全等三角形复习
三角形全等判定复习ppt课件

N 明方法与前题基本相同,只
须证明⊿ABN≌⊿BCM
A
C
B
变式4:如图,⊿ABD,⊿ACE都是正三角形, 求证CD=BE
D
A
E
B
C
分析:此题实质上是把题目中的条件B,A,C三点改为 不共线,证明方法与前题基本相同.
变式6:如图,分别以⊿ABC的边AB,AC为一边 画正方形AEDB和正方形ACFG,连结CE,BG.
求证BG=CE
E
分析:此题是把两个三
角形改成两个正方形而
D
A
G 以,证法类同
FBBiblioteka C小结:1.证明两个三角形全等,要结合题目的条件 和结论,选择恰当的判定方法
2.全等三角形,是证明两条线段或两个角相 等的重要方法之一,证明时
①要观察待证的线段或角,在哪两个可能全等的三 角形中。
②分析要证两个三角形全等,已有什么条件,还缺 什么条件。
AB=CB
A
AD=CD
BD=BD
_
=
P
∴ △ABD≌△CBD(SSS)
B
D
∴∠ABD=∠CBD
_
=
在△ABP和△CBP中
C
AB=BC
∠ABP=∠CBP
BP=BP
∴ △ABP ≌ △CBP(SAS)
∴PA=PC
例4。已知:如图AB=AE,∠B=∠E,BC=ED AF⊥CD 求证:点F是CD的中点
分析:要证CF=DF可以考虑CF 、 DF所在的两个三角形全等,为此可 添加辅助线构建三角形全等 ,如何 添加辅助线呢?
知识结构图
性质
全等三角形对应边相等 全等三角形对应角相等
全 全等 等三 形角
形
全等三角形的判定总复习

AB=A´B´
BC=B´C´
∴Rt△ABC≌ Rt△A´B´C´(HL)
B
B′
A
C
已知:如图,在△ABC和△ABD中,AC⊥BC,
BD⊥AD,垂足分别为C,D,AC=BD
(1)求证: △ABC≌△BAD.
(2)求证:BC=AD
(1)解: ∵ AC⊥BC, BD⊥AD D
C
∴ ∠C=∠D=90°
在Rt△ABC和 Rt△BAD中
例子1:如图,在△AEC和△ADB中,已 知AE=AD,AC=AB,请说明△AEC ≌ △ADB的理由。
解:在△AEC和△ADB中
C
_A_E__=__A_D_(已知)
D
∠A= ∠A( 公共角)
A
E
B
_A_C___=_A__B_(已知)
∴ △AEC≌△ADB( SAS )
例2:如图,AC=BD,∠CAB= ∠DBA,
用符号语言表达为:
在△ABC和△DEF中
∠A=∠D (已知 )
AB=DE(已知 )
∠B=∠E(已知 )
B
∴ △ABC≌△DEF(ASA)
A
D
CF E
例1: 已知如图,O是AB的中点,∠A=∠B,
求证:△AOC≌△BOD
证明:
∵ O是AB的中点(已知) C
∴ OA=OB(中点定义)
在△AOC和△BOD中 A
,有
AB=AB,
A
B
AC=AD. ∴ Rt△ACB≌Rt△ADB (HL). (2)∵ Rt△ACB≌Rt△ADB (HL). ∴ BC=AD
例2. 如图,AC=AD,∠C,∠D是直角, 将上述条件标注在图中,求证BC=BD
全等三角形复习资料(搜集整理版)

特别鸣谢资源原创者,本人仅仅便于自己的备课整理排版了一下。
第十一章全等三角形复习一、全等三角形能够完全重合的两个三角形叫做全等三角形。
一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。
(2):全等三角形的周长相等、面积相等。
(3):全等三角形的对应边上的对应中线、角平分线、高线分别相等.3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS")边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”))2、(判定)角的内部到角的两边的距离相等的点在角的平分线上。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等"或“有两边及其中一边的对角对应相等”的两个三角形不一定全等; (4)时刻注意图形中的隐含条件,如“公共角”、“公共边"、“对顶角”第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。
这条直线就是它的对称轴.这时我们也说这个图形关于这条直线(成轴)对称.2. 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。
这条直线叫做对称轴.折叠后重合的点是对应点,叫做对称点4。
轴对称的性质①关于某直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
④如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。
二、线段的垂直平分线1。
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线.2.线段垂直平分线上的点与这条线段的两个端点的距离相等3.与一条线段两个端点距离相等的点,在线段的垂直平分线上三、用坐标表示轴对称小结:在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数。
人教版八年级上册第十二章全等三角形知识点总结及复习

全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
全等三角形定义 :能够完全重合的两个三角形称为全等三角形。
(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
全等三角形复习专题

全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。
如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。
二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。
2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。
3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。
4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。
5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。
三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。
如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。
四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。
2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。
3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。
4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。
5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。
全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。
全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。
动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。
将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。
全等三角形的判定复习与总结

全等三角形的判定复习与总结教学目标:1.复习和巩固全等三角形的判定方法;2.总结全等三角形判定的规律和技巧;3.小组合作,培养学生的合作能力和思维能力。
教学准备:1.教学素材:全等三角形判定题目,活动卡片;2.教学工具:黑板、彩色粉笔、计算器。
教学过程:一、引入课题(5分钟)1.引入话题:今天我们要来复习和总结全等三角形的判定方法。
2.引发思考:请回顾一下,全等三角形的判定条件是什么?二、复习全等三角形的判定法(15分钟)1.复习SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。
2.复习SAS判定法:如果两个三角形的一边和两个角度分别相等(这个边是两个角的夹边),则这两个三角形全等。
3.复习ASA判定法:如果两个三角形的两个角度和一边分别相等(这个边是两个角的边),则这两个三角形全等。
4.复习AAS判定法:如果两个三角形的两个角度和一边分别相等(这个边不是两个角的边),则这两个三角形全等。
三、总结全等三角形判定的规律和技巧(15分钟)1.全等三角形判定的基本规律:要判断两个三角形是否全等,只需对应两边相等且夹角相等即可。
2.技巧一:当给出两个三角形的三个边的长度时,先比较三边的长度是否相等,再比较夹角是否相等。
3.技巧二:当给出两个三角形的两边和夹角时,先比较两边的长度是否相等,再比较夹角是否相等。
四、小组合作活动(30分钟)1.分成若干小组,每组3-4个学生,每组发放一组活动卡片。
2.活动内容:每组成员轮流拿一张卡片,上面写有一组给定的边长和角度。
学生根据卡片上的数据,判断这两个三角形是否全等,并给出理由。
其他组员通过提问和讨论来验证判断的正确性。
3.活动要求:每个学生都要积极参与,提出问题和表达自己的观点;每个小组要有一个组长,负责组织小组讨论和总结。
五、展示与总结(20分钟)1.每个小组派出一位学生上台展示他们分析判断的过程,并给出判断的结果和理由。
2.全班一起讨论和比较不同小组的判断结果和理由,总结全等三角形判定的规律和技巧。
人教版八年级上册第十二章全等三角形知识点复习

A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )
初一数学全等三角形的全章复习

小学生元旦联欢会的主持词精选4篇小学生元旦联欢会主持词篇一主持词要根据活动对象的不同去设置不同的主持词。
我们眼下的社会,各种集会的节目都通过主持人来进行串联,快来参考主持词是怎么写的吧,以下是小编为大家整理的小学生元旦联欢会主持词(精选13篇),仅供参考,希望能够帮助到大家。
小学生元旦联欢会的主持词篇二甲:尊敬的各位领导﹑老师,乙:亲爱的同学们,大家,合:晚上好!甲:我是来自2020级的小鱼。
乙:我是来自2020级的小绿。
丙:我是来自2020级的小黄。
丁:我是来自2020级的小红。
甲:新年的钟声即将敲响,时光的车轮又留下了一道深深的印痕。
满天的雪花,是飞舞的音符,以思念谱成乐章,用祝福奏出所盼。
乙:没有松风的秋,雁去长空;没有飞雪的冬,乍暖还寒。
一夜高风凋碧树,凋不了青春不灭的火焰;满地余寒露凝香,凝不住你绝美的年华。
丙:在这烛光与微笑构成的舞台,在这笑声与歌声汇成的海洋,在这永恒与温馨筑就的圣地,我们欢聚在一起。
丁:光阴茬苒,我们即将迎来新的一年。
今天大家在这里欢聚一堂,迎接元旦的曙光。
这一刻是美好的,这一刻是温馨的,这一刻是充满激情的。
甲:台历翻去最后一页,20--年已经成为历史。
回首时光年轮上又一度春秋寒暑,我们不禁感慨万千。
乙:灿烂辉煌的20--年即将向我们告别,充满希望与奋进的20--年正微笑着向我们走来。
丁:在这辞旧迎新的日子里,就让我们用热情与激情来表达我们的喜悦,传达对新一年的憧憬。
丙:今晚,就让我们踏着歌声的翅膀,向着梦想――启航!甲:现在我宣布20--年庆元旦文艺晚会,合:现在开始!甲:首先请允许我为大家隆重介绍今晚到场的领导和嘉宾,--。
乙:欢迎您的到来!丙:---。
丁:欢迎您的到来!甲:还有我们敬爱的--老师和--老师,乙:让我们用热烈的掌声来欢迎各位老师的到来!丁:今天啊,我们在开场前将会进行第一个抽奖环节的前奏!丙:没错!我们需要在场的观众拿出旁边已经为你们准备好的袋子,里面呢会有一张小纸条,请将你对20--年的新年愿望写在纸上,并写好你的姓名,待会儿会有同学去收集,我们将在晚会的最后从这些小纸条中抽出3位幸运儿,并且由主持人念出这3个新年愿望,而这3位幸运的同学也将获得奖品哦!大家快点动起来吧!甲:OK,相信你们已经写好了自己的新年愿望了吧,我们马上进入今晚的正轨了哟!乙:没错,接下来呢就让我们跟着--和--的歌声走进《下一站天后》。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形复习
[知识要点] 一、全等三角形
② 全等三角形面积相等. 2.证题的思路:
⎪⎪
⎪
⎪⎪
⎪⎪⎩
⎪⎪⎪⎪
⎪
⎪⎪⎨⎧⎩⎨
⎧⎪⎪
⎩⎪
⎪⎨⎧⎪⎩⎪
⎨⎧⎪⎩⎪
⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()
找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 全等三角形的有关证明(提高篇)关键:三角形全等的证明及其运用关键点在于“把相等的边(角)
放入正确的三角形中”,去说明“相等的边(角)所在的三角形全等”,利用三角形全等来说明两个角相等(两条边相等)是初中里面一个非常常见而又重要的方法。
要说明两边相等,两角相等,最常用的方法就是说明三角形全等
直角三角形的全等问题:直角三角形的研究是整个中学几何图形部分里的重点!
直角三角形有关的全等问题中,除了特用的HL 定理之外,在条件的寻找上首先就有了一组直角相等;而多个直角,多个垂直的图形组合在一块时,就很容易利用“同(等)角的余角相等”来得到其
他的角相等。
例一:图1,已知D O ⊥BC ,O C =O A ,O B =O D ,问CD =AB 吗? [分析]:此图形可看作绕O 点旋转得到,由垂直得到一组直角, 把结合其他两组边,很容易找到他们所在的三角形。
[变形1]:请说明△BCE 是直角三角形。
(利用全等三角形的对应角相等,以及直角三角形的两个锐角互余这两个性质进行代换和转换)
图2
B 图1
[变形2]:(2008 威海)把两个含有45°角的直角三角板如图1放置,点D 在BC 上, 连结BE ,AD ,AD 的延长线交BE 于点F .求证:AF ⊥BE .
[分析]:此图中要说明AF ⊥BE ,与上题中△BCE 是直角三角形是一样的意思, 只需要说明∠BFD=90°即可
[变形3]:两个大小不同的等腰直角三角形三角板如图1所示放
置,图2是由它抽象出的几何图形,
B C E ,,在同一条直线上,连结CD . (彩图为提示)
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:CD ⊥BE
[变形4]、如图2,在△ABC 中,高AD 与BE 相交于点H ,且AD=BD , 问△BHD ≌△ACD ,为什么?
[分析]:此题实际上就是[变形1]的反问,已经存在一组直角(由垂直得到),
一组相等的边(已知),再利用“同(等)角的余角相等”来得到第二组角相等!
[变形5]:如图3, 已知ED ⊥AB ,EF ⊥BC ,BD =EF ,问BM =ME
吗?说明理由。
[变形6]:如图4,AD 是一段斜坡,AB 是水平线,现为了测斜坡上一点
的竖直高度DB 的长度,欢欢在D 处立上一竹竿CD ,并保证CD ⊥AD 后在竿顶C 处垂下一根绳CE ,与斜坡的交点为点E ,他调整好绳子CE 度,使得CE=AD ,此时他测得DE=2米,于是他认定DB 的高度也为2你觉得对吗?请说明理由。
例二:如图1,已知,AC ⊥CE ,AC=CE , ∠ABC=∠CDE=90°,
问BD=AB+ED 吗? [分析] :
(1)凡是题中的垂直往往意味着会有一组90°角,得到一组等量关系;
C 图图2 A
B C E H
D
A
C
M
E F B
(2)出现3个垂直,往往意味着要运用同(等)角的余角相等,得到另一组等量关系; (3)由全等得到边相等之后,还要继续往下面想,这几组相等的边能否组合在一起: 如如图6,除了得到三组对应边相等之外,还可以得到AC=BD 。
[变形1]:如图7, 如果△ABC ≌△CDE ,请说明AC 与CE 的关系。
[注意]:两条线段的关系包括:大小关系(相等,一半,两倍之类) 位置关系(垂直,平行之类)
[变形2]:(2008 泸州)如图,E 是正方形ABCD 的边DC 上的一点,过点A 作FA ⊥AE 交CB 的延长线于点F , 求证:DE=BF
[分析]
[变形3]:如图8,在△ABC 中,∠
BAC=90°,AB=AC ,AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。
[分析] :说明相等的边所在的三角形全等, 题中“AB=AC ”,发现:AB 在Rt △ABD 中,AC 在Rt △CAE 中,
所以尝试着去找条件,去说明它们所在的两个Rt △全等(如图9) 于是:已经存在了两组等量关系:AB=AC ,直角=直角,
再由多个垂直利用同角的余角相等,得到第三组等量关系。
[变形4]:在△ABC 中,∠ACB= 900,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E 。
(1)当直线MN 绕点C 旋转到图9的位置时,△ADC ≌△CEB ,且 DE=AD+BE 。
你能说出其中的道理吗?
(2)当直线MN 绕点C 旋转到图10的位置时, DE =AD-BE 。
说说你的理由。
(3)当直线MN 绕点C 旋转到图11的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这
个等量关系。
A 图F E
C 图
等腰三角形、等边三角形的全等问题:
[必备知识]:
如右图,由∠1=∠2,可得∠CBE=∠DBA ;反之,也成立。
例三:已知在△ABC 中,AB=AC ,在△ADE 中,AD=AE ,且∠1=∠2,请问BD=CE 吗?
[变形1]:如图13,已知∠BAC=∠DAE ,∠1=∠2,BD=CE , 请说明△ABD ≌△ACE.吗?为什么?
[分析]:例三是两组边相等,放入一组三角形中,利用SAS 说明全等,
此题是两组角相等,那么该如何做呢?
[变形2]:过点A 分别作两个大小不一样的等边三角形,连接BD ,CE ,请说明它们相等。
[分析]:此题实际上是例三的变形,只不过将等腰三角形换成了等边三角形,只要你根据所求问题,
把BD 看成在△ABD 的一边,CE 看成△ACE
[变形3]:如图16—18,还是刚才的条件,把右侧小等边三角形的位置稍加变化,,连接BD ,CE ,请
说明它们相等
B
图B
图15
B
A
D
B
B
图13
B
图17
[变形4]:(2008 怀化)如图,四边形ABCD 、DEFG 都是正方形,连接AE 、CG ,AE 与CG 相交于点M ,CG 与AD 相交于点N .求证:CG AE ;
[分析]:和上面相比,只不过等边三角形换成正方形,60
例四: 如图,△ABC 中,∠C=90°,AB=2AC
,M 是AB 的中点,点N 在BC 上,MN ⊥AB. 求证:AN 平分∠BAC.
[分析]
:要说明AN 平分∠BAC ,必须说明两角相等,∴可以说明△AMN ≌△而题中已有了一组直角相等,一组公共边(斜边)
结合题目中条件,比较容易找到一边直角边相等,从而利用HL
[变形1]:在Rt △ABC 中,已知∠A=90°,DE ⊥BC 于E 点,如果AD=DE ,BD=CD ,求∠C 的度数
1.将直角三角形(∠ACB 为直角)沿线段CD 折叠使B 落在B ’处,若∠ACB ’=60°,则∠ACD 度数为______.
2.如图,△ABE 和△ACD 是△ABC 分别沿着AB 、AC 边翻折180°形成的,若∠BAC=150°,则∠EFC 的度数为_________.
3.已知△ABC 中,∠ABC=45°,AC=4,H 是高AD 和BE 的交点,则线段BH 的长度为_______.
题图
第2题图
第1B
B B
4.如图,△ABC 是等边三角形,点D 、E 、F 分别是线段AB 、BC 、CA 上的点, (1)若AD BE CF ==,问△DEF 是等边三角形吗?试证明你的结论; (2)若△DEF 是等边三角形,问AD BE CF ==成立吗?试证明你的结论.
B
8. 如图,点O 是等边ABC △内一点,110AOB BOC α∠=∠=
,.将BOC △绕点C 按顺时针方
向旋转60
得ADC △,连接OD .(1)求证:COD △是等边三角形;
(2)当150α=
时,试判断AOD △的形状,并说明理由; (3)探究:当α为多少度时,AOD △是等腰三角形?
A
B
C
D
O
110 α
10 .已知:如图,ABC △是等边三角形,过AB 边上的点D 作DG BC ∥,交AC 于点G ,在GD 的延长线上取点E ,使DE DB =,连接AE CD ,. (1)求证:AGE DAC △≌△;
(2)过点E 作EF DC ∥,交BC 于点F ,请你连接AF ,并判断AEF △是怎样的三角形,试证明你的结论.
C
G
A
E
D
B
F。