七年级数学上册 点和线教案人教版人教版.doc
人教版七年级数学上册:4.1.2《点、线、面、体》 教案2

人教版七年级数学上册:4.1.2《点、线、面、体》教案2一. 教材分析《点、线、面、体》是人教版七年级数学上册第四章节的第一节内容,主要介绍了点、线、面、体的基本概念和性质。
这一节内容是学生初步接触几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。
通过本节课的学习,学生应该能够理解点、线、面、体的定义,并能够识别和描述它们的特点。
二. 学情分析七年级的学生已经具备了一定的数学基础,但对于几何学的学习还是相对陌生。
在之前的学习中,学生已经接触过一些简单的几何图形,但对于点、线、面、体的概念和性质可能还不够清晰。
因此,在教学过程中,需要注重引导学生从实际出发,通过观察和操作,理解并掌握点、线、面、体的基本概念和性质。
三. 教学目标1.了解点、线、面、体的定义和特点。
2.能够正确识别和描述点、线、面、体。
3.培养学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.重点:点、线、面、体的定义和特点。
2.难点:点、线、面、体的识别和描述。
五. 教学方法采用问题驱动法和操作活动法进行教学。
通过提出问题,引导学生思考和探索,通过实际操作,让学生感受和体验点、线、面、体的特点。
六. 教学准备1.教具准备:几何模型、图片等。
2.教学课件:制作相关的教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)通过向学生展示一些生活中常见的点、线、面、体,如针尖、直线、平面、盒子等,引导学生关注这些几何图形,并提出问题:“你们知道它们分别叫做什么吗?它们有什么特点呢?”从而激发学生的兴趣和好奇心。
2.呈现(10分钟)利用课件呈现点、线、面、体的定义和特点,引导学生直观地理解和掌握。
•点:没有长度、宽度和高度,只有位置。
•线:有长度,没有宽度和高度,可以无限延伸。
•面:有长度和宽度,没有高度,可以无限延伸。
•体:有长度、宽度和高度,是三维空间中的图形。
3.操练(10分钟)让学生分组进行实际操作,通过观察和触摸几何模型,识别和描述点、线、面、体的特点。
人教版七年级数学上册同步备课《第四章》 4.1.3 点、线、面、体(教学设计)

4.1.3 点、线、面、体教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第四章“几何图形初步”4.1.3 点、线、面、体,内容包括:认识点、线、面、体的几何特征;知道点、线、面、体之间的关系.2.内容解析本节课主要是在学生了解了我们身边的平面图形与立体图形的基础上,从流星雨、打开的扇面、商店和宾馆的旋转门等实例出发,引出了“点动成线,线动成面、面动成体”这一事实,从运动的观点揭示点线、面、体之间的内在联系,借助直观的图片与实例让学生从中感受点线、面、体的含义,体验它们之间的联系与区别.几何图形是由点、线、面、体组成的,点线面体的学习不仅是学生认识与理解图形,培养学生的抽象思维能力的基础,还是以后学好三角形、四边形、圆等内容的必要基础知识.基于以上分析,确定本节课的教学重点为:对点、线、面、体及它们之间的关系的认识.二、目标和目标解析1.目标(1)知道点、线、面、体是构成几何图形的元素,进一步认识点、线、面、体的几何特征.(2)知道点、线、面、体之间的关系.2.目标解析认识几何图形的基本元素:点、线、面:点、线、面也都是几何图形;认识到点动成线,线动成面,面动成体.经历从几何体中寻找点、线、面的过程,借助实例,通过触摸、观察、实验、举例等数学活动,变抽象为具体,发展抽象思维能力.提高热爱几何的热情,激发学习兴趣.三、教学问题诊断分析七年级学生仅对简单的几何图形有初步的直观认识,而对点线、面、体的抽象概念很难理解,需要让学生从直观中去感受抽象.由于七年级学生的理解能力和思维特征和生理特征,学生好动性,注意力易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性.心理上,学生对数学课的兴趣,老师应抓住这有利因素,引导学生认识到数学课的科学性,学好数学有利于其他学科的学习以及学科知识的渗透性.基于以上学情分析,确定本节课的教学难点为:对“点动成线”、“线动成面” 以及“面动成体”的理解.四、教学过程设计(一)情境引入猜谜语谜语:千条线万条线,落到水中看不见. (打一自然物)—雨点你能用数学语言来描述这一现象吗?(点动成线)(二)自学导航几何体我们先来认识“体”. 观察一本书、圆罐、篮球,从它们外形中分别可以抽象出什么立体图形?长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体. 几何体简称体.平面与曲面如图:四棱锥有___个面;圆柱有___个面;圆锥有___个面. 再联想上一课“展开图”的知识,可以得出结论:包围着体的是_____.观察这些面,它们有区别吗?四棱锥的5个面是平的;圆柱的侧面是曲的,上、下两个底面是平的;圆锥的侧面是曲的,底面是平的.面有平的面(平面)和曲的面(曲面)两种.观察我们的教室和周围环境,举出一些实际生活中“面”的例子,并指出哪些面是平的,哪些面是曲的?点与线思考:观察几何体模型,回答下列问题:(1)面与面相交的地方形成了什么图形?它们有什么不同?(2)线与线相交的地方形成了什么图形?它们有什么不同?面与面相交的地方形成线,线分为直线和曲线;线与线相交的地方是点,点只代表位置,没有大小,所以点都是相同的.线的形象点的形象思考:下图是一个长方体,它有____个面,面和面相交的地方形成了____条棱,棱和棱相交成____个顶点.几何图形都是由________________组成的.在点、线、面、体中最基本的元素是____.物体的运动会留下运动轨迹,这些运动轨迹往往也能抽象成几何图形. 如果把笔尖看成一个点,这个点在纸上运动时,形成的图形是什么?动手试一试.点动成线线动成面观察下列动画,你发现了什么?面动成体观察下列动画,你发现了什么?(三)考点解析例1.(1)正方体由____个面围成,它们都是____面;正方体有____个顶点,每个顶点处有____条棱.(2)圆柱的侧面和底面相交成一条线,是____线;圆柱由____个面围成,其中有____个平的面,____个曲的面.(3)用圆规在纸上画圆,这种现象说明_________;风扇的叶片在转动时看上去像一个平面,这种现象说明__________;硬币在桌面上快速地转动时,看上去像球,这种现象说___________.【迁移应用】1.(1)在朱自清的《春》中描写春雨“像牛毛、像花针、像细丝,密密地斜织着”的语句,这里把雨看成了线,这种现象可以反映的数学原理是________.(2)国扇文化有深厚的文化底蕴,历来中国有“制扇王国”之称如图,打开折扇时,随着扇骨的移动形成一个扇面,这种现象可以用数学原理解释为__________.2.如图是一个五棱柱,下列关于五棱柱的叙述正确的是( )A.有4条侧棱B.有5个面C.有10条棱D.有10个顶点3.图中的立体图形是由几个面围成的?是平面还是曲面?面与面相交成几条线?它们是直线还是曲线?解:图中的立体图形是由4个面围成的;3个平面,1个曲面;面与面相交成6条线;直线有4条,曲线有2条。
新人教版七年级数学上册点、线、面、体教案

学生独立完成后,学生展示成果
创设情境,导入新课
新人教版七年级数学上册点、线、面、体教案
教
学
目
标
知识技能
通过丰富的实例,进一步认识点、 线、面、体的几何特征,感受它们之间的关系
过程方法
学生自主探究识别一些基本几何体
情感态度
价值观
培养学生的观 察学习识点、线、面、体的几何 特征,感受它们之间的关系
教学
难点
在实际背景中体会 点的含义
点动成线,线动成面,面动成体.
你能举出一些生活中这样的例子吗?
学生交流讨论,然 后回答,教师可以让学生多举几个这样的例子,以培养学生产生数学思维能力,感受生活中的数学现象.
活动4:练习与小结
练习:教材练习第1,2题.
小结:谈谈你对 点、线、面、体的认识.
活动5:作业
习题4.1第5题.
创设情境
观察并思考
3.思考,一本书是不是可以看作一页纸运动形成的一个几何体.
学生进行讨论和思考,教师要留给学生一定的 讨论和思考时间.
活动3:自主学习
教师布置学生自主学习教材内容.
自主学习目标:说一说这部分内容中所展示的 点、线、面、体之间的关系.
然后师生共同归纳点、线、面、体之间的关系.
体与体相交成面, 面与面相交成线,线与线相交成点.
教学过程设计
教学内容及教师活动
学生活动
设计意图
活动1:创设情境,导入新课
教师演示:
1.用粉笔一端在黑板上画一条线.
2.用粉笔整支在黑板上画一个面.
活动2:探究新知
教师引导:
1.粉笔的一端可以看作一个点,刚才画线是不是可以看作是这个点运动形成的.
最新2024人教版七年级数学上册6.1.2 点、线、面、体--教案

6.1 几何图形6.1.2 点、线、面、体一、新课导入观察下图的长方体,思考:它有几个面?面和面相交形成了几条棱?棱和棱相交形成了几个顶点?师生活动:学生观察思考,议论交流.预测学生可以答出:6 个面、12 条棱、8 个顶点.教师引导学生理清它们的联系:二、探究新知知识点一:图形的构成元素合作探究:同学们,观察教室,哪些物体可以抽象成你熟悉的立体图形?师生活动:教师给出例子,学生发言说出更多例子,教师予以适当的评价与鼓励,最后引导学生一起总结总结:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体.几何体也简称体.探究1:(1) 你知道这些几何体是由什么围成的吗?(2) 下图中的图形分别有哪些面?这些面有什么不同吗?师生活动:学生充分利用学具进行观察,并开展组内讨论,教师参与其中,老师引导学生归纳:1. 包围着的体是面.2. 面分为平的面和曲的面.想一想:探究2:面和面相交的地方形成了什么?它们有什么不同吗?师生活动:学生分小组探究;得出结论后,每小组派代表在全班交流;教师点评纠正,师生共同归纳:面和面相交的地方形成线,线有直线和曲线之分.探究3:线和线相交处又形成了什么?它们有什么不同吗?师生活动:借助前面的经验,教师引导学生归纳:线和线相交形成点.点只代表位置,没有大小,所以点都是相同的.想一想:立体图形的组成的元素包括什么?师生活动:教师引导学生进行归纳总结,并理清元素之间的联系,完成下图:例题精析:如图所示的立体图形是由________个平面和__________个曲面组成的,面与面相交形成__________条直线和举例和及时练习,加深学生对“面”的认识,理解“面”的概念.设计意图:借助“面”的学习经验进一步认识线和点,用合作探究的方式利于学生对概念的理解;引领学生完整经历“具体-抽象-具体”的认知过程,体会概念的产生和发展.设计意图:通过关系图的方式直观展示点线面体的关系,便于学生构建完整的知识框架.设计意图:通过练习巩固点、线、面、体的相关知_______条曲线.师生活动:学生独立思考,由学生代表发言,教师予以适当评价.知识点二:由点、线、面运动而形成的图形动手操作:画一画:把笔尖看作一个点,让这个点在纸上运动.观察结果,最终形成了什么?师生活动:学生画图并相互交流.教师追问1:通过画图,你得到了什么结论?请用精炼的语言加以概括.学生充分思考、讨论;教师引导学生归纳:点动成线.教师追问2:你能举出“点动成线”的生活实例吗?教师给出如下例子做示范,学生讨论,举出更多实例.画一画:把粉笔横着看作一条线,让这个粉笔在黑板上运动.观察结果,最终形成了什么?师生活动:教师通过现场操作粉笔并让学生观察黑板报,引发学生思考,学生代表回答,教师予以适当评价并引导学生归纳:线动成面.教师追问:你能举出“线动成面”的生活实例吗?教师给出如下例子做示范,学生列举更多实例.操作:长方形纸片绕它的一边旋转一周,会形成什么图形?识.设计意图:从动手实践中获得直观感受,在讨论交流中抽象概括,引导学生模拟知识发生、发展的过程,这种体验有利于学生学会学习.设计意图:从动手试验→观察思考→抽象概括,过渡到思考想象→猜想假设→实践验证,培养学生大胆猜想,小心求证的创新精神,在发展形象思维的同时培养空间想象力和几何直觉.设计意图:加深学生对面三、当堂练习师生活动:教师转动长方形纸片,然后由学生代表发言,老师可引导学生仿照前面的归纳得出结论:面动成体.教师可让各小组将纸片剪成不同形状(如:半圆、执教梯形、直角三角形),仿照老师刚才的操作并观察,再分别请小组代表展示转动过程与所得图形:练一练:1.(临沂期末改编)中华武术是中国传统文化之一,是中华民族在日常生活中结合多种传统文化思想,逐步形成了独具民族风貌的武术文化体系“枪挑一条线,棍扫一大片”,从数学的角度解释为( )A.点动成线,线动成面B.线动成面,面动成体C.点动成线,面动成体D.点动成面,面动成线师生活动:学生独立思考,由学生代表发言,教师予以适当评价.三、当堂练习1. 如图,三棱锥有____个面,它们相交形成了____条棱,这些棱相交形成了____个点.2. 请把下图中的平面图形与其绕轴旋转一周后得到的立体图形连接起来.动成体的理解,培养学生的观察能力和空间想象能力.设计意图:通过练习检测由点、线、面运动形成的图形知识掌握情况.设计意图:观察三棱锥的构成元素,提升迁移能力.设计意图:通过练习巩固由点、线、面运动形成的1.(东营期末改编)小翼跟妈妈到银行办理业务,她发现银行大堂的旋转门内部是由三块宽为 2 m、高为 3 m的玻璃隔板组成的,此情此景,她提出了以下问题:(1) 将此旋转门旋转一周,能形成的几何体是______.(2) 这能说明的事实是______(选择正确的一项填入).A. 点动成线B. 线动成面C. 面动成体(3) 求该旋转门旋转一周形成的几何体的体积.(边框及衔接处忽略不计,结果保留π)图形知识.设计意图:综合检测本节课所学的知识.板书设计点、线、面、体课后小结教师与学生一起回顾本节课所学的主要内容,梳理并完善知识思维导图.教学反思1.结合实例,鼓励学生探索学生虽然已经学习了立体图形和平面图形等几何概念,对于从具体事物或实例中进行数学抽象也有了初步认识,但点、线、面、体等都是很抽象的概念,与直观感受往往存在一定差距(例如平面是无限延展的,点没有大小只代表位置等内容),现阶段是难以深刻理解、完整认识的,所以要让学生充分活动起来,多观察,多举例,多表达.避免将这些抽象的概念强加给学生,要让学生在积累了丰富的直观感受后自发地同化概念,接受概念的意义.。
七年级数学上册《点和线》教案、教学设计

5.结合数学知识的学习,渗透德育教育,培养学生的道德品质,如诚实守信、严谨治学等。
二、学情分析
七年级的学生正处于从小学到初中的过渡阶段,他们在数学学习上已经有了一定的基础,但在几何图形的学习上,尤其是点和线的概念及其性质,可能还较为陌生。此外,这个年龄段的学生好奇心强,求知欲旺盛,但注意力容易分散,对抽象概念的理解能力有限。因此,在本章节的教学过程中,教师应充分考虑以下几点:
5.加强作图训练,提高动手能力:通过课堂练习和课后作业,让学生反复练习基本作图方法,提高他们的动手能力和空间想象能力。
6.激发学生思维,培养创新能力:在教学过程中,鼓励学生提出不同观点和解决问题的方法,培养他们的创新思维。
7.注重课后反馈,提高教学效果:通过课后作业、测试等方式,了解学生的学习情况,针对学生的薄弱环节进行有针对性的辅导,提高教学效果。
c.运用基本作图方法,画出给定图形,并标注相关线段的长度。
2.结合生活实际,让学生观察身边的点和线,选择一个感兴趣的例子,用文字和图形描述其数学特征,并解释其应用。
3.小组合作任务:每组设计一个与点和线相关的实际问题,要求运用所学知识解决。组内成员共同分析问题、探讨解决方案,并将结果以书面形式提交。
4.通过课堂练习和课后作业,巩固所学知识,形成知识体系,提高学生的运算速度和准确性。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生的学习热情,使他们能够积极主动地参与课堂学习。
2.培养学生的团队合作意识,使他们学会倾听、交流、协作,养成良好的学习习惯。
3.培养学生勇于探索、敢于创新的精神,使他们能够在面对困难和挑战时,保持积极向上的态度。
人教版七年级数学上册几何图形初步《直线、射线、线段(第2课时)》示范教学设计

直线、射线、线段(第2课时)教学目标1.知道比较线段长短的方法,并会比较线段的长短.2.会用尺规画一条线段等于已知线段,会用尺规画出线段的和与差.3.知道线段中点、三等分点、四等分点的定义,会用数学符号语言表示.4.能够用线段中点的性质和数量关系解决问题.教学重点探究比较线段长短的方法,尺规作图的操作,线段中点及其分成的各线段间的数量关系.教学难点运用线段的和与差、线段的中点解决问题.教学准备直尺、圆规、透明纸.教学过程知识回顾1.线段、射线和直线的区别2.直线的性质(1)基本事实:经过两点有一条直线,并且只有一条直线.①它包含两层含义:一是“肯定有”,二是“只有一条”,不会有两条、三条……;②它可简单地说成“两点确定一条直线”.(2)直线的其他性质:①经过一点的直线有无数条;②不同的两条直线最多有一个公共点.3.直线、射线、线段的表示线段:(1)线段AB(或线段BA);(2)线段a.射线:(1)射线AB;(2)射线m.直线:(1)直线AB(或直线BA);(2)直线l.4.线段和射线都是直线的一部分.5.一个点在一条直线上,也可以说这条直线经过这个点;一个点在直线外,也可以说直线不经过这个点.6.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点.7.一条直线上有n个点,则这条直线上共有2n条射线,有112n n()条线段.新知探究一、探究学习【问题】我们是如何比较物体的高度或者长度的?【师生活动】小组探讨后给出结论,教师给出正确答案.【答案】1.目测(直接比较法)2.测量(数据比较法)【设计意图】通过生活中比较高度或长度的实例引入线段长短比较的知识.【问题】已知线段AB与线段CD,如何比较这两条线段的长短?【师生活动】教师引导,学生作答,然后教师讲解新知.【新知】第一种:度量法结论:AB<CD.第二种:叠合法把其中的一条线段移到另一条线段上去,将其中的一个端点重合在一起加以比较.注意:起点对齐,看终点.点A与点C重合,点D与点B重合结论:AB=CD点A与点C重合,点D落在B,C之间结论:AB>CD点A与点C重合,点B落在C,D之间结论:AB<CD【设计意图】让学生在探究学习中掌握两种比较线段长短的方法.二、新知精讲【问题】怎么画一条线段使它等于已知线段呢?如图,已知线段AB,用尺规作一条线段等于已知线段AB.【师生活动】教师提出问题,学生思考并用自己的语言描述自己的想法.然后教师组织学生讨论,并引导学生尝试用圆规作图.最后教师做适当的总结归纳,并用课件展示尺规作法.【答案】解:作图步骤如下:(1)作射线A'C';(2)用圆规在射线A'C'上截取A'B'=AB.线段A'B'就是所求线段.【新知】画一条线段等于已知线段a,可以先量出线段a的长度,再画一条等于这个长度的线段.在数学中,我们常限定用无刻度的直尺和圆规作图,这就是尺规作图.【设计意图】作一条线段等于已知线段是几何的基本作图,也是本课后续知识学习的基础,要让学生准确掌握;向学生渗透几何研究中有“数”与“形”两种不同的方法.【问题】你知道如何画线段的和与差吗?如图,已知线段m,n,用尺规作一条线段AC,使AC=m+n.【师生活动】学生先作图,教师点评纠正,然后用课件展示正确作法.【答案】解:作图步骤如下:(1)作射线AM;(2)在射线AM上截取AB=m;(3)在射线BM上截取BC=n.线段AC就是所求线段.【设计意图】让学生掌握线段和的作图方法,将用图形表示线段和与用符号表示线段和结合起来.【问题】如图,已知线段m,n,用尺规作一条线段AC,使AC=m-n.【师生活动】学生先作图,教师点评纠正,然后用课件展示正确作法.【答案】解:作图步骤如下:(1)作射线AM;(2)在射线AM上截取AB=m;(3)在线段AB上截取BC=n.线段AC就是所求线段.【设计意图】让学生掌握线段差的作图方法,将用图形表示线段差与用符号表示线段差结合起来.【问题】如图,已知线段a,求作线段AB=2a.【师生活动】学生先作图,教师点评纠正,然后用课件展示正确作法.【答案】解:作图如下:AB=2a,即为所求作的线段.【新知】点M把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点.数学符号语言:AM=MB=12AB(或AB=2AM=2BM)类似地,还有线段的三等分点、四等分点等.AM=MN=NB=13 ABAM=MN=NP=PB=14 AB【设计意图】层层递进地对等分点进行学习,既让学生掌握等分点的概念,更让学生理解等分点是怎样产生的,掌握由等分点产生的数量关系.【问题】在一张透明的纸上画一条线段,折叠纸片,使线段的端点重合,折痕与线段的交点就是线段的中点.动手试一试.【师生活动】学生先作图,然后教师用课件展示动画效果.【答案】【设计意图】通过动手操作,让学生更加形象地理解和掌握线段的中点的性质.三、典例精讲【例】如图,若线段AB=20 cm,点C是线段AB上一点,M,N分别是线段AC,BC 的中点.(1)求线段MN的长;(2)根据(1)中的计算过程和结果,设AB=a,其他条件不变,你能猜出MN的长度吗?请用简洁的语言表达你发现的规律.【师生活动】学生作答,然后教师给出分析和正确答案.【分析】(1)先根据M,N分别是线段AC,BC的中点得出MC=12AC,CN=12BC,再由线段AB=20 cm即可求出结果.(2)由(1)即可得到结论.【答案】解:(1)因为M,N分别是线段AC,BC的中点,所以MC=12AC,CN=12BC.因为线段AB=20 cm,所以MN=MC+CN=12(AC+BC)=12AB=10(cm).(2)由(1)得,MN=MC+CN=12(AC+BC)=12AB=12a.即MN始终等于AB的一半.【设计意图】检验学生对线段的中点的性质的掌握程度,同时使学生能够进行线段的相关运算.课堂小结板书设计一、比较线段的长短二、尺规作图三、中点、三等分点、四等分点四、线段的运算课后任务完成教材第128页练习第1~3题.。
人教版七年级数学上册 点、线、面体 教案

点、线、面体【教学目标】1、通过丰富的实例,学生进一步认识点、线、面、体的几何特征,感受它们之间的关系。
2、培养学生操作、观察、分析、猜测和概括等能力,同时渗透转化、化归、变换的思想。
3、养成学生积极主动的学习态度和自主学习的方式。
【重点难点】重点:认识点、线、面、体的几何特征,感受它们之间的关系。
难点:在实际背景中体会点的含义。
【教学准备】圆柱、圆锥、正方体、长方体、球、棱柱、棱锥模型【教学过程】一、创设情境多媒体演示西湖风光,垂柳、波澜不起的湖面、音乐喷泉、雨天、亭子……随着镜头的切换,学生在欣赏美丽风景的同时,教师引导学生注意观察:垂柳像什么?平静的湖面像什么?湖中的小船像什么?随着音乐起伏的喷泉又像什么?在岸边的亭子中我们寻找到了哪些几何图形?从中感受生活中的点、线、面、体.设计意图:从西湖风光引入新课,引导学生观察生活中的美妙画面,不仅能激发学生的学习兴趣,而且让学生对点、线、面、体有了初步的形象认识,感知知识来源于生活.如“点”是没有大小的,学生难以真正理解,可以借助湖中的小船、地图上用点表示城市的位里这些生活实例,让学生体会到“点”的含义.二、讨论(动态研究)课件演示:灿烂的星空,有流星划过天际;汽车雨刷;长方形绕它的一边快速转动;问:这些图形给我们什么样的印象?观察、讨论.让学生共同体会“点动成线、线动成面、面动成体,’.让学生举出更多的“点动成线、线动成面、面动成体”的例子。
小组合作学习,学生利用学具完成教科书第114页练习(动手转一转)设计意图:教师利用多媒体动态演示,让学生主动参与学习活动,观察感受,经历体验图形的变化过程,通过合作学习,感悟知识的生成、变化、发展,激发学生的联想与再创造能力。
学生自己动手实践操作,加深学生印象,化解难度。
三、讨论(静态研究)教师展示图片(建筑或生活的实物等),让学生找找生活中的平面、曲面、直线、点等。
让学生找出生活中更多的包含平面、曲面、直线、曲线、点的例子。
七年级数学上册 4.2《直线、射线与线段 》两点之间 线段最短教学设计 (新版)新人教版

两点之间,线段最短设计思想(1)国家数学课程标准指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。
它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
(2)初一学生从基础知识,基本技能和思维水平以及学习方式等方面有一个逐步适应和提高的过程。
因此,在进行教学设计时,必须时时考虑到新初一学生的学习实际,既不能盲目拔高,也不能搞简单化的结论式教学。
在新课改的过程中,教学设计应立足于学生实际,从大处着眼,深入挖掘教材内容的素质教育功能。
(3)数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。
数学教学应从学生的实际出发,创设有助于学生自主学习的问题情境,引导学生通过实践、思考、探索、交流,获得知识,形成技能,发展思维,学会学习。
(4)本课题通过对内容的挖掘与整理,采用“问题情境──建立模型──解释、应用与拓展”的模式展开教学,让学生经历“从生活中发现数学──在教室里学习数学──到生活中运用数学” 这样一个过程,从而更好地理解数学知识的意义,发展应用数学知识的意识与能力,进一步增强学好数学的愿望和信心。
学生通过本节从具体情境发现并提出数学问题的学习活动,进一步体会数学与自然及人类社会的密切联系,了解数学的价值。
在互动交流活动中,学习从不同角度理解问题,寻求解决问题的方法,并有效地解决问题。
体会在解决问题中与他人合作的重要性。
体会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识。
教学任务分析教学流程安排课前准备教学过程设计效果检测1、通过课堂学习活动的展示与交流,学生对学生进行相互评价2、在学习活动过程中教师注意及时地鼓励、指导、点评,实施过程评价3、课后要求学生“蚂蚁爬行最短”问题进行继续研究,并写出数学小作文。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点和线
教学目标:
知识与技能:1.知道点的概念以及线段、射线、直线的概念;
2.知道点、线段、射线、直线的表示方法,会按要求画出线段、射线、直线;
3.知道“两点确定一条直线”并能用来解释生活中的现象.
过程与方法:1.从不同的情景中形成点的概念;
2.通过操作体会“两点确定一条直线”.
情感态度与价值观:使学生感受到数学来源于生活,要养成细心观察生活的好习惯.
教学重点:1.点、线段、射线、直线的概念及其表示方法;
2.“两点确定一条直线”;
教学难点:使用简单的几何语言。
教材分析:本节是从最基础的图形------点和线开始学习,通过观察探究让学生体验“过两点有且只有一条直线”的性质,介绍它们的表示方法。
因此进一步认识直线、射线、线段的概念。
掌握它们的表示方法结合实例了解两点确定一条直线是本节的重点。
点和线是两个最基本的几何图形,又是构成其他几何图形的基本要素。
因此也与以后各章的学习密切相关,是研究复杂图形的必要基础。
应重视几何语言的培养和训练。
为今后学好几何打下良好的基础。
教学方法:引导法。
引导学生在现实情景中理解简单的平面图形在操作活动中积累经验。
教具:电脑、投影仪、硬纸条、大头针、泡沫板、课件资源、投影片
课时安排:1课时
教学过程:
引导自学活动2
1:我们先学习点,同学们印象中的点是什么
样子的?
(课件出示动画图案)滚动的小球,地图上的
城市,霓红灯下的文字,节日的焰火,笔在纸
上运行的轨迹。
学生思考后交流
举例
激发学生的学
习兴趣.
列举现实中的
点,增强学生对
点的感性认识。
从生活中感受
点。
2:让我们看一下课本吧!先看“做一做”第
1题.
当你完成以后,对点有新的认识吗?(教师用
课件演示电子显示屏是如何显示数字、字母和
文字的?)总结得出:实质上是用发光的点构
成图案。
学生在点阵图中
用描点的方法构
造出字母、数字图
案。
通过活动,体
验点阵可以
构成各种图
案。
加深对点
的直观认识。
再请大家看第2个问题,在地图上找到北京、
上海、南昌、成都所在的位置.
你对点是否有了新的认识?
学生在地图上找
到表示某些城市
位置的点。
通过活动体
验城市的面
积很大,但在
地图中可以
用点表示它
位置。
加深对
点的直观认
识。
最后我们找一找第3题每个图形的顶点.
你对点是否有了新的认识?
教师引导学生认识,
线和线相交成点。
复习线和线相
交成点.
请同学们总结一下,你对点的认识。
学生总结,教师点评,
并给予鼓励.
形成点的概
念。
我们用大写字母表示点.请同学们说出“做一
做”第3题每个图形中的顶点的名称.
学生回答,教师鼓
励。
学习点的表
示方法。
活动3:学生回答并举例从生活中感
板书设计:
教学反思:我在这节课的教学中从感性认识出发,在学生熟悉的实际生活中,抽象出几何的概念便于认知结构的形成。
由学生自己讨论点、直线、线段和射线的概念,并寻找它们之间的区别与联系,这样更有利于发挥学生自己的主观能动性,参与意识更强,课堂更加活跃。
利用课件对三者关系的变化过程进行演示更为生动有趣,“变”的意义更明显,加深了学生对概念的理解。
通过学生的实践活动自己发现直线公理,消除学生对几何学习的恐惧心理,增强学习兴趣,这节课主要以学生为主体同时注重教师主导作用。