北航数值分析编程大作业一

合集下载

北航数值分析大作业 第一题 幂法与反幂法

北航数值分析大作业 第一题 幂法与反幂法

数 值 分 析(B ) 大 作 业(一)姓名: 学号: 电话:1、算法设计:①求1λ、501λ和s λ的值:s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。

1λ、501λ:若矩阵A 的特征值满足关系 1n λλ<<且1n λλ≠,要求1λ、及501λ时,可按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。

b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m BA I λ=+,对矩阵B 用反幂法求得B 的按模最小特征值2m λ。

c . 321m m m λλλ=-则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。

②求和A 的与数5011140k k λλμλ-=+最接近的特征值ik λ(k=0,1,…39):求矩阵A 的特征值中与P 最接近的特征值的大小,采用原点平移的方法:先求矩阵 B=A-PI 对应的按模最小特征值k β,则k β+P 即为矩阵A 与P 最接近的特征值。

在本次计算实习中则是先求平移矩阵k B A I μ=-,对该矩阵应用反幂法求得s λ,则与k μ最接近的A 的特征值为:s P λ+重复以上过程39次即可求得ik λ(k=0,1,…39)的值。

③求A 的(谱范数)条件数2cond()A 和行列式det A :在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。

求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()scond A λλ=,max λ和s λ分别为模最大特征值与模最小特征值。

2、程序源代码:#include "Stdio.h"#include "Conio.h"#include "math.h"//****************************************************************************// // 在存储带状矩阵时,下面的几个量在程序中反复用到,为方便编程故把它们定义成宏.// // M :转换后的矩阵的行数,M=R+S+1。

北航数值分析计算实习1

北航数值分析计算实习1

《数值分析》计算实习题目110091013 劳云杰一、算法设计方案根据提示的算法,首先使用幂法求出按模最大的特征值λt1,再根据已求出的λt1用带原点平移的幂法求出另一个特征值λt2,比较两个λ的大小,根据已知条件,可以得出λ1和λ501.至于λs,由于是按模最小的特征值,使用反幂法求之,由于反幂法需要解线性方程组,故对矩阵进行Doolittle分解。

再通过带原点平移的反幂法求跟矩阵的与数最接近的特征值。

对非奇异的矩阵A,根据条件数定义,取λt1/λs的绝对值,两个特征值在之前步骤中均以求得。

由于对矩阵进行了Doolittle分解,所以矩阵的行列式det A可由分解得出的上三角阵U 的对角线上元素相乘求得。

为了使A的所有零元素都不存储,使用书本25页的压缩存储法对A进行存储,在计算时通过函数在数组C中检索A中元素即可。

由于A是501*501矩阵,C应取为5*501矩阵。

由于数据不大,为了方便起见,在程序中取502*502矩阵或者502向量,C也取为6*502矩阵。

程序编写参考《数值分析》颜庆津著和[C数值算法].(美国)W ILLIAM.H.P RESS.扫描版。

二、全部源程序#include <stdio.h>#include <math.h>#define XS 1.0e-12//精度水平void fz_a();//对矩阵A赋值double js(int,int);//在压缩矩阵中检索A的元素double mf(double);//幂法double fmf(double);//反幂法int lu(double);//Doolittle分解int jfc(double[],double[]);//解方程int max(int,int);int min(int,int);double (*u)[502]=new double[502][502];//上三角阵double (*l)[502]=new double[502][502];//单位下三角阵double a[6][502];//压缩存储矩阵int max(int x,int y)//比大小函数×2{ return (x>y?x:y);}int min(int x,int y)//精度关系,比较下标用{ return (x<y?x:y);}int main(){printf("请耐心等待,先看看中间过程吧~\n");int i,k;double ldt1,ldt2,ld1,ld501,lds,mu[40],det;double ld[40];fz_a();//对A赋值ldt1=mf(0);//幂法求模最大的特征值ldt2=mf(ldt1);//以第一次求得的特征值进行平移ld1=ldt1<ldt2?ldt1:ldt2;//大的就是λ501ld501=ldt1<ldt2?ldt2:ldt1;lu(0);lds=fmf(0);//反幂法求λsdet=1;//初始化行列式for(i=1;i<=501;i++)det=det*u[i][i];//用U的对角元素求行列式for(k=1;k<=39;k++){mu[k]=ld1+k*(ld501-ld1)/40;//与数lu(mu[k]);ld[k]=fmf(mu[k]);}printf("\n 列出结果\n");printf("λ1=%1.12e λ501=%1.12e\n",ld1,ld501);printf("λs=%1.12e \n",lds);printf("cond(A)=%1.12e \n",fabs(ldt1/lds));printf("detA=%1.12e \n",det);for(k=1;k<=39;k++)//列出跟与数最接近特征值{printf("λi%d=%1.12e\t",k,ld[k]);if(k%2==0)printf("\n");}//界面友好性delete []u;delete []l;getchar();return 0;}void fz_a()//对A赋值{int i;for(i=3;i<=501;i++)a[1][i]=a[5][502-i]=-0.064;//原A矩阵的cfor(i=2;i<=501;i++)a[2][i]=a[4][502-i]=0.16;//原A矩阵的bfor(i=1;i<=501;i++)a[3][i]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);//原对角线元素}double js(int i,int j)//对压缩矩阵检索A的元素{if(abs(i-j)<=2)return a[i-j+3][j];else return 0;}double mf(double offset)//幂法{int i,x1;double u[502],y[502];double beta=0,prebeta=-1000,yita=0;//用幂法的第一种迭代方法for(i=1;i<=501;i++) //用到了2-范数u[i]=1,y[i]=0;for(int k=1;k<=10000;k++)//对迭代次数进行限制{yita=0;for(i=1;i<=501;i++)yita=sqrt(yita*yita+u[i]*u[i]);for(i=1;i<=501;i++)y[i]=u[i]/yita;for(x1=1;x1<=501;x1++){u[x1]=0;for(int x2=1;x2<=501;x2++)u[x1]=u[x1]+((x1==x2)?(js(x1,x2)-offset):js(x1,x2))*y[x2];}prebeta=beta;beta=0;for(i=1;i<=501;i++)beta=beta+y[i]*u[i];if(fabs((prebeta-beta)/beta)<=XS){printf("offset=%f lb=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};}//满足误差条件后,迭代终止,并输出平移量,误差和迭代次数return(beta+offset);//加上平移量,方便比较}double fmf(double offset)//反幂法{ int i;double u[502],y[502];double beta=0,prebeta=0,yita=0;for(i=1;i<=501;i++)u[i]=1,y[i]=0; //相关量初始化for(int k=1;k<=10000;k++)//限制迭代次数{yita=0;for(i=1;i<=501;i++)yita=sqrt(yita*yita+u[i]*u[i]);for(i=1;i<=501;i++)y[i]=u[i]/yita;jfc(u,y);prebeta=beta;beta=0;for(i=1;i<=501;i++)beta=beta+y[i]*u[i];beta=1/beta;if(fabs((prebeta-beta)/beta)<=XS){printf("offset=%f lb=%f err=%ek=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};}//满足误差条件后,迭代终止,并输出平移量,误差和迭代次数return(beta+offset);}int lu(double offset)//Doolittle分解{int i,j,k,t;double sum;//中间量for(k=1;k<=501;k++)for(j=1;j<=501;j++){u[k][j]=l[k][j]=0;if(k==j)l[k][j]=1;}//对LU矩阵初始化for(k=1;k<=501;k++)//对式(2.12)的程序实现{for(j=k;j<=min(k+2,501);j++){sum=0;for(t=max(1,max(k-2,j-2));t<=(k-1);t++)sum=sum+l[k][t]*u[t][j];//j=k,k+1,……,nu[k][j]=((k==j)?(js(k,j)-offset):js(k,j))-sum;}if(k==501)continue;for(i=k+1;i<=min(k+2,501);i++)//i=k+1,……,n{sum=0;for(t=max(1,max(i-2,k-2));t<=(k-1);t++)sum=sum+l[i][t]*u[t][k];l[i][k]=(((i==k)?(js(i,k)-offset):js(i,k))-sum)/u[k][k];}}return 0;}int jfc(double x[],double b[])//解方程{int i,t;double y[502];double sum;y[1]=b[1];for(i=2;i<=501;i++){sum=0;for(t=max(1,i-2);t<=i-1;t++)sum=sum+l[i][t]*y[t];y[i]=b[i]-sum;}x[501]=y[501]/u[501][501];for(i=500;i>=1;i--){sum=0;for(t=i+1;t<=min(i+2,501);t++)sum=sum+u[i][t]*x[t];x[i]=(y[i]-sum)/u[i][i];}return 0;}三、结果λ1=-1.070011361502e+001λ501=9.724634098777e+000λs=-5.557910794230e-003cond(A)=1.925204273902e+003detA=2.772786141752e+118λi1=-1.018293403315e+001 λi2=-9.585707425068e+000 λi3=-9.172672423928e+000λi4=-8.652284007898e+000 λi5=-8.0934********e+000 λi6=-7.659405407692e+000λi7=-7.119684648691e+000 λi8=-6.611764339397e+000 λi9=-6.0661********e+000λi10=-5.585101052628e+000 λi11=-5.114083529812e+000 λi12=-4.578872176865e+000λi13=-4.096470926260e+000 λi14=-3.554211215751e+000 λi15=-3.0410********e+000 λi16=-2.533970311130e+000 λi17=-2.003230769563e+000 λi18=-1.503557611227e+000 λi19=-9.935586060075e -001 λi20=-4.870426738850e -001 λi21=2.231736249575e -002 λi22=5.324174742069e -001 λi23=1.052898962693e+000 λi24=1.589445881881e+000 λi25=2.060330460274e+000 λi26=2.558075597073e+000 λi27=3.080240509307e+000 λi28=3.613620867692e+000 λi29=4.0913********e+000 λi30=4.603035378279e+000 λi31=5.132924283898e+000 λi32=5.594906348083e+000 λi33=6.080933857027e+000 λi34=6.680354092112e+000 λi35=7.293877448127e+000 λi36=7.717111714236e+000 λi37=8.225220014050e+000 λi38=8.648666065193e+000 λi39=9.254200344575e+000四、讨论迭代初始向量的选取对计算结果的影响1.在反幂法中取迭代向量u[1]=1,u[i]=0,i=2,……,501,最后得出的结果中λs=2.668886923785e -002,cond(A)也随之改变成4.009204556274e+0022.在幂法中取迭代向量u[1]=1,u[i]=2,i=2,……,501,最后得出的结果不变。

北航数值分析大作业一

北航数值分析大作业一

《数值分析B》大作业一SY1103120 朱舜杰一.算法设计方案:1.矩阵A的存储与检索将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] .由于C语言中数组角标都是从0开始的,所以在数组MatrixC[5][501]中检索A的带内元素a ij的方法是:A的带内元素a ij=C中的元素c i-j+2,j2.求解λ1,λ501,λs①首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。

λmin即为λs;如果λmax>0,则λ501=λmax;如果λmax<0,则λ1=λmax。

②使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求出对应的按摸最大的特征值λ,max,如果λmax>0,则λ1=λ,max+p;如果λmax<0,则λ501=λ,max+p。

3.求解A的与数μk=λ1+k(λ501-λ1)/40的最接近的特征值λik (k=1,2,…,39)。

使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λik。

4.求解A的(谱范数)条件数cond(A)2和行列式d etA。

①cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和最小特征值。

②矩阵A的行列式可先对矩阵A进行LU分解后,detA等于U所有对角线上元素的乘积。

二.源程序#include<stdio.h>#include<iostream.h>#include<stdlib.h>#include<math.h>#include<float.h>#include<iomanip.h>#include<time.h>#define E 1.0e-12 /*定义全局变量相对误差限*/int max2(int a,int b) /*求两个整型数最大值的子程序*/{if(a>b)return a;elsereturn b;}int min2(int a,int b) /*求两个整型数最小值的子程序*/{if(a>b)return b;elsereturn a;}int max3(int a,int b,int c) /*求三整型数最大值的子程序*/{ int t;if(a>b)t=a;else t=b;if(t<c) t=c;return(t);}void assignment(double array[5][501]) /*将矩阵A转存为数组C[5][501]*/{int i,j,k;//所有元素归零for(i=0;i<=4;){for(j=0;j<=500;){array[i][j]=0;j++;}i++;}//第0,4行赋值for(j=2;j<=500;){k=500-j;array[0][j]=-0.064;array[4][k]=-0.064;j++;}//第1,3行赋值for(j=1;j<=500;){k=500-j;array[1][j]=0.16;array[3][k]=0.16;j++;}//第2行赋值for(j=0;j<=500;){ k=j;j++;array[2][k]=(1.64-0.024*j)*sin((double)(0.2*j))-0.64*exp((double)(0.1/j));}}double mifa(double u[501],double array[5][501],double p) /*带原点平移的幂法*/ {int i,j; /* u[501]为初始迭代向量*/double a,b,c=0; /* array[5][501]为矩阵A的转存矩阵*/double y[501]; /*p为平移量*/for(;;){a=0;b=0;/*选用第一种迭代格式*///求ηk-1for(i=0;i<=500;i++){a=a+u[i]*u[i];}a=sqrt(a);//求y k-1for(i=0;i<=500;i++){y[i]=u[i]/a;}//求u kfor(i=0;i<=500;i++){u[i]=0;for(j=max2(i-2,0);j<=min2(i+2,500);j++){u[i]+=array[i-j+2][j]*y[j];}u[i]=u[i]-p*y[i]; /*引入平移量*/}//求βkfor(i=0;i<=500;i++){b+=y[i]*u[i];}if(fabs((b-c)/b)<=E) /*达到精度水平,迭代终止*/break;c=b;}return (b+p); /*直接返回A的特征值*/}void chuzhi(double a[]) /*用随机数为初始迭代向量赋值*/ {int i;srand((int)time(0));for(i=0;i<=500;i++){a[i]=(10.0*rand()/RAND_MAX); /*生成0~10的随机数*/}}void chuzhi2(double a[],int j) /*令初始迭代向量为e i*/{int i;for(i=0;i<=500;i++){a[i]=0;}a[j]=1;}void LU(double array[5][501]) /*对矩阵A进行Doolittle分解*/{ /*矩阵A转存在C[5][501]中*/int j,k,t; /*分解结果L,U分别存在C[5][501]的上半部与下半部*/ for(k=0;k<=500;k++){for(j=k;j<=min2((k+2),500);j++){for(t=max3(0,k-2,j-2);t<=(k-1);t++){array[k-j+2][j]-=array[k-t+2][t]*array[t-j+2][j];}}if(k<500)for(j=k+1;j<=min2((k+2),500);j++){for(t=max3(0,k-2,j-2);t<=(k-1);t++){array[j-k+2][k]-=array[j-t+2][t]*array[t-k+2][k];}array[j-k+2][k]=array[j-k+2][k]/array[2][k];}}}double fmifa(double u[501],double array[5][501],double p){ /*带原点平移的反幂法*/ int i,j;double a,b,c=0;double y[501];//引入平移量for(i=0;i<=500;i++){array[2][i]-=p;}//先将矩阵Doolittle分解LU(array);for(;;){a=0;b=0;//求ηk-1for(i=0;i<=500;i++){a=a+u[i]*u[i];}a=sqrt(a);//求y k-1for(i=0;i<=500;i++){y[i]=u[i]/a;}//回带过程,求解u kfor(i=0;i<=500;i++){u[i]=y[i];}for(i=1;i<=500;i++){for(j=max2(0,(i-2));j<=(i-1);j++){u[i]-=array[i-j+2][j]*u[j];}}u[500]=u[500]/array[2][500];for(i=499;i>=0;i--){for(j=i+1;j<=min2((i+2),500);j++){u[i]-=array[i-j+2][j]*u[j];}u[i]=u[i]/array[2][i];}//求βkfor(i=0;i<=500;i++){b+=y[i]*u[i];}if(fabs((b-c)/b)<=E) /*达到精度要求,迭代终止*/break;c=b;}return (p+(1/b)); /*直接返回距离原点P最接近的A的特征值*/ }//主函数main(){ int i;double d1,d501,ds,d,a;double u[501];double MatrixC[5][501];printf(" 《数值分析》计算实习题目第一题\n");printf(" SY1103120 朱舜杰\n");//将矩阵A转存为MatrixCassignment(MatrixC);//用带原点平移的幂法求解λ1,λ501chuzhi(u);d=mifa(u,MatrixC,0);chuzhi(u);a=mifa(u,MatrixC,d);if(d<0){d1=d;d501=a;}else{d501=d;d1=a;}printf("λ1=%.12e\n",d1);printf("λ501=%.12e\n",d501);//用反幂法求λschuzhi(u);ds=fmifa(u,MatrixC,0);printf("λs=%.12e\n",ds);//用带原点平移的反幂法求λikfor(i=1;i<=39;i++){a=d1+(i*(d501-d1))/40;assignment(MatrixC);chuzhi(u);d=fmifa(u,MatrixC,a);printf("与μ%02d=%+.12e最接近的特征值λi%02d=%+.12e\n",i,a,i,d);}//求A的条件数d=fabs((d1/ds));printf("A的(谱范数)条件数cond<A>2=%.12e\n",d);//求detAassignment(MatrixC);LU(MatrixC);a=1;for(i=0;i<=500;i++){a*=MatrixC[2][i];}printf("行列式detA=%.12e\n",a);//测试不同迭代初始向量对λ1计算结果的影响。

北航数值分析大作业一

北航数值分析大作业一

北京航空航天大学数值分析大作业一学院名称自动化专业方向控制工程学号ZY*******学生姓名许阳教师孙玉泉日期2021 年11月26 日设有501501⨯的实对称矩阵A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=5011A a b c b c c b c b a其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1.0-==⋅⋅⋅=--=c b i e i i a ii 。

矩阵A 的特征值为)501,,2,1(⋅⋅⋅=i i λ,并且有||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤1λ,501λ和s λ的值。

A 的与数4015011λλλμ-+=kk 最接近的特征值)39,,2,1(⋅⋅⋅=k k i λ。

A 的(谱范数)条件数2)A (cond 和行列式detA 。

一 方案设计1 求1λ,501λ和s λ的值。

s λ为按模最小特征值,||min ||5011i i s λλ≤≤=。

可使用反幂法求得。

1λ,501λ分别为最大特征值及最小特征值。

可使用幂法求出按模最大特征值,如结果为正,即为501λ,结果为负,那么为1λ。

使用位移的方式求得另一特征值即可。

2 求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,...,2,1(=k k i λ。

题目可看成求以k μ为偏移量后,按模最小的特征值。

即以k μ为偏移量做位移,使用反幂法求出按模最小特征值后,加上k μ,即为所求。

3 求A 的(谱范数)条件数2)(A cond 和行列式detA 。

矩阵A 为非奇异对称矩阵,可知,||)(min max2λλ=A cond(1-1)其中m ax λ为按模最大特征值,min λ为按模最小特征值。

detA 可由LU 分解得到。

因LU 均为三角阵,那么其主对角线乘积即为A 的行列式。

二 算法实现1 幂法使用如下迭代格式:⎪⎪⎩⎪⎪⎨⎧⋅===⋅⋅⋅=------||max |)|sgn(max ||max /),,(111111)0()0(10k k k k k k k k Tn u u Ay u u u y u u u β任取非零向量 (2-1)终止迭代的控制理论使用εβββ≤--||/||1k k k , 实际使用εβββ≤--||/||||||1k k k(2-2)由于不保存A 矩阵中的零元素,只保存主对角元素a[501]及b,c 值。

北航数值分析计算实习第一题编程

北航数值分析计算实习第一题编程

i − t + s +1,t t − k + s +1, k t = max(1,i − r ,k − s )
∑c
c
) / cs +1, k
[i = k + 1, k + 2,⋯ , min( k + r , n); k < n]
(2) 求解 Ly = b,Ux = y (数组 b 先是存放原方程右端向量,后来存放中间向量 y)
0 b a2
b c
c b a3 b c
⋯ ⋯ ⋯ ⋯ ⋯
c b a499 b c
c b a500 b 0
c ⎤ b ⎥ ⎥ a501 ⎥ ⎥ 0 ⎥ 0 ⎥ ⎦
在数组 C 中检索矩阵 A 的带内元素 aij 的方法是: A 的带内元素 aij =C 中的元素 ci − j + s +1, j
2
数值分析计算实习题目一
i −1
bi := bi −
பைடு நூலகம்
i − t + s +1,t t t = max(1,i − r )
∑c
b
(i = 2,3,⋯ , n)
xn := bn / cs +1, n
min( i + s )
xi := (bi −
t = i +1
∑c
i −t + s +1,t t
x ) / cs +1,i
(i = n − 1, n − 2,⋯ ,1)
3、Doolittle 分解求解 n 元带状线性方程组(doolittle()函数)
按照上述对带状矩阵 A 的存储方法和元素 aij 的检索方法,并且把三角分解的结果 ukj 和 lik 分 别存放在 akj 和 aik 原先的存储单元内,那么用 Doolittle 分解法求解 n 元带状线性方程组的算法 可重新表述如下(其中“:=”表示赋值) : (1) 作分解 A = LU 。 对于 k=1,2, ……,n 执行

北航《数值分析》习题

北航《数值分析》习题

北航《数值分析》习题习题一1. 下列各数都是经过四舍五入得到的近似数,试指出它们有几位有效数字以及它们的绝对误差限、相对误差限。

(1);(2);(3);(4);(5);(6);(7);1. (1)5,,;(2)2,,;(3)4,,;(4)5,,;(5)1,,;(6)2,,;(7)6,,2. 为使下列各数的近似值的相对误差限不超过,问各近似值分别应取几位有效数字?2. ;;3. 设均为第1题所给数据,估计下列各近似数的误差限。

(1);(2);(3)3. (1);(2);(3)4. 计算,取,利用下列等价表达式计算,哪一个的结果最好?为什么?(1);(2);(3)(4)4. 第(3)个结果最好。

5. 序列满足递推关系式若(三位有效数字),计算时误差有多大?这个计算过程稳定吗?5. 不稳定。

从计算到时,误差约为6. 求方程的两个根,使其至少具有四位有效数字(要求利用。

6. ,7. 某生产部门生产的一件产品需用七个零件,而这七个零件的质量取决于零件参数的标定值,它们的参数允许有一定的误差:若每一零件的标定值取做区间中点,在生产过程中每一零件的参数都有可能产生误差。

由此将零件分成不同的等级:A,B,C三等,等级由标定值的相对误差限表示,A等为1%,B等为5%,C等为10%。

试确定三个等级的零件分别满足的区间。

8. 将一个八位二进制数(10111101)2转换成十进制数时,可以用公式:(1)用多项式求值的秦九韶方法求C的值;(2)写出将任意一个八位二进制数(b1b2b3b4b5b6b7b8)2转化为十进制数的算法。

9. 利用等式变换使下列表达式的计算结果比较精确。

(1);(2)(3);(4)9. (1);(2);(3);(4)10. 设,求证:(1)(2)利用(1)中的公式正向递推计算时误差增大;反向递推时误差函数减小。

习题二1. 判断下列方程有几个实根,并求出其隔根区间。

(1);(2)(3);(4)1. (1),,;(2);(3),,;(4)为根。

北航数值分析A大作业

北航数值分析A大作业

一、算法设计方案1、解非线性方程组将各拟合节点(x i ,y j )分别带入非线性方程组,求出与(,)i i x y 相对应的数组te[i][j],ue[i][j],求解非线性方程组选择Newton 迭代法,迭代过程中需要求解线性方程组,选择选主元的Doolittle 分解法。

2、二元二次分偏插值对数表z(t,u)进行分片二次代数插值,求得对应(t ij ,u ij )处的值,即为),(j i y x f 的值。

根据给定的数表,可将整个插值区域分成 16 个小 的区域,故先判断?t ij , u ij ? 所在,的区域,再作此区域的插值,计算 z ij ,相应的Lagrange 形式的插值多项式为:°112211(,)()()(,)m n krkrk m r n p t u l t l u f t u ++=-=-=∑∑其中11()m wk w m k ww kt t l t t t +=-≠-=-∏ (k=m-1, m, m+1) °11()n wr w n r ww ry y l u y y +=-≠-=-∏ (r=n-1, n, n+1)3、曲面拟合从k=1开始逐渐增大k 的值,使用最小二乘法曲面拟合法对z=f(x,y)进行拟合,当710-<σ时结束计算。

拟合基函数φr (x)ψs (y)选择为φr (x)=x r ,ψs (y)=y s 。

拟合系数矩阵c 通过连续两次解线性方程组求得。

[]rsc *=C ,11()()T T T --=C B B B UG G G其中011101011[()]1kk r i k x x x x x x x ϕ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦B L LM M M M L ,0011101011[()]1k k s j k y y y y G y y y ψ⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦L LM M M M L [(,)]i j f x y =U4、观察比较计算)5,,2,1,8,,2,1)(,(),,(****⋅⋅⋅=⋅⋅⋅=j i y x p y x f j i j i 的值并输出结果,以观察),(y x p 逼近),(y x f 的效果。

北航数值分析大作业第一题

北航数值分析大作业第一题
数值分析大作业一
1 算法方案 1.1 λ1,λ501,λs 的计算
(1) (2) (3) (4) (5) 将矩阵 A[501][501]以压缩存储后的形式 C[5][501]输入 使用一次幂法得到按模最大的特征值 矩阵向左平移 λm 距离(A-λmI) ,再使用一次幂法得到按模最大的特征值 s,则 λm1=s-λm1 比较 λm1 和 λm2 的大小与正负,得到 λ 和 λ501 对 A 使用一次反幂法得到按模最小的特征值 λs
while (e>=pow(10,-12)); return 1/be;//返回 1/be2 作为矩阵 m[5][501]的按模最小向量 } //333333333333333333333333333333333333333333333333333333333333333333333333 33333333333333333333333333333333333333333333333333333333333333333333333 double det(double c[1+r+s][q]) { int max3(int a,int b,int c); int fmax2(int a,int b); int fmin2(int a,int b); int i,j,k,t; double sum,det=1; for(k=1;k<=q;k++) { for(j=k;j<=fmin2(k+s,q);j++)//求 ukj { sum=0; for(t=max3(1,k-r,j-s);t<=k-1;t++) { sum=sum+c[k-t+s][t-1]*c[t-j+s][j-1]; } c[k-j+s][j-1]=c[k-j+s][j-1]-sum; }
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数值分析B》大作业一4系ZY1104219 许柱山一.算法设计方案:1 .首先应该创建原矩阵,但由于题目所给的矩阵是501*501的大型矩阵,计算机在计算时可能会运行不起来。

而我们可以发现原矩阵A是一个带状矩阵,因此可以利用这一特点将其压缩存储。

2.由于λ1‹λ2‹…‹λ501,所以在以所有特征值建立的数轴上,λ1、λ501位于数轴的两端,两者之一必为按模最大。

利用幂法,可以求出来按模最大的特征值,但该值可能为λ1也可能为λ501;3.上步求出按模最大的特征值λM后,将原矩阵平移λM,再利用幂法求一次平移后矩阵的按模最大的特征值,即是数轴上另一端点值λM′。

4.比较λM与λM+λM′的大小,大的为矩阵A的最大特征值,小的为A矩阵的最小的特征值;5.利用反幂法,求矩阵A的按模最小的特征值。

但是反幂法中要用到线性方程组的求解,而原矩阵A又是带状矩阵,采用LU分解。

所以在这之前要定义一个LU分解子程序,将A矩阵分解为单位下三角矩阵L和上三角矩阵U的乘积。

6.先利用循环求出k从1到39变化的uk的值。

当循环次数为39时,在每次循环时都将压缩后的矩阵A的第三行减去相应的,然后调用LU分解的子程序,利用反幂法求出与uk最接近的特征值,该特征值等于利用反幂法求出的值与uk 的和。

7.A的谱范数条件数等于按模最大的特征值的绝对值与按模最小的特征值的绝对值之比,按模最大的特征值与按模最小的特征值已分别在前面求出。

6.A的行列式的值就是矩阵A进行LU分解后U的对角线元素的乘积。

先把带状线性矩阵A[501][501]转存为一个矩阵c[5][501].二.源程序#include<stdio.h>#include<iostream.h>#include<stdlib.h>#include<math.h>#include<float.h>#include<iomanip.h>/*****************全局变量、函数声明*************/#define N 501#define EPSI 1.0e-12#define r 2#define s 2double c[5][N]; /*A非零元素的压缩存储矩阵*/double fuzhi(); /*对A赋值函数*/void LUDet(); /*利用LU分解求解矩阵A的行列式*/int int_max2(int a,int b); /*求两个数字中最大值的*/int int_min2(int a,int b); /*求两个数字中最小值的*/int int_max3(int a,int b,int c);/*求三个数字中最大值的*/double mifa(); /*幂法计算矩阵A按模最大的特征值*/ double fmifa(); /*反幂法求矩阵A按模最大的特征值*///*主程序*//void main(){int i;/*利用幂法计算矩阵A的最大特征值和最小特征值*/double a1,a2;fuzhi();a1=mifa();if (a1<0)cout<<"矩阵A最小的特征值lambda1:"<<endl;else if(a1>=0)cout<<"矩阵A最大的特征值lambda501:"<<endl;cout<<setiosflags(ios::scientific)<<setprecision(12)<<a1<<endl;for(i=0;i<N;i++)for(i=0;i<N;i++)c[2][i]=c[2][i]-a1;a2=mifa()+a1;if (a2<0)cout<<"矩阵A最小的特征值lambda1:"<<endl;else if(a2>=0)cout<<"矩阵A最大的特征值lambda501:"<<endl;cout<<setiosflags(ios::scientific)<<setprecision(12)<<a2<<endl;/*利用反幂法计算矩阵A的按模最小特征值*/double a3;fuzhi();a3=fmifa();cout<<"矩阵A按模最小的特征值lambdas:"<<endl;cout<<setiosflags(ios::scientific)<<setprecision(12)<<a3<<endl;/*计算最接近特征值*/fuzhi();double u[39]={0};cout<<"与数uk最接近的特征值:"<<endl;for(i=0;i<39;i++){u[i]=a1+(i+1)*(a2-a1)/40;c[2][i]=c[2][i]-u[i];u[i]=fmifa()+u[i];cout<<"lambda"<<"[ik]"<<"("<<i+1<<")"<<" ";cout<<u[i]<<endl;}/*计算矩阵A的条件数,取2范数*/double cond_A;if(a1>0)cond_A=fabs(a1/a3);else if(a1<0)cond_A=fabs(a2/a3);cout<<"矩阵A的条件数:"<<endl;cout<<setiosflags(ios::scientific)<<setprecision(12)<<cond_A<<endl;/*利用LU分解计算矩阵A的行列式*/double det=1.0;fuzhi();LUDet(); //对矩阵A作LU分解for(i=0;i<N;i++)det*=c[2][i];cout<<"矩阵A的行列式值:"<<endl;cout<<setprecision(12)<<det<<endl;}int int_max2(int a,int b){return(a>b?a:b); /*求两个数字中最大值的子程序*/ }int int_min2(int a,int b){return(a<b?a:b); /*求两个数字中最小值的子程序*/ }int int_max3(int a,int b,int c){ int t;if(a>b)t=a; /*求三个数字中最大值的子程序*/ else t=b;if(t<c) t=c;return(t);}/*幂法求最大特征值*/double mifa(){double u[N],unitu[N];double sum,lengthu,beta,temp;int i,j;beta=0.0;for(i=0;i<N;i++)u[i]=0.5; /*迭代初始向量*/do{temp=beta;sum=0;for(i=0;i<N;i++)sum=sum+u[i]*u[i];lengthu=sqrt(sum);for(i=0;i<N;i++)unitu[i]=u[i]/lengthu;for(i=1;i<=N;i++){sum=0;for(j=int_max2(i-2,1);j<=int_min2(i+2,N);j++)sum=sum+c[i-j+2][j-1]*unitu[j-1];u[i-1]=sum;}sum=0;for(i=0;i<N;i++)sum=sum+unitu[i]*u[i];beta=sum;}while(fabs(beta-temp)>=EPSI);return(beta);}/*反幂法求最小特征值*/double fmifa(){double u[N],unitu[N],unitu_u[N];double sum,lengthu,beta,temp;int i,j;beta=0.0;for(i=0;i<N;i++)u[i]=0.5; /*迭代初始向量*/ do{fuzhi();temp=beta;sum=0;for(i=0;i<N;i++)sum=sum+u[i]*u[i];lengthu=sqrt(sum);for(i=0;i<N;i++){unitu[i]=u[i]/lengthu;unitu_u[i]=unitu[i];}LUDet();for(i=2;i<=N;i++){sum=0;for(j=int_max2(i-2,1);j<=i-1;j++)sum+=c[i-j+2][j-1]*unitu_u[j-1];unitu_u[i-1]-=sum;}u[N-1]=unitu_u[N-1]/c[2][N-1];for(i=N-1;i>=1;i--){sum=0;for(j=i+1;j<=int_min2(i+2,N);j++)sum+=c[i-j+2][j-1]*u[j-1];u[i-1]=(unitu_u[i-1]-sum)/c[2][i-1];}sum=0;for(i=0;i<N;i++)sum=sum+unitu[i]*u[i];beta=sum;}while(fabs(beta-temp)>=EPSI);beta=1/beta;return(beta);}double fuzhi(){int i,j;for(i=0;i<5;i++)for(j=0;j<N;j++){if(i==0||i==4){c[i][j]=-0.064;}else if (i==1||i==3){c[i][j]=0.16;}else if(i==2){c[i][j]=(1.64-0.024*(j+1))*sin(0.2*(j+1))-0.64*exp(0.1/(j+1));}}return(c[i][j]);}/*LU三角分解*/void LUDet(){double sum;int k,i,j;for(k=1;k<=N;k++){ for(j=k;j<=int_min2(k+s,N);j++){sum=0;for(i=int_max3(1,k-r,j-s);i<=k-1;i++)sum+=c[k-i+s][i-1]*c[i-j+s][j-1];c[k-j+s][j-1]-=sum;}for(j=k+1;j<=int_min2(k+r,N);j++){sum=0;for(i=int_max3(1,j-r,k-s);i<=k-1;i++)sum+=c[j-i+s][i-1]*c[i-k+s][k-1];c[j-k+s][k-1]=(c[j-k+s][k-1]-sum)/c[s][k-1];}}}三.程序结果:四.分析初始向量选择对计算结果的影响矩阵的初始向量选择,对结果的影响很大,选择不同的初始向量可能会得到不同阶的特征值。

相关文档
最新文档