分母,得2x(x﹣1)+3(x+1)=2(x+1)(x﹣1),去括号,得2x2﹣2x+3x+3=2x2﹣2,移项,合并,解得x=﹣5,检验:当x=﹣5时,(x+1)(x﹣1)≠0,∴原方程的解为x=﹣5.19.(7分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了200 名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于36 度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是180 人.【解答】解:(1)80÷40%=200人,(2)20÷200×360°=36°,(3)200×30%=60(人),如图所示:(4)600×30%=180人,故答案为:(1)200,(2)36,(4)180.20.(8分)如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O 于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)【解答】(1)证明:连接CB,AB,CE,∵点C为劣弧AB上的中点,∴CB=CA,又∵CD=CA,∴AC=CD=BC,∴∠ABC=∠BAC,∠DBC=∠D,∵Rt△斜边上的中线等于斜边的一半,∴∠ABD=90°,∴∠ABE=90°,即弧AE的度数是180°,∴AE是⊙O的直径;(2)解:∵AE是⊙O的直径,∴∠ACE=90°,∵AE=10,AC=4,∴根据勾股定理得:CE=2,∴S阴影=S半圆﹣S△ACE=12.5π﹣×4×2=12.5π﹣4.21.(8分)如图1,一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,点C落在点C′的位置,BC′交AD于点G.(1)求证:AG=C′G;(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.【解答】(1)证明:∵沿对角线BD对折,点C落在点C′的位置,∴∠A=∠C′,AB=C′D∴在△GAB与△GC′D中,∴△GAB≌△GC′D∴AG=C′G;(2)解:∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,在Rt△ABD中,BD==10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,∴MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.22.(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费元y(元)与x (台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最小,最小值是多少?【解答】解:(1)根据题意得:甲地运往A馆的设备有x台,∴乙地运往A馆的设备有(18﹣x)台,∵甲地生产了17台设备,∴甲地运往B馆的设备有(17﹣x)台,乙地运往B馆的设备有14﹣(17﹣x)=(x﹣3)台,∴y=800x+700(18﹣x)+500(17﹣x)+600(x﹣3),=200x+19300(3≤x≤17);(2)∵要使总运费不高于20200元,∴200x+19300≤20200,解得:x≤4.5,又x﹣3≥0,x≥3,∴x=3或4,故该公司设计调配方案有:甲地运往A馆4台,运往B馆13台,乙地运往A馆14台,运往B馆1台;甲地运往A馆3台,运往B馆14台,乙地运往A馆15台,运往B馆0台;∴共有两种运输方案;(3)∵y=200x+19300,∵200>0,∴y随x的增大而增大,∴当x为3时,总运费最小,最小值是y=200×3+19300=19900元.23.(9分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A的直线与抛物线交于点 E,交y轴于点F,其中点E的横坐标为2,若直线PQ为抛物线的对称轴,点G为直线 PQ上的一动点,则x轴上是否存在一点H,使D、G,H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T,过点T作x轴的垂线,垂足为点M,过点M作MN∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD?若存在,求出点T的坐标;若不存在,请说明理由.【解答】解:(1)设抛物线的解析式为:y=a(x﹣1)2+4,∵点B的坐标为(3,0).∴4a+4=0,∴a=﹣1,∴此抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)存在.抛物线的对称轴方程为:x=1,∵点E的横坐标为2,∴y=﹣4+4+3=3,∴点E(2,3),∴设直线AE的解析式为:y=kx+b,∴,∴,∴直线AE的解析式为:y=x+1,∴点F(0,1),∵D(0,3),∴D与E关于x=1对称,作F关于x轴的对称点F′(0,﹣1),连接EF′交x轴于H,交对称轴x=1于G,四边形DFHG的周长即为最小,设直线EF′的解析式为:y=mx+n,∴,解得:,∴直线EF′的解析式为:y=2x﹣1,∴当y=0时,2x﹣1=0,得x=,即H (,0),当x=1时,y=1,∴G(1,1);∴DF=2,FH=F′H==,DG==,∴使D、G,H、F四点所围成的四边形周长最小值为:DF+FH+GH+DG=2+++=2+2;(3)存在.∵BD==3,设M(c,0),∵MN∥BD,∴,即=,∴MN=(1+c),DM=,要使△DNM∽△BMD,需,即DM2=BD•MN,可得:9+c2=3×(1+c),解得:c=或c=3(舍去).当x=时,y=﹣(﹣1)2+4=.∴存在,点T 的坐标为(,).。
2011年广东省深圳市中考数学试卷 (解析版)
2011年广东省深圳市中考数学试卷一、选择题(共12小题). 1.(3分)12-的相反数是( )A .12 B .12-C .2D .2-2.(3分)如图所示的物体是一个几何体,其主视图是( )A .B .C .D .3.(3分)今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为( ) A .35.610⨯B .45.610⨯C .55.610⨯D .50.5610⨯4.(3分)下列运算正确的是( ) A .235x x x +=B .222()x y x y +=+C .236x x x =D .236()x x =5.(3分)某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,则这组数据的中位数为( ) A .4B .4.5C .3D .26.(3分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A .100元B .105元C .108元D .118元7.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC ∆相似的是( )A .B .C .D .8.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是( )A .12B .29C .49 D .139.(3分)已知a ,b ,c 均为实数,若a b >,0c ≠.下列结论不一定正确的是( ) A .a c b c +>+B .c a c b -<-C .22a bc c >D .22a ab b >>10.(3分)对抛物线:223y x x =-+-而言,下列结论正确的是( ) A .与x 轴有两个交点 B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标是(1,2)-11.(3分)下列命题是真命题的个数有( ) ①垂直于半径的直线是圆的切线 ②平分弦的直径垂直于弦③若12x y =⎧⎨=⎩是方程3x ay -=的一个解,则1a =-④若反比例函数3y x =-的图象上有两点121(,),(1,)2y y ,则12y y <. A .1个B .2个C .3个D .4个12.(3分)如图,ABC ∆与DEF ∆均为等边三角形,O 为BC 、EF 的中点,则:AD BE 的值为( )A 3B 2C .5:3D .不确定二、填空题(共4小题,每小题3分,满分12分) 13.(3分)分解因式:3a a -= .14.(3分)如图,在O 中,圆心角120AOB ∠=︒,弦23AB cm =,则OA = cm .15.(3分)如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n 个图形的周长是 .16.(3分)如图,ABC ∆的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标是(0,2),直线AC 的解析式为112y x =-,则tan A 的值是 .三、解答题(共7小题,满分52分)17.(5分)计算:1023|5|(2011)π-+︒+---. 18.(6分)解分式方程:23211x x x +=+-. 19.(7分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题: (1)这次活动一共调查了 名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于 度; (3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是 人.20.(8分)如图1,已知在O中,点C为劣弧AB上的中点,连接AC并延长至D,使=,连接DB并延长DB交O于点E,连接AE.CD CA(1)求证:AE是O的直径;(2)如图2,连接EC,O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)21.(8分)如图1,一张矩形纸片ABCD,其中8AB cm=,先沿对角线BD对=,6AD cm折,点C落在点C'的位置,BC'交AD于点G.(1)求证:AG C G=';(2)如图2,再折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M,求EM的长.22.(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台、运往B馆14台;运往A、B两馆的运费如表1: 表1表2(1)设甲地运往A 馆的设备有x 台,请填写表2,并求出总运费y (元)与x (台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案; (3)当x 为多少时,总运费最小,最小值是多少?23.(9分)如图1,抛物线2(0)y ax bx c a =++≠的顶点为(1,4)C ,交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0). (1)求抛物线的解析式;(2)如图2,过点A 的直线与抛物线交于点E ,交y 轴于点F ,其中点E 的横坐标为2,若直线PQ 为抛物线的对称轴,点G 为直线PQ 上的一动点,则x 轴上是否存在一点H ,使D 、G ,H 、F 四点所围成的四边形周长最小?若存在,求出这个最小值及点G 、H 的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T ,过点T 作x 轴的垂线,垂足为点M ,过点M 作//MN BD ,交线段AD 于点N ,连接MD ,使DNM BMD ∆∆∽?若存在,求出点T 的坐标;若不存在,请说明理由.参考答案一、选择题(共12小题,每小题3分,满分36分) 1.(3分)12-的相反数是( )A .12 B .12-C .2D .2-解:根据概念得:12-的相反数是12.故选:A .2.(3分)如图所示的物体是一个几何体,其主视图是( )A .B .C .D .解:从物体正面看,看到的是一个等腰梯形.故选C .3.(3分)今年参加我市初中毕业生学业考试的总人数约为56000人,这个数据用科学记数法表示为( ) A .35.610⨯ B .45.610⨯C .55.610⨯D .50.5610⨯解:456000 5.610=⨯. 故选:B .4.(3分)下列运算正确的是( ) A .235x x x +=B .222()x y x y +=+C .236x x x =D .236()x x =解:A 、235x x x +≠,故本选项错误; B 、222()2x y x y xy +=++,故本选项错误; C 、235x x x =,故本选项错误;D 、236()x x =,故本选项正确.故选:D .5.(3分)某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,则这组数据的中位数为()A.4B.4.5C.3D.2解:2,2,2,3,5,6,6,7在中间位置的是3和5,所以平均数是3542+=.故选:A.6.(3分)一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )A.100元B.105元C.108元D.118元解:设这件服装的进价为x元,依题意得:(120%)20060%x+=⨯,解得:100x=,则这件服装的进价是100元.故选:A.7.(3分)如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC∆相似的是()A.B.C.D.解:已知给出的三角形的各边AB、CB、AC2、210只有选项B的各边为125故选:B.8.(3分)如图是两个可以自由转动的转盘,转盘各被等分成三个扇形,并分别标上1,2,3和6,7,8这6个数字.如果同时转动两个转盘各一次(指针落在等分线上重转),转盘停止后,则指针指向的数字和为偶数的概率是( )A .12B .29C .49 D .13解:画树状图得:∴一共有9种等可能的结果,指针指向的数字和为偶数的有4种情况, ∴指针指向的数字和为偶数的概率是:49. 故选:C .9.(3分)已知a ,b ,c 均为实数,若a b >,0c ≠.下列结论不一定正确的是( ) A .a c b c +>+B .c a c b -<-C .22a bc c >D .22a ab b >>解:A ,根据不等式的性质一,不等式两边同时加上c ,不等号的方向不变,故此选项正确; B ,a b >, a b ∴-<-, a c b c ∴-+<-+,故此选项正确; C ,0c ≠,20c ∴>, a b >. ∴22a bc c >, 故此选项正确; D ,a b >, a 不知正数还是负数,2a ∴,与ab ,的大小不能确定,故此选项错误;故选:D .10.(3分)对抛物线:223y x x =-+-而言,下列结论正确的是( ) A .与x 轴有两个交点 B .开口向上C .与y 轴的交点坐标是(0,3)D .顶点坐标是(1,2)-解:A 、△224(1)(3)80=-⨯-⨯-=-<,抛物线与x 轴无交点,本选项错误; B 、二次项系数10-<,抛物线开口向下,本选项错误;C 、当0x =时,3y =-,抛物线与y 轴交点坐标为(0,3)-,本选项错误;D 、2223(1)2y x x x =-+-=---,∴抛物线顶点坐标为(1,2)-,本选项正确.故选:D .11.(3分)下列命题是真命题的个数有( ) ①垂直于半径的直线是圆的切线 ②平分弦的直径垂直于弦③若12x y =⎧⎨=⎩是方程3x ay -=的一个解,则1a =-④若反比例函数3y x =-的图象上有两点121(,),(1,)2y y ,则12y y <. A .1个B .2个C .3个D .4个解:①经过半径的外端点并且垂直于这条半径的直线是圆的切线,故本选项错误, ②平分弦(不是直径)的直径垂直于弦,故本选项错误,③若12x y =⎧⎨=⎩是方程3x ay -=的一个解,则1a =-,故本选项正确,④1012<<,当0x >时,反比例函数3y x=-的图象y 随x 的增大而增大,12y y ∴<,故本选项正确, 故选:B .12.(3分)如图,ABC ∆与DEF ∆均为等边三角形,O 为BC 、EF 的中点,则:AD BE 的值为( )A .3:1B .2:1C .5:3D .不确定解:连接OA 、OD ,ABC ∆与DEF ∆均为等边三角形,O 为BC 、EF 的中点,AO BC ∴⊥,DO EF ⊥,30EDO ∠=︒,30BAO ∠=︒, ::3:1OD OE OA OB ∴==,DOE EOA BOA EOA ∠+∠=∠+∠即DOA EOB ∠=∠,DOA EOB ∴∆∆∽,:::3:1OD OE OA OB AD BE ∴===.故选:A .二、填空题(共4小题,每小题3分,满分12分)13.(3分)分解因式:3a a -= (1)(1)a a a +- .解:3a a -,2(1)a a =-,(1)(1)a a a =+-.故答案为:(1)(1)a a a +-.14.(3分)如图,在O 中,圆心角120AOB ∠=︒,弦23AB cm =,则OA = 2 cm .解:过点O作OC AB⊥,12AC AB∴=,23AB cm=,3AC cm∴=,12AOB O∠=︒,OA OB=,30A∴∠=︒,在直角三角形OAC中,3cosACAOA OA∠==,3232OA cm∴==,故答案为2.15.(3分)如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是2n+.解:由已知一系列图形观察图形依次的周长分别是:(1)213+=,(2)224+=,(3)235+=,(4)246+=,(5)257+=,⋯,所以第n 个图形的周长为:2n +.故答案为:2n +.16.(3分)如图,ABC ∆的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标是(0,2),直线AC 的解析式为112y x =-,则tan A 的值是 13.解:根据三角形内心的特点知ABO CBO ∠=∠,已知点C 、点B 的坐标,OB OC ∴=,45OBC ∠=︒,90ABC ∠=︒可知ABC ∆为直角三角形,22BC = 点A 在直线AC 上,设A 点坐标为1(,1)2x x -, 根据两点距离公式可得:2221(3)2AB x x =+-, 2221(2)(1)2AC x x =-+-, 在Rt ABC ∆中,222AB BC AC +=,解得:6x =-,4y =-,2AB ∴=,221tan 362BC A AB ∴===. 故答案为:13. 三、解答题(共7小题,满分52分)17.(5分)计算:1023|5|(2011)π-+︒+---.解:原式133512=+-135122=++- 6=.故答案为:6.18.(6分)解分式方程:23211x x x +=+-. 解:去分母,得2(1)3(1)2(1)(1)x x x x x -++=+-,去括号,得22223322x x x x -++=-,移项,合并,解得5x =-,检验:当5x =-时,(1)(1)0x x +-≠,∴原方程的解为5x =-.19.(7分)某校为了了解本校八年级学生课外阅读的喜好,随机抽取该校八年级部分学生进行问卷调査(每人只选一种书籍).如图是整理数据后绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:(1)这次活动一共调查了 200 名学生;(2)在扇形统计图中,“其他”所在扇形圆心角等于 度;(3)补全条形统计图;(4)若该年级有600名学生,请你估计该年级喜欢“科普常识”的学生人数约是 人.解:(1)8040%200÷=人,(2)2020036036÷⨯︒=︒,(3)20030%60⨯=(人),如图所示:(4)60030%180⨯=人,故答案为:(1)200,(2)36,(4)180.20.(8分)如图1,已知在O 中,点C 为劣弧AB 上的中点,连接AC 并延长至D ,使CD CA =,连接DB 并延长DB 交O 于点E ,连接AE .(1)求证:AE 是O 的直径;(2)如图2,连接EC ,O 半径为5,AC 的长为4,求阴影部分的面积之和.(结果保留π与根号)【解答】(1)证明:连接CB ,AB ,CE ,点C 为劣弧AB 上的中点,CB CA ∴=,又CD CA =,AC CD BC ∴==,D CBD ∴∠=∠,CAB CBA ∠=∠,22180CBD CBA ∴∠+∠=︒,90CBD CBA ∴∠+∠=︒,90ABD ∴∠=︒,90ABE ∴∠=︒,即弧AE 的度数是180︒,AE ∴是O 的直径;(2)解:AE 是O 的直径,90ACE ∴∠=︒,10AE =,4AC =,∴根据勾股定理得:221CE =,112.5422112.54212ACE S S S ππ∆∴=-=-⨯⨯=-阴影半圆.21.(8分)如图1,一张矩形纸片ABCD ,其中8AD cm =,6AB cm =,先沿对角线BD 对折,点C 落在点C '的位置,BC '交AD 于点G .(1)求证:AG C G =';(2)如图2,再折叠一次,使点D 与点A 重合,得折痕EN ,EN 交AD 于点M ,求EM 的长.【解答】(1)证明:沿对角线BD 对折,点C 落在点C '的位置,A C ∴∠=∠',ABCD ='∴在GAB ∆与△GC D '中,A C AGBC GD AB C D ∠=∠⎧⎪∠=∠'⎨⎪='⎩GAB ∴∆≅△GC D 'AG C G ∴=';(2)解:点D 与点A 重合,得折痕EN ,4DM cm ∴=,8AD cm =,6AB cm =,在Rt ABD ∆中,2210BD ADAB cm =+=,EN AD ⊥,AB AD ⊥,//EN AB ∴,MN ∴是ABD ∆的中位线,152DN BD cm ∴==, 在Rt MND ∆中,22543()MN cm ∴=-=,由折叠的性质可知NDE NDC ∠=∠,//EN CD ,END NDC ∴∠=∠,END NDE ∴∠=∠,EN ED ∴=,设EM x =,则3ED EN x ==+,由勾股定理得222ED EM DM =+,即222(3)4x x +=+,解得76x =,即76EM cm =.22.(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台同一种型号的检测设备,全部运往大运赛场A 、B 两馆,其中运往A 馆18台、运往B 馆14台;运往A 、B 两馆的运费如表1:表1表2(1)设甲地运往A 馆的设备有x 台,请填写表2,并求出总运费y (元)与x (台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x 为多少时,总运费最小,最小值是多少? 解:(1)根据题意得:甲地运往A 馆的设备有x 台,∴乙地运往A 馆的设备有(18)x -台,甲地生产了17台设备,∴甲地运往B 馆的设备有(17)x -台,乙地运往B 馆的设备有14(17)(3)x x --=-台,800700(18)500(17)600(3)y x x x x ∴=+-+-+-,20019300(317)x x =+;(2)要使总运费不高于20200元,2001930020200x ∴+,解得: 4.5x ,又30x -,3x ,3x ∴=或4,故该公司设计调配方案有:甲地运往A 馆4台,运往B 馆13台,乙地运往A 馆14台,运往B 馆1台; 甲地运往A 馆3台,运往B 馆14台,乙地运往A 馆15台,运往B 馆0台; ∴共有两种运输方案;(3)20019300y x =+,2000>,y ∴随x 的增大而增大,∴当x 为3时,总运费最小,最小值是20031930019900y =⨯+=元.23.(9分)如图1,抛物线2(0)y ax bx c a =++≠的顶点为(1,4)C ,交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0).(1)求抛物线的解析式;(2)如图2,过点A 的直线与抛物线交于点E ,交y 轴于点F ,其中点E 的横坐标为2,若直线PQ 为抛物线的对称轴,点G 为直线PQ 上的一动点,则x 轴上是否存在一点H ,使D 、G ,H 、F 四点所围成的四边形周长最小?若存在,求出这个最小值及点G 、H 的坐标;若不存在,请说明理由;(3)如图3,在抛物线上是否存在一点T ,过点T 作x 轴的垂线,垂足为点M ,过点M 作//MN BD ,交线段AD 于点N ,连接MD ,使DNM BMD ∆∆∽?若存在,求出点T 的坐标;若不存在,请说明理由.解:(1)设抛物线的解析式为:2(1)4y a x =-+,点B 的坐标为(3,0).440a ∴+=,1a ∴=-,∴此抛物线的解析式为:22(1)423y x x x =--+=-++;(2)存在.抛物线的对称轴方程为:1x =, 点E 的横坐标为2, 4433y ∴=-++=, ∴点(2,3)E , ∴设直线AE 的解析式为:y kx b =+, ∴023k b k b -+=⎧⎨+=⎩, ∴11k b =⎧⎨=⎩, ∴直线AE 的解析式为:1y x =+, ∴点(0,1)F ,(0,3)D ,D ∴与E 关于1x =对称, 作F 关于x 轴的对称点(0,1)F '-, 连接EF '交x 轴于H ,交对称轴1x =于G , 四边形DFHG 的周长即为最小, 设直线EF '的解析式为:y mx n =+, ∴123n m n =-⎧⎨+=⎩, 解得:21m n =⎧⎨=-⎩, ∴直线EF '的解析式为:21y x =-, ∴当0y =时,210x -=,得12x =, 即1(2H ,0),当1x=时,1y=,(1,1)G∴;2DF∴=,FH F H='==DG==,∴使D、G,H、F四点所围成的四边形周长最小值为:22DF FH GH DG+++=+=+;(3)存在.3BD==,设(,0)M c,//MN BD,∴MN AMBD AB=,14c+=,) MN c∴=+,DM=要使DNM BMD∆∆∽,需DM MNBD DM=,即2DM BD MN=,可得:29)c c+=+,解得:32c=或3c=(舍去).当32x=时,2315(1)424y=--+=.∴存在,点T的坐标为3(2,15)4.。
2011年广东中考数学试卷及答案
2011广东中考数学试题全卷共6页,考试用时100分钟,满分为120分。
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的, 1.-3的相反数是()A.3B.13C.-3D.-13C1第2题图D E2.如图,已知∠1 = 70º,如果CD∥BE,那么∠B的度数为()A.70ºB.100ºC.110ºD.120º3.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为() A.6,6B.7,6C.7,8D.6,84.左下图为主视方向的几何体,它的俯视图是()A.B. C.D.第4题图5.下列式子运算正确的是()A.3-2=1B.8=42 C.13=3 D.12+3+12-3=4二、填空题(本大题5小题,每小题4分,共20分)6.据中新网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次。
试用科学记数法表示8000000=_______________________。
7.化简:x 2-2xy+yx-y-12-1=_______________________。
8.如图,已知Rt△ABC中,斜边BC上的高AD=4,cosB=9.已知一次函数y=x-b与反比例函数y=2x45,则AC=____________。
BC D第8题图的图象,有一个交点的纵坐标是2,则b的值为________。
DA 10.如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图(2));以此下去···,则正方形A4B4C4D4的面积为__________。
第10题图(1)1B1D2B2 BA1AA2第10题图(2)三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()-1-2cos600+(2-π)0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
深圳市2011年初中毕业生学业考试数学试卷1、说明,答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定位置上,将条形码粘贴好。
2、全卷分两部分,第一部分为选择题,第二部分为非选择题,共4页,满分100分,考试时间120分钟。
3、本卷试题,考生必须在答题卡上按规定作答;在试卷上、草稿纸上作答的,其答案一律无效,答题卡必须保持清洁,不能折叠。
第一部分 选择题(本部分共12小题,每题3分,共36分.每小题4个选项,只有一个是正确的)1、12-的相反数是 A. 12- B. 12C. 2-D.22、如图1所示的物体是一个几何体,其主视图是3、今年我市参加中考的毕业生学业考试的总人数约为56000人,这个数据用科学计数法表示为A.5.6×103B.5.6×104C.5.6×105D.0.56×105 4、下列运算正确的是 A.235xx x += B.222()x y yx =++ C.236xx x⋅=D.()362x x=5、某校开展为“希望小学”捐书活动,以下是八名学生的捐书册数 2 3 2 2 6 7 5 5,这组数据的中位数是A.4B.4.5C.3D.26、一件服装标价200元,若以六折销售,仍可获利20℅,则这件服装进价是 A.100元 B.105元 C.108元 D.118元7、如图2,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是8、如图3是两个可以自由转动的转盘,转盘各被等分成三 个扇形,分别标上1、2、3和6、7、8这6个数字,如果同时转动这两个转盘各一次(指针落在等分线上重转),转盘停 止后,指针指向字数之和为偶数的是 A.12 B. 29 C. 49 D. 139、已知a 、b 、c 均为实数,且a>b ,c ≠0,下列结论不一定正确的是 A. a c b c +>+ B. c a c b -<- C.22abcc>D. 22ab ab >>10、对抛物线y =-x 2+2x -3而言,下列结论正确的是A.与x 轴有两个交点B.开口向上C.与y 轴交点坐标是(0,3)D.顶点坐标是(1,2) 11、下列命题是真命题的有①垂直于半径的直线是圆的切线 ②平分弦的直径垂直于弦③若12x y =⎧⎨=⎩是方程x -ay=3的解,则a=-1④若反比例函数3y x =-的图像上有两点(12,y 1)(1,y 2),则y 1 <y 2 A.1个 B.2个 C.3个 D.4个12、如图4,△ABC 与△DEF 均为等边三角形,O 为BC 、EF 的中点,则AD :BE 的值为 A.3:1 B. 2:1 C.5:3 D.不确定第二部分 非选择题填空题(本题共4小题,每题3分,共12分)13、分解因式:a 3-a= .14、如图5,在⊙O 中,圆心角∠AOB=120º,弦AB=23cm ,则OA= cm. 15、如图6,这是边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,第n 个图形的周长为 .16、如图7,△ABC 的内心在y 轴上,点C 的坐标为(2,0),点B 的坐标为(0,2),直线AC 的解析式为112y x =-,则tanA 的值是 .解答题(本题共七小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) 17、(5分)()013cos30520112π-+︒+---18、(6分)解分式方程:23211x x x +=+-19、(7分)某校为了解本校八年级学生的课外阅读喜好,随即抽取部分该校八年级学生进行问卷调查(每人只选一种书籍),图8是整理数据后画的两幅不完整的统计题,请你根据图中的信息,解答下列问题(1)这次活动一共调查了 名学生.(2)在扇形统计图中,“其它”所在的扇形圆心角为 度. (3)补全条形统计图(4)若该校八年级有600人,请你估计喜欢“科普常识”的学生有 人.20、(8分)如图9,在⊙O 中,点C 为劣弧AB 的 中点,连接AC 并延长至D ,使CA=CD ,连接DB并延长交⊙O 于点E ,连接AE. (1)求证:AE 是⊙O 的直径;(2)如图10,连接CE ,⊙O 的半径为5,AC 长 为4,求阴影部分面积之和.(保留∏与根号)21、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠, 点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ;(2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长.22、(9分)深圳某科技公司在甲地、乙地分别生产了17台、15台相同型号的检测设备,全部运往大运赛场A、B两馆,其中运往A馆18台,运往B馆14台,运往A、B两馆运费如表1:(1)设甲地运往A馆的设备有x台,请填写表2,并求出总运费y(元)与x(台)的函数关系式;(2)要使总运费不高于20200元,请你帮助该公司设计调配方案,并写出有哪几种方案;(3)当x为多少时,总运费最少,最少为多少元?22、(9分)如图13,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y 轴于D,其中B点的坐标为(3,0)(1)求抛物线的解析式(2)如图14,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则x轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.(3)如图15,抛物线上是否存在一点T,过点T作x的垂线,垂足为M,过点M作直线M N∥BD,交线段AD于点N,连接MD,使△DNM∽△BMD,若存在,求出点T的坐标;若不存在,说明理由.深圳市 2011 年初中毕业生学业考试 数 学 试 卷 参 考 答 案第一部分:选择题第二部分:填空题 13、(1)(1)a a a +-14、415、2n + 16、13解答题17、解:原式=618、解:方程两边同时乘以:(x +1)(x -1),得: 2x(x -1)+3(x +1)=2(x +1)(x -1) 整理化简,得 x =-5经检验,x =-5是原方程的根原方程的解为:x =-5(备注:本题必须验根,没有验根的扣2分)19、(1)200 (2)36 (3)如图1 (4)180(1)证明:如图2,连接AB 、BC , ∵点C 是劣弧AB 上的中点∴ CACB = ∴CA =CB又∵CD =CA题 号 1 2 3 4 5 6 7 8 9 10 11 12 答 案BCBDAABCDDCA∴CB =CD =CA ∴在△ABD 中,CB=12AD∴∠ABD =90° ∴∠ABE =90° ∴AE 是⊙O 的直径(22)解:如图3,由(1)可知,AE 是⊙O 的直径 ∴∠ACE =90°∵⊙O 的半径为5,AC =4 ∴AE =10,⊙O 的面积为25π在Rt △ACE 中,∠ACE =90°,由勾股定理,得:CE=22221AB AC -=∴11422142122ACE S AC CE ∆=⨯⨯=⨯⨯= ∴112525421421222O ACE S S S ππ∆=-=⨯-=-⊙阴影21、(1)证明:如图4,由对折和图形的对称性可知, CD =C ′D ,∠C =∠C ′=90°在矩形ABCD 中,AB =CD ,∠A =∠C =90° ∴AB =C ’D ,∠A =∠C ’ 在△ABG 和△C ’DG 中,∵AB =C ’D ,∠A =∠C ’,∠AGB =∠C ’GD ∴△ABG ≌△C ’DG (AAS ) ∴AG =C ’G(2)解:如图5,设EM =x ,AG =y ,则有: C ’G =y ,DG =8-y , DM=12AD=4cm 在Rt △C ’DG 中,∠DC ’G =90°,C ’D =CD =6, ∴222''C G C D DG += 即:2226(8)y y +=- 解得: 74y =∴C ’G =74cm ,DG =254cm 又∵△DME ∽△DC ’G∴DM ME DC CG =, 即:476()4x = 解得:76x =, 即:EM =76(cm )∴所求的EM 长为76cm 。
22、解:(1)表2如右图所示,依题意,得:y =800x +700(18-x)+500(17-x)+600(x -3) 即:y =200x +19300(3≤x ≤17)(2)∵要使总运费不高于20200元 ∴200x +19300<20200 解得: 92x <∵3≤x ≤17,且设备台数x 只能取正整数 ∴x 只能取3或4。
∴该公司的调配方案共有2种,具体如下表:(3)由(1)和(2)可知,总运费y 为: y =200x +19300(x =3或x =4) 由一次函数的性质,可知:当x =3时,总运费最小,最小值为:min y =200×3+19300=19900(元)。
答:当x 为3时,总运费最小,最小值是19900元。
23、解:(1)设所求抛物线的解析式为:2(1)4y a x =-+,依题意,将点B (3,0)代入,得:2(31)40a -+= 解得:a =-1∴所求抛物线的解析式为:2(1)4y x =--+(2)如图6,在y 轴的负半轴上取一点I ,使得点F 与点I 关于x 轴对称,在x 轴上取一点H ,连接HF 、HI 、HG 、GD 、GE ,则HF =HI …………………① 设过A 、E 两点的一次函数解析式为:y =kx +b (k ≠0),∵点E 在抛物线上且点E 的横坐标为2,将x =2代入抛物线2(1)4y x =--+,得2(21)43y =--+= ∴点E 坐标为(2,3)又∵抛物线2(1)4y x =--+图像分别与x 轴、y 轴交于点A 、B 、D ∴当y =0时,2(1)40x --+=,∴x =-1或x =3当x =0时,y =-1+4=3,∴点A (-1,0),点B (3,0),点D (0,3) 又∵抛物线的对称轴为:直线x =1,∴点D 与点E 关于PQ 对称,GD =GE …………………② 分别将点A (-1,0)、点E (2,3)代入y =kx +b ,得: 023k b k b -+=⎧⎨+=⎩解得: 11k b =⎧⎨=⎩过A 、E 两点的一次函数解析式为:y =x +1∴当x =0时,y =1∴点F 坐标为(0,1) ∴DF =2………………………………………③ 又∵点F 与点I 关于x 轴对称, ∴点I 坐标为(0,-1) ∴22222425EI DE DI =+=+=………④又∵要使四边形DFHG 的周长最小,由于DF 是一个定值, ∴只要使DG +GH +HI 最小即可由图形的对称性和①、②、③,可知, DG +GH +HF =EG +GH +HI只有当EI 为一条直线时,EG +GH +HI 最小设过E (2,3)、I (0,-1)两点的函数解析式为:111(0)y k x b k =+≠,分别将点E (2,3)、点I (0,-1)代入11y k x b =+,得:111231k b b +=⎧⎨=-⎩ 解得:1121k b =⎧⎨=-⎩过A 、E 两点的一次函数解析式为:y =2x -1∴当x =1时,y =1;当y =0时,x =12; ∴点G 坐标为(1,1),点H 坐标为(12,0)∴四边形DFHG 的周长最小为:DF +DG +GH +HF =DF +EI 由③和④,可知: DF +EI =225+∴四边形DFHG 的周长最小为225+。