过电压引起设备烧毁事故的原因分析及处理
10kV电压互感器烧毁原因剖析及对策

10kV电压互感器烧毁原因剖析及对策摘要本文通过对漳浦电网投运的几组10kV母线电压互感器烧毁原因初步分析,通过现场解剖,查找原因,提出解决的防范及改进措施。
关键词电压互感器烧毁;分析;对策0 引言在中性点非有效接地系统中,电压互感器由于产品质量原因、二次过载,间歇性弧光接地过电压,电感设备铁心的磁路饱和作用激发产生的铁磁谐振过电压,经常导致电压互感器烧毁或使高压熔丝熔断。
本文针对漳浦电网投运的几起型号UNE10-SIII的电压互感器烧毁原因分析,通过现场解剖,提出加强防范及改进措施,并在运行中取得良好的效果。
1 故障概述公司几个110kV变电站10kV母线电压互感器的型号为UNE10-SIII,采用二次消谐,消谐装置型号为WNXⅢ-10/B,投运一段时间内,PT高压熔丝烧断频繁,甚至几台PT本体烧毁,给运行带来极大的不便。
电压互感器烧毁的过程如下:1)产品编号2529、1070送电后时间不长烧毁;2)产品编号1068、0069、1070配组使用,送电时1070烧毁,现场急需送电,更换5846与没有烧毁的两台产品同组运行,运行一段时间均内烧毁;2初步分析理论和实际表明,电压互感器烧毁的直接原因是内部过电流引起发热,主要有以下几方面:1)质量问题:由于在制造过程中存在气泡和气隙等绝缘弱点、铁心叠片及绕制工艺不过关等,使电压互感器绝缘长期处于高温下运行,加速老化而击穿,进而发生绕组匝间短路,电流骤增,本体烧毁;2)电压互感器二次过载、一、二次电流较大,造成PT内部绕组发热增加,特别是二次绕组匝间和相间短路时,出现较大的短路电流,线圈发热更加严重,甚至烧毁;3)系统发生单相间歇电弧接地时出现过电压,可达正常电压的3倍~3.5倍,使电压互感器的铁芯饱和,励磁电流急剧增加,引起高压熔丝熔断或烧坏互感器;4)电压互感器是典型的非线性电感元件,与电网对地电容形成铁磁谐振并联回路,也可能和其他电气设备的电容形成串联谐振回路,在一定外界条件的激发条件下,某种原因造成的中性点位移等,从而发生谐振,电压互感器的内部一次绕组不可避免的通过很大的容性电流使电压互感器烧毁。
浅析电气设备故障引发火灾事故的原因分析及处理措施

浅析电气设备故障引发火灾事故的原因分析及处理措施【摘要】我国发生电气火灾高居火灾事故总数的首位,约占总数的30%左右。
电气火灾事故原因主要包括短路、过负荷、接点接触不良、电火花、设备过热、静电和雷电等,在电气火灾中,电气短路引起的火灾事故占50%以上[1]。
本文介绍了某110千伏无人值班变电站因电缆头短路故障引发电气设备着火烧损,对其故障原因进行了阐述与分析,并提出了相应的处理措施。
【关键词】短路故障;设备烧损处理措施1 变电站概况变电站110千伏系统为单母线内桥分段接线,10千伏系统为单母线分段接线,110千伏主变台数:2台,型号:SFSZ7-20000/110,冷却方式:ONAN/ONAF 70%—100%,额定频率:50 Hz,相数:三相,额定容量:20000千伏A,额定电压:110/38.5/11千伏,连接组别:YN,yn0,d11;阻抗电压:高-中9.594%,高-低17.38%,中-低3.27%。
生产厂家:云南变压器厂,出厂时间:2004年,投运日期:2005年。
110千伏断路器为北京XX公司生产的LTB145D1/B型,该变电站是某电力公司农网建设的首座110千伏无人值班变电站,主要为XX水泥厂提供生产电源,XX水泥厂余热发电向电网输送电能。
2 事件经过2014年9月24日10时50分,10千伏冲发线150XX余热发电有功及电流均下降(280A降至30A),XX水泥厂发“发电机定子接地”、“励磁故障跳闸”、“汽机跳闸”信号,发电机出口开关跳闸。
冲木达变10千伏Ⅱ段母线B相电压逐渐降到零,另两相电压升高为线电压。
11时00分,10千伏Ⅱ段母线C相电压降低,发生多点异相接地短路故障。
10千伏冲采148线路过流I段保护动作跳闸。
11时11分、13分和32分,地调远动监控多次报“冲木达变电站火灾告警动作”信号。
11时30分,10千伏冲发150线路余热发电侧开关断开,110千伏冲木达变电站通讯中断。
35kV电压互感器烧毁事故分析及防范措施

35kV电压互感器烧毁事故分析及防范措施作者:朱明军来源:《祖国·建设版》2013年第02期220kV昭阳变电站发生过35kV电磁式电压互感器烧毁事故,从事故分析出发,分析了该事故发生的原因,其主要原因是单相接地谐振过电压,由此事故分析及理论分析和实验,对避免类似事故的发生提出了防范的措施及注意事项。
电压互感器事故分析防范措施【中图分类号】U223.6文献标识码:B文章编号:1673-8005(2013)02-0025-021220kV昭阳变电站是主变中性点直接接地运行方式,35kV采用的是半绝缘电磁式电压互感器,型号为JDZXF71-35N,出厂日期2011.08,厂家:宁波三爱互感器有限公司。
2012年5月9日00点35分220kV昭阳变35kVII母电压异常。
现场检查发现站内监控后台机发35kVII 母零序电压越限,线路有接地,35kVII母有很大放电声,当集控值班员遥控跳开4号电容器后,发现35kV母线有B相瞬间接地现象,随即转为A相永久接地。
35kV电压互感器柜外观无损坏,打开柜门后,发现A相电压互感器靠B相侧有道裂缝并从裂缝口处流出黑色胶体,表面温度很高(与B.C相表面温度差别很大),B相电压互感器靠A相侧有油渍,C相电压互感器外观完好。
35kV避雷器及放电计数器外观检查良好。
检查母线及三相避雷器绝缘电阻均符合试验规程,无接地现象。
2原因分析:由于系统B相有接地,引起谐振,使母线A相、C相电压升高,导致A相电压互感器击穿。
由于此电压互感器是半绝缘电磁型的,也是导致电压互感器击穿的重要原因。
2.1当系统发生单相接地时,故障点流过电容电流,未接地的两相相电压增高√3倍,这将严重影响线路和电气设备的安全运行(此时电压互感器的励磁阻抗很大,故流过的电流很小)。
但是,一旦接地故障点消除,非接地相在故障期间已充的电荷只能通过电压互感器高压线圈经其自身的接地点接入大地。
在这一瞬间电压突变过程中,电压互感器高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和,由此构成相间串联谐振。
过电压引起设备烧毁事故的原因分析及处理标准版本

文件编号:RHD-QB-K2433 (操作规程范本系列)编辑:XXXXXX查核:XXXXXX时间:XXXXXX过电压引起设备烧毁事故的原因分析及处理标准版本过电压引起设备烧毁事故的原因分析及处理标准版本操作指导:该操作规程文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。
,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。
【摘要】:在10KV或35KV中性点不接地(或非有效接地)系统中,由于谐振过电压、间歇性弧光接地过电压的存在,经常导致10KV(或35KV)接地电压互感器烧毁或使PT的熔断器的熔丝熔断,从而造成系统的停电检修,给电力系统造成不必要的损失。
本文结合实例,对谐振过电压,尤其是间歇性弧光接地过电压引起设备烧毁事故的原因进行分析,并采取了相应的对策,保证了变电站设备的正常运行。
【关键词】:过电压设备事故分析和处理前言本文对处理固原西吉新营35KV变电站发生单相接地后,烧毁电压互感器的一次保险及二次计量电表的原因进行分析和探讨,认为烧毁电压互感器及二次设备的原因,不仅和谐振过电压有关,间歇性弧光接地也可能是造成此现象更重要的原因,并提出了一些解决的办法。
1事故过程固原西吉新营35KV变电站额定容量为1800KVA,变压器接线方式为Y/Y。
型。
变电站母线接有三台JDJJ2-35型电压互感器,接线方式为Y/Y。
20xx年9月10日建设投运,时隔一周以后,系统出现单相接地故障,持续时间为20分钟,恢复后,发现DTSD341电能表烧毁,经查电压互感器中性点与地网之间电压1200V,控制盘表一相近似零值,其它两相超出电压表量限,变压器运行正常,初步断定电压互感器有一相短路或匝间短路。
经过对三台电压互感器进行全面试验,未发现故障。
通过调查,新营35KV变电站是由于线路C相中有一只瓷瓶击穿,出现间歇性弧光接地,从而造成此次事故的发生。
对35kV电压互感器异常烧毁事故的分析与防范措施

对35kV电压互感器异常烧毁事故的分析与防范措施摘要:在不接地系统中,电压互感器在运行中存在问题较多,PT 烧毁、一次保险熔断等现象时有发生,其原因多种多样,如电压互感器质量存在问题、避雷器与电压互感器匹配不当导致雷击或操作过电压损坏设备、谐振等。
文章通过对实例对35kV 电压互感器异常燃烧事故的原因进行分析,并提出了改进建议。
关键词:35KV;电压互感器;异常烧毁;措施1. 35kV半绝缘电压互感器的异常烧毁事故1.1 故障发生现象故障一:110kV某变电站35kVII母电压互感器投运时,连续两次烧毁A相保险管,致使II母电压互感器无法按时投运,后台II母电压无法进行监控;故障二:110kV某变电站监控显示I母电压UB:1.9kV、UA:36.21kV、UC:38.32kV、3U0:105.45V。
15分钟后,后台显示I母UB:0kV、UA:20.38kV、UC:20.53kV、3U0:4V。
后台重合闸动作,初步判断B相有瞬间接地现象。
1.2 现场事故排查分析对于故障一进行现场检查,发现A、B、C三相电压互感器外观均完好,每相的避雷器和放电计数器外观检查也均完好;故障二进行现场检查,发现A、C相电压互感器外观均完好,B相电压互感器外壳有放电烧蚀的痕迹。
故对两个故障均进行了现场试验,数据如表1所示。
1.3 事故发生的原因分析从试验数据得出,故障互感器的一次绕组均已烧断,内部绝缘损毁严重。
发生此类故障的原因主要是由于线路发生了单相接地故障,导致非接地相电压升高,电压互感器的电压也随之升高,电流增大,互感器的铁芯出现饱和现象,一旦满足系统的wL=1/wc谐振条件时,就会产生谐振过电压。
各相感抗发生变化,中性点位漂移,产生零序电压。
半绝缘电压互感器在系统出现不对称时,也很容易出现高幅值的铁磁谐振过电压。
谐振过电压引起电压互感器励磁电流剧增,产生几十倍额定电流的过电流,而铁芯处于过饱和状态下,互感器二次电压变化很小,巨大的一次电流引起保险与互感器一次绕组烧断。
变电所操作过电压的原因分析及应对措施

变电所操作过电压的原因分析及应对措施摘要:本文通过对几种操作过电压的原因进行分析,制定相应的应对措施,避免操作过电压的发生。
同时,针对各种操作过电压的发生时的现象进行描述,明确各类操作过电压发生时的判断方法和补救措施,从而终止过电压的发生,避免因过电压造成更大的事故。
最后,对几起操作过电压的事故进行分析,生动的阐述了各类操作过电压对设备的影响和应对措施。
关键词:变电所;操作;过电压;措施引言在电力系统中,由于断路器的操作或系统故障,使系统的参数发生变化,导致电力系统内部能量的转化或传递的过渡过程中,在电力系统产生过电压,这个过电压称之为操作过电压。
操作过电压可能影响电网系统的稳定,造成设备的损坏,甚至威胁人身安全。
如何判断操作过电压、制定应对措施、发生时采取补救措施,从而阻止操作过电压的进一步发展,是当前油田电网安全运行的一个难题。
1 变电所操作过电压的原因分析1.1 分合空载线路引起的过电压油田配电线路主要负荷为抽油电机、注水井电机等三相负荷,由于负荷的特殊性,其不具有自动启停功能。
停电后必须人工启动电机负载,因此在启动电机前对配电线路送电或者由于重合闸引起的切断线路都造成了“分合空载线路”,可能造成操作过电压。
切除和投入空载线路时引起过电压的根源是电弧重燃,其矛盾的两个方面是开关的灭弧能力和触头间的恢复电压,再就是线路上的残余电压;空载线路的合闸过电压是由于在合闸瞬间的暂态过程中,回路中因发生高频振荡而产生。
1.2 弧光接地过电压单相接地故障是电网运行中的常见故障。
在单相接地故障中,绝大部分属于弧光接地,通过弧光的电流Ijd是健全的相对地电容电流的总和。
一般情况下,Id 并不太大而不足以产生稳定的电弧,于是就形成了电弧熄灭和重燃的相互交替的不稳定的工作状态,这种间歇性电弧现象引起的电网运行状态的瞬息变化,导致电磁能的强烈振荡,这就是弧光过电压的产生机理。
1.3 切除空载变压器过电压空载变压器就是励磁线圈,因此切断消弧线圈、大型电动机和并联电抗器等电杆元件也会产生与切空载变压器类似的物理过程。
配电电气火灾事故原因

配电电气火灾事故原因一、电气设备故障1.1 漏电漏电是配电电气火灾事故中常见的原因之一。
由于电气设备老化、绝缘损坏、绝缘强度不足等导致的漏电,会引起电气火灾事故的发生。
例如,电线的绝缘被老鼠啃食,导致绝缘破损,进而导致漏电引起的火灾。
1.2 电气设备过载电气设备的过载是导致火灾事故的常见原因之一。
当电气设备长时间工作负荷过大,超出了设计负荷,就容易导致设备过热、电气线路导线短路、电气元件烧坏等情况,从而引发火灾事故。
1.3 电气设备老化电气设备长期使用后往往会出现老化现象,绝缘阻力下降,绝缘破损,设备零部件松动等问题,这些都会增加电气设备发生故障的风险,从而引发配电电气火灾事故。
二、电气线路故障2.1 电线老化电气线路老化是导致配电电气火灾事故的常见原因之一。
电线裸露、绝缘老化、线路老化、发质变化引起电阻等问题都会增加电线短路、发热等故障的风险,从而引发火灾事故。
2.2 电气线路绝缘破损电气线路绝缘破损是导致配电电气火灾事故的常见原因之一。
例如,在施工中因为运输、拖拉等原因引起线路绝缘破损,或者是因为老鼠咬线等情况,都可能导致线路绝缘破损,引发火灾事故。
三、电气元件故障3.1 电气元件老化在使用过程中,电气元件往往由于电流过大、电压升高、材料老化等原因导致故障,从而引发火灾事故。
例如,电闸老化、短路、断路等故障都可能引发火灾。
3.2 电气元件安装不良电气元件的安装不良也是导致配电电气火灾事故的原因之一。
例如,开关、插座等电气元件的线路接触不良、接触电阻变大、发热等都可能引发火灾事故。
四、人为操作不当4.1 电气设备维护保养不当电气设备维护保养不当是导致配电电气火灾事故的原因之一。
如果电气设备的定期维护保养、检测不到位,就容易导致设备老化、故障等问题,从而引发火灾事故。
4.2 疏于巡查监测疏于巡查监测也是导致配电电气火灾事故的原因之一。
如果对于电气设备、电气线路等未进行定期的巡查、监测,就容易出现故障、损坏等问题,从而引发火灾事故。
110kv电压互感器烧毁原因

标题:110kV电压互感器烧毁原因及分析引言:电力系统中的电压互感器是重要的电气设备之一,用于测量和监测高压电网中的电压。
然而,在实际运行中,我们常常会遇到电压互感器烧毁的情况,这不仅会对电力系统的正常运行产生影响,还可能导致电网事故的发生。
本文将分析110kV电压互感器烧毁的原因,并提出相应的解决方案,以期提高电压互感器的可靠性和安全性。
一、过载运行导致电压互感器烧毁过载运行是导致电压互感器烧毁的主要原因之一。
在电力系统中,由于各种原因导致的电流异常增大,超过了电压互感器的额定容量,使其工作在过载状态下。
长时间的过载运行会导致电压互感器内部绝缘材料老化,绝缘能力下降,从而引发局部放电,最终导致烧毁。
解决方案:1. 合理选择电压互感器容量:在设计和选型过程中,应根据实际电流负荷情况合理选择电压互感器的容量,避免过载运行。
2. 定期检测和维护:定期对电压互感器进行检测和维护,及时发现并处理过载运行等异常情况,保证其正常工作。
二、电压互感器绝缘击穿导致烧毁电压互感器的绝缘结构是保证其正常工作的重要组成部分。
然而,由于环境因素、制造质量等原因,电压互感器绝缘结构可能存在缺陷,从而发生绝缘击穿,导致烧毁。
解决方案:1. 严格控制制造质量:在电压互感器的制造过程中,应严格控制质量,确保绝缘结构的完整性和可靠性。
2. 定期绝缘检测:定期对电压互感器的绝缘结构进行检测,发现问题及时修复或更换。
三、外界故障引起电压互感器烧毁电力系统中存在各种外界故障,如雷击、过电压等,这些故障会对电压互感器产生冲击和损害,进而导致烧毁。
解决方案:1. 加装过电压保护装置:在电压互感器的周围加装过电压保护装置,以便及时吸收和隔离外界故障引起的过电压。
2. 强化绝缘防护:对电压互感器进行绝缘防护,增强其抗雷击等外界故障的能力。
结语:为了保证电力系统的正常运行和安全性,我们需要认真分析和解决电压互感器烧毁的问题。
通过合理选择容量、定期检测和维护、严格控制制造质量、加装过电压保护装置等措施,可以提高电压互感器的可靠性和安全性,减少烧毁事故的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编号:SM-ZD-50557
过电压引起设备烧毁事故的原因分析及处理
Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly.
编制:____________________
审核:____________________
批准:____________________
本文档下载后可任意修改
过电压引起设备烧毁事故的原因分
析及处理
简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。
文档可直接下载或修改,使用时请详细阅读内容。
【摘要】:在10KV或35KV中性点不接地(或非有效接地)系统中,由于谐振过电压、间歇性弧光接地过电压的存在,经常导致10KV(或35KV)接地电压互感器烧毁或使PT的熔断器的熔丝熔断,从而造成系统的停电检修,给电力系统造成不必要的损失。
本文结合实例,对谐振过电压,尤其是间歇性弧光接地过电压引起设备烧毁事故的原因进行分析,并采取了相应的对策,保证了变电站设备的正常运行。
【关键词】:过电压设备事故分析和处理
前言
本文对处理固原西吉新营35KV变电站发生单相接地后,烧毁电压互感器的一次保险及二次计量电表的原因进行分析和探讨,认为烧毁电压互感器及二次设备的原因,不仅和谐振过电压有关,间歇性弧光接地也可能是造成此现象更重要
的原因,并提出了一些解决的办法。
1事故过程
固原西吉新营35KV变电站额定容量为1800KVA,变压器接线方式为Y/Y。
型。
变电站母线接有三台JDJJ2-35型电压互感器,接线方式为Y/Y。
20xx年9月10日建设投运,时隔一周以后,系统出现单相接地故障,持续时间为20分钟,恢复后,发现DTSD341电能表烧毁,经查电压互感器中性点与地网之间电压1200V,控制盘表一相近似零值,其它两相超出电压表量限,变压器运行正常,初步断定电压互感器有一相短路或匝间短路。
经过对三台电压互感器进行全面试验,未发现故障。
通过调查,新营35KV变电站是由于线路C相中有一只瓷瓶击穿,出现间歇性弧光接地,从而造成此次事故的发生。
经进一步检查,电压互感器C相一次保险烧断,换掉C 相一次保险和二次电能表后,暂时恢复了正常供电。
2原因分析
电力系统出现新营35KV变电站这样的事故,是一个普遍存在的问题,为此我们从以下三方面进行了分析:
当系统容抗1/ωC同ωL接近(0.18—0.68)时,极易诱发系统基频和分频谐振,特别是35KV变电站带负荷较小或空载时,站内母线短、电容量小,1/ωC同ωL数值接近。
同时由于电感L是与电压有关的变量,而电容C是由系统确定后基本不变的常量。
当电压发生变化时,电感L也随之改变,当两者参数相近时,容易诱发参数谐振。
(引起系统参数变化的主要原因有操作过电压、故障接地产生的过电压、间歇性弧光接地等。
)
另外在中性点不接地系统中,当发生单相接地故障时,电网电压、相位维持不变,故障相电压下降为近似零值,非故障相上升为额定电压近似值的√3倍,当系统接地故障消除后,非接地相在过电压期间,由于线路电容的作用,已对线路充入电荷,这部分电荷在中性点不接地系统中,只能对电压互感器的高压绕组(电感线圈)放电,而流入大地,在这个电压瞬变过渡过程中,非接地相电压互感器一次绕组励磁电流忽然出现数倍于额定电流的峰值电流,可将一次电压互感器保险熔断。
还有一个重要原因是在中性点不接地系统中,除三相电
压互感器外,其余的主变、配变中性点均不接地,当系统发生每一个周波重燃多次的弧光断续接地时,电压互感器成为系统对地放电的通道。
其放电电流可达2A左右,是一般35KV电压互感器一次额定电流200倍左右。
这样重燃多次断续放电,可能造成电压互感器和电能表因剧烈发热而烧毁。
3解决的方法
为消除系统基频、分频谐振产生的过电压及限制间歇性弧光接地造成的系统电容对电压互感器放电的过流,一般采取在电压互感器开口三角形并联电阻或微机二次消谐的方法,该方法是在电压互感器产生谐振过电压时,通过微机换切不同的电阻,短接二次的零序绕组,产生一个和谐振过电压方向相反的励磁磁势,从而抑制谐振过电压的发生,该方法对阻止谐振过电压确实有效,但在出现间歇性弧光接地、系统电容对电压互感气压的连续放电时,起限流作用不太明显。
另一种方法是在电压互感器一次绕组中性点串接非线性电阻的方法,该方法如阻值匹配合适,能限制谐振过电压的发生,同时能限制间歇性弧光接地发生的放电电流。
通过
调查发现,在采取二次微机保护消谐的同时,在中性点再加装非线性电阻消谐器,对电压互感器的保护作用更加明显,这可能同非线性电阻的限流作用有关。
4. 效果
我们通过在35KV中性点串接一支XRQW-35B型消谐器,并在保护屏上采用微机二次消谐的方法对原变电站进行了改造(见图二)。
至今,虽然35KV线路由于各种原因偶有单相接地发生,控制装置也会出现报警,但没有发生过设备损坏事故。
改造后的效果非常明显。
5.小节
谐振过电压烧毁电压互感器的问题,是一个非常复杂的问题,需要我们以后进一步研究、探讨。
建议电压互感器套管采用新型的复合材料,避免瓷套管在运行过程中发生过热爆炸现象。
这里填写您的企业名字
Name of an enterprise。