北航数值分析大作业一

合集下载

北航数值分析大作业 第一题 幂法与反幂法

北航数值分析大作业 第一题 幂法与反幂法

数 值 分 析(B ) 大 作 业(一)姓名: 学号: 电话:1、算法设计:①求1λ、501λ和s λ的值:s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。

1λ、501λ:若矩阵A 的特征值满足关系 1n λλ<<且1n λλ≠,要求1λ、及501λ时,可按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。

b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m BA I λ=+,对矩阵B 用反幂法求得B 的按模最小特征值2m λ。

c . 321m m m λλλ=-则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。

②求和A 的与数5011140k k λλμλ-=+最接近的特征值ik λ(k=0,1,…39):求矩阵A 的特征值中与P 最接近的特征值的大小,采用原点平移的方法:先求矩阵 B=A-PI 对应的按模最小特征值k β,则k β+P 即为矩阵A 与P 最接近的特征值。

在本次计算实习中则是先求平移矩阵k B A I μ=-,对该矩阵应用反幂法求得s λ,则与k μ最接近的A 的特征值为:s P λ+重复以上过程39次即可求得ik λ(k=0,1,…39)的值。

③求A 的(谱范数)条件数2cond()A 和行列式det A :在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。

求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()scond A λλ=,max λ和s λ分别为模最大特征值与模最小特征值。

2、程序源代码:#include "Stdio.h"#include "Conio.h"#include "math.h"//****************************************************************************// // 在存储带状矩阵时,下面的几个量在程序中反复用到,为方便编程故把它们定义成宏.// // M :转换后的矩阵的行数,M=R+S+1。

北航数值分析实验报告

北航数值分析实验报告

北航‎数值‎分析‎实验‎报告‎‎篇一‎:‎北航‎数值‎分析‎报告‎第一‎大题‎《‎数值‎分析‎》计‎算实‎习报‎告‎第一‎大题‎学‎号:‎D‎Y1‎30‎5‎姓名‎:‎指导‎老师‎:‎一、‎题目‎要求‎已‎知5‎01‎*5‎01‎阶的‎带状‎矩阵‎A,‎其特‎征值‎满足‎?1‎?‎2‎..‎.‎?5‎01‎。

试‎求:‎1‎、?‎1,‎?5‎01‎和?‎s的‎值;‎‎2、‎A的‎与数‎?k‎??‎1?‎k‎?5‎01‎??‎1‎40‎最‎接近‎的特‎征值‎?i‎k(‎k=‎1,‎2,‎..‎.,‎39‎);‎‎3、‎A的‎(谱‎范数‎)条‎件数‎c n‎d(‎A)‎2和‎行列‎式d‎e t‎A。

‎‎二、‎算法‎设计‎方案‎题‎目所‎给的‎矩阵‎阶数‎过大‎,必‎须经‎过去‎零压‎缩后‎进行‎存储‎和运‎算,‎本算‎法中‎压缩‎后的‎矩阵‎A1‎如下‎所示‎。

‎?0‎?0‎?A‎1?‎?a‎1‎??‎b?‎?c‎0‎b a‎2b‎c‎c b‎b c‎.‎..‎..‎..‎..‎..‎.‎c b‎b c‎c‎b a‎50‎0b‎0‎a ‎3.‎..‎a4‎99‎c‎?‎b?‎?a‎50‎1?‎?‎0?‎0?‎?‎由矩‎阵A‎的特‎征值‎满足‎的条‎件可‎知‎?1‎与?‎50‎1之‎间必‎有一‎个最‎大,‎则采‎用幂‎法求‎出的‎一‎个特‎征值‎必为‎其中‎的一‎个:‎当‎所求‎得的‎特征‎值为‎正数‎,则‎为?‎50‎1;‎否则‎为?‎1。

‎在求‎得?‎1与‎?‎50‎1其‎中的‎一个‎后,‎采用‎带位‎移的‎幂法‎则可‎求出‎它们‎中的‎另一‎个,‎且位‎移量‎即为‎先求‎出的‎特‎征值‎的值‎。

用‎反幂‎法求‎得的‎特征‎值必‎为?‎s。

‎由条‎件数‎的性‎质可‎得,‎c n‎d(‎A)‎2为‎模最‎大的‎特征‎值与‎模最‎小的‎特征‎值之‎比的‎模,‎因此‎,求‎出?‎1,‎?5‎01‎和?‎s的‎值后‎,则‎可以‎求得‎c n‎d(‎A)‎2。

数值分析大作业一

数值分析大作业一

数值分析大作业一一、算法设计方案1、求λ1和λ501的值:思路:采用幂法求出按模最大特征值λmax,该值必为λ1或λ501,若λmax小于0,则λmax=λ1;否则λmax=λ501。

再经过原点平移,使用幂法迭代出矩阵A-λmax I的特征值,此时求出的按模最大特征值即为λ1和λ501的另一个值。

2、求λs的值:采用反幂法求出按模最小的特征值λmin即为λs,其中的方程组采用LU分解法进行求解。

3、求与μk最接近的特征值:对矩阵A采用带原点平移的反幂法求解最小特征值,其中平移量为:μk。

4、A的条件数cond(A)=| λmax/λmin|;5、A的行列式的值:先将A进行LU分解,再求U矩阵对角元素的乘积即为A 行列式的值。

二、源程序#include<iostream>#include<iomanip>#include<math.h>#define N 501#define E 1.0e-12 //定义精度常量#define r 2#define s 2using namespace std;double a[N];double cc[5][N];void init();double mifa();double fmifa();int max(int aa,int bb);int min(int aa,int bb);int max_3(int aa,int bb,int cc);void LU();void main(){double a1,a2,d1,d501=0,ds,det=1,miu[39],lamta,cond;int i,k;init();/*************求λ1和λ501********************/a1=mifa();if(a1<0)d1=a1; //若小于0则表示λ1的值elsed501=a1; //若大于0则表示λ501的值for(i=0;i<N;i++)a[i]=a[i]-a1;a2=mifa()+a1;if(a2<0)d1=a2; //若小于0则表示λ1的值elsed501=a2; //若大于0则表示λ501的值cout<<"λ1="<<setiosflags(ios::scientific)<<setprecision(12)<<d1<<"\t";cout<<"λ501="<<setiosflags(ios::scientific)<<setprecision(12)<<d501<<endl;/**************求λs*****************/init();ds=fmifa();cout<<"λs="<<setiosflags(ios::scientific)<<setprecision(12)<<ds<<endl;/**************求与μk最接近的特征值λik**************/cout<<"与μk最接近的特征值λik:"<<endl;for(k=0;k<39;k++){miu[k]=d1+(k+1)*(d501-d1)/40;init();for(i=0;i<N;i++)a[i]=a[i]-miu[k];lamta=fmifa()+miu[k];cout<<"λi"<<k+1<<"\t\t"<<setiosflags(ios::scientific)<<setprecision(12)<<lamta<<en dl;}/**************求A的条件数**************/cout<<"矩阵A的条件式";cond=abs(max(abs(d1),abs(d501))/ds);cout<<"cond="<<setiosflags(ios::scientific)<<setprecision(12)<<cond<<endl;/**************求A的行列式**************/cout<<"矩阵A的行列式";init();LU();for(i=0;i<N;i++){det*=cc[2][i];}cout<<"det="<<setiosflags(ios::scientific)<<setprecision(12)<<det<<endl;system("pause");}/**************初始化函数,给a[N]赋值*************/void init(){int i;for(i=1;i<=501;i++)a[i-1]=(1.64-0.024*i)*sin((double)(0.2*i))-0.64*exp((double)(0.1/i)); }/**************幂法求最大绝对特征值**************/double mifa(){int i,k=0;double u[N],y[N]={0},b=0.16,c=-0.064,Beta_=0,error;for(i=0;i<501;i++)u[i]=1; //令u[N]=1for(k=1;k<2000;k++) //控制最大迭代次数为2000{/***求y(k-1)***/double sum_u=0,gh_sum_u;for(i=0;i<N;i++){sum_u+=u[i]*u[i]; }gh_sum_u=sqrt(sum_u);for(i=0;i<N;i++){y[i]=u[i]/gh_sum_u;}/****求新的uk****/u[0]=a[0]*y[0]+b*y[1]+c*y[2];u[1]=b*y[0]+a[1]*y[1]+b*y[2]+c*y[3]; //前两列和最后两列单独拿出来求中D间的循环求for(i=2;i<N-2;i++){u[i]=c*y[i-2]+b*y[i-1]+a[i]*y[i]+b*y[i+1]+c*y[i+2];}u[N-2]=c*y[N-4]+b*y[N-3]+a[N-2]*y[N-2]+b*y[N-1];u[N-1]=c*y[N-3]+b*y[N-2]+a[N-1]*y[N-1];/***求beta***/double Beta=0;for(i=0;i<N;i++){Beta+=y[i]*u[i];}//cout<<"Beta"<<k<<"="<<Beta<<"\t"; 输出每次迭代的beta /***求误差***/error=abs(Beta-Beta_)/abs(Beta);if(error<=E) //若迭代误差在精度水平内则可以停止迭代{return Beta;} //控制显示位数Beta_=Beta; //第个eta的值都要保存下来,为了与后个值进行误差计算 }if(k==2000){cout<<"error"<<endl;return 0;} //若在最大迭代次数范围内都不能满足精度要求说明不收敛}/**************反幂法求最小绝对特¬征值**************/double fmifa(){int i,k,t;double u[N],y[N]={0},yy[N]={0},b=0.16,c=-0.064,Beta_=0,error;for(i=0;i<501;i++)u[i]=1; //令u[N]=1for(k=1;k<2000;k++){double sum_u=0,gh_sum_u;for(i=0;i<N;i++){sum_u+=u[i]*u[i]; }gh_sum_u=sqrt(sum_u);for(i=0;i<N;i++){y[i]=u[i]/gh_sum_u;yy[i]=y[i]; //用重新赋值,避免求解方程组的时候改变y的值}/****LU分解法解方程组Au=y,求新的***/LU();for(i=2;i<=N;i++){double temp_b=0;for(t=max(1,i-r);t<=i-1;t++)temp_b+=cc[i-t+s][t-1]*yy[t-1];yy[i-1]=yy[i-1]-temp_b;}u[N-1]=yy[N-1]/cc[s][N-1];for(i=N-1;i>=1;i--){double temp_u=0;for(t=i+1;t<=min(i+s,N);t++)temp_u+=cc[i-t+s][t-1]*u[t-1];u[i-1]=(yy[i-1]-temp_u)/cc[s][i-1];}double Beta=0;for(i=0;i<N;i++){Beta+=y[i]*u[i];}error=abs(Beta-Beta_)/abs(Beta);if(error<=E){return (1/Beta);}Beta_=Beta;}if(k==2000){cout<<"error"<<endl;return 0;} }/**************求两数最大值的子程序**************/int max(int aa,int bb){return(aa>bb?aa:bb);}/**************求两数最小值的子程序**************/int min(int aa,int bb){return(aa<bb?aa:bb);}/**************求三数最大值的子程序**************/int max_3(int aa,int bb,int cc){ int tt;if(aa>bb)tt=aa;else tt=bb;if(tt<cc) tt=cc;return(tt);}/**************LU分解**************/void LU(){int i,j,k,t;double b=0.16,c=-0.064;/**赋值压缩后矩阵cc[5][501]**/for(i=2;i<N;i++)cc[0][i]=c;for(i=1;i<N;i++)cc[1][i]=b;for(i=0;i<N;i++)cc[2][i]=a[i];for(i=0;i<N-1;i++)cc[3][i]=b;for(i=0;i<N-2;i++)cc[4][i]=c;for(k=1;k<=N;k++){for(j=k;j<=min(k+s,N);j++){double temp=0;for(t=max_3(1,k-r,j-s);t<=k-1;t++)temp+=cc[k-t+s][t-1]*cc[t-j+s][j-1];cc[k-j+s][j-1]=cc[k-j+s][j-1]-temp;}//if(k<500){for(i=k+1;i<=min(k+r,N);i++){double temp2=0;for(t=max_3(1,i-r,k-s);t<=k-1;t++)temp2+=cc[i-t+s][t-1]*cc[t-k+s][k-1];cc[i-k+s][k-1]=(cc[i-k+s][k-1]-temp2)/cc[s][k-1];}}}}三、程序结果。

数值分析大作业

数值分析大作业

数值分析上机作业(一)一、算法的设计方案1、幂法求解λ1、λ501幂法主要用于计算矩阵的按模最大的特征值和相应的特征向量,即对于|λ1|≥|λ2|≥.....≥|λn|可以采用幂法直接求出λ1,但在本题中λ1≤λ2≤……≤λ501,我们无法判断按模最大的特征值。

但是由矩阵A的特征值条件可知|λ1|和|λ501|之间必然有一个是最大的,通过对矩阵A使用幂法迭代一定次数后得到满足精度ε=10−12的特征值λ0,然后在对矩阵A做如下的平移:B=A-λ0I由线性代数(A-PI)x=(λ-p)x可得矩阵B的特征值为:λ1-λ0、λ2-λ0…….λ501-λ0。

对B矩阵采用幂法求出B矩阵按模最大的特征值为λ∗=λ501-λ0,所以λ501=λ∗+λ0,比较λ0与λ501的大小,若λ0>λ501则λ1=λ501,λ501=λ0;若λ0<λ501,则令t=λ501,λ1=λ0,λ501=t。

求矩阵M按模最大的特征值λ的具体算法如下:任取非零向量u0∈R nηk−1=u T(k−1)∗u k−1y k−1=u k−1ηk−1u k=Ay k−1βk=y Tk−1u k(k=1,2,3……)当|βk−βk−1||βk|≤ε=10−12时,迭终终止,并且令λ1=βk2、反幂法计算λs和λik由已知条件可知λs是矩阵A 按模最小的特征值,可以应用反幂法直接求解出λs。

使用带偏移量的反幂法求解λik,其中偏移量为μk=λ1+kλ501−λ140(k=1,2,3…39),构造矩阵C=A-μk I,矩阵C的特征值为λik−μk,对矩阵C使用反幂法求得按模最小特征值λ0,则有λik=1λ0+μk。

求解矩阵M按模最小特征值的具体算法如下:任取非零向量u 0∈R n ηk−1= u T (k−1)∗u k−1y k−1=u k−1ηk−1 Au k =y k−1βk =y T k−1u k (k=1,2,3……)在反幂法中每一次迭代都要求解线性方程组Au k =y k−1,当K 足够大时,取λn =1βk 。

北航数值分析大作业一

北航数值分析大作业一

《数值分析B》大作业一SY1103120 朱舜杰一.算法设计方案:1.矩阵A的存储与检索将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] .由于C语言中数组角标都是从0开始的,所以在数组MatrixC[5][501]中检索A的带内元素a ij的方法是:A的带内元素a ij=C中的元素c i-j+2,j2.求解λ1,λ501,λs①首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。

λmin即为λs;如果λmax>0,则λ501=λmax;如果λmax<0,则λ1=λmax。

②使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求出对应的按摸最大的特征值λ,max,如果λmax>0,则λ1=λ,max+p;如果λmax<0,则λ501=λ,max+p。

3.求解A的与数μk=λ1+k(λ501-λ1)/40的最接近的特征值λik (k=1,2,…,39)。

使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λik。

4.求解A的(谱范数)条件数cond(A)2和行列式d etA。

①cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和最小特征值。

②矩阵A的行列式可先对矩阵A进行LU分解后,detA等于U所有对角线上元素的乘积。

二.源程序#include<stdio.h>#include<iostream.h>#include<stdlib.h>#include<math.h>#include<float.h>#include<iomanip.h>#include<time.h>#define E 1.0e-12 /*定义全局变量相对误差限*/int max2(int a,int b) /*求两个整型数最大值的子程序*/{if(a>b)return a;elsereturn b;}int min2(int a,int b) /*求两个整型数最小值的子程序*/{if(a>b)return b;elsereturn a;}int max3(int a,int b,int c) /*求三整型数最大值的子程序*/{ int t;if(a>b)t=a;else t=b;if(t<c) t=c;return(t);}void assignment(double array[5][501]) /*将矩阵A转存为数组C[5][501]*/{int i,j,k;//所有元素归零for(i=0;i<=4;){for(j=0;j<=500;){array[i][j]=0;j++;}i++;}//第0,4行赋值for(j=2;j<=500;){k=500-j;array[0][j]=-0.064;array[4][k]=-0.064;j++;}//第1,3行赋值for(j=1;j<=500;){k=500-j;array[1][j]=0.16;array[3][k]=0.16;j++;}//第2行赋值for(j=0;j<=500;){ k=j;j++;array[2][k]=(1.64-0.024*j)*sin((double)(0.2*j))-0.64*exp((double)(0.1/j));}}double mifa(double u[501],double array[5][501],double p) /*带原点平移的幂法*/ {int i,j; /* u[501]为初始迭代向量*/double a,b,c=0; /* array[5][501]为矩阵A的转存矩阵*/double y[501]; /*p为平移量*/for(;;){a=0;b=0;/*选用第一种迭代格式*///求ηk-1for(i=0;i<=500;i++){a=a+u[i]*u[i];}a=sqrt(a);//求y k-1for(i=0;i<=500;i++){y[i]=u[i]/a;}//求u kfor(i=0;i<=500;i++){u[i]=0;for(j=max2(i-2,0);j<=min2(i+2,500);j++){u[i]+=array[i-j+2][j]*y[j];}u[i]=u[i]-p*y[i]; /*引入平移量*/}//求βkfor(i=0;i<=500;i++){b+=y[i]*u[i];}if(fabs((b-c)/b)<=E) /*达到精度水平,迭代终止*/break;c=b;}return (b+p); /*直接返回A的特征值*/}void chuzhi(double a[]) /*用随机数为初始迭代向量赋值*/ {int i;srand((int)time(0));for(i=0;i<=500;i++){a[i]=(10.0*rand()/RAND_MAX); /*生成0~10的随机数*/}}void chuzhi2(double a[],int j) /*令初始迭代向量为e i*/{int i;for(i=0;i<=500;i++){a[i]=0;}a[j]=1;}void LU(double array[5][501]) /*对矩阵A进行Doolittle分解*/{ /*矩阵A转存在C[5][501]中*/int j,k,t; /*分解结果L,U分别存在C[5][501]的上半部与下半部*/ for(k=0;k<=500;k++){for(j=k;j<=min2((k+2),500);j++){for(t=max3(0,k-2,j-2);t<=(k-1);t++){array[k-j+2][j]-=array[k-t+2][t]*array[t-j+2][j];}}if(k<500)for(j=k+1;j<=min2((k+2),500);j++){for(t=max3(0,k-2,j-2);t<=(k-1);t++){array[j-k+2][k]-=array[j-t+2][t]*array[t-k+2][k];}array[j-k+2][k]=array[j-k+2][k]/array[2][k];}}}double fmifa(double u[501],double array[5][501],double p){ /*带原点平移的反幂法*/ int i,j;double a,b,c=0;double y[501];//引入平移量for(i=0;i<=500;i++){array[2][i]-=p;}//先将矩阵Doolittle分解LU(array);for(;;){a=0;b=0;//求ηk-1for(i=0;i<=500;i++){a=a+u[i]*u[i];}a=sqrt(a);//求y k-1for(i=0;i<=500;i++){y[i]=u[i]/a;}//回带过程,求解u kfor(i=0;i<=500;i++){u[i]=y[i];}for(i=1;i<=500;i++){for(j=max2(0,(i-2));j<=(i-1);j++){u[i]-=array[i-j+2][j]*u[j];}}u[500]=u[500]/array[2][500];for(i=499;i>=0;i--){for(j=i+1;j<=min2((i+2),500);j++){u[i]-=array[i-j+2][j]*u[j];}u[i]=u[i]/array[2][i];}//求βkfor(i=0;i<=500;i++){b+=y[i]*u[i];}if(fabs((b-c)/b)<=E) /*达到精度要求,迭代终止*/break;c=b;}return (p+(1/b)); /*直接返回距离原点P最接近的A的特征值*/ }//主函数main(){ int i;double d1,d501,ds,d,a;double u[501];double MatrixC[5][501];printf(" 《数值分析》计算实习题目第一题\n");printf(" SY1103120 朱舜杰\n");//将矩阵A转存为MatrixCassignment(MatrixC);//用带原点平移的幂法求解λ1,λ501chuzhi(u);d=mifa(u,MatrixC,0);chuzhi(u);a=mifa(u,MatrixC,d);if(d<0){d1=d;d501=a;}else{d501=d;d1=a;}printf("λ1=%.12e\n",d1);printf("λ501=%.12e\n",d501);//用反幂法求λschuzhi(u);ds=fmifa(u,MatrixC,0);printf("λs=%.12e\n",ds);//用带原点平移的反幂法求λikfor(i=1;i<=39;i++){a=d1+(i*(d501-d1))/40;assignment(MatrixC);chuzhi(u);d=fmifa(u,MatrixC,a);printf("与μ%02d=%+.12e最接近的特征值λi%02d=%+.12e\n",i,a,i,d);}//求A的条件数d=fabs((d1/ds));printf("A的(谱范数)条件数cond<A>2=%.12e\n",d);//求detAassignment(MatrixC);LU(MatrixC);a=1;for(i=0;i<=500;i++){a*=MatrixC[2][i];}printf("行列式detA=%.12e\n",a);//测试不同迭代初始向量对λ1计算结果的影响。

北航数值分析大作业一

北航数值分析大作业一

北京航空航天大学数值分析大作业一学院名称自动化专业方向控制工程学号ZY*******学生姓名许阳教师孙玉泉日期2021 年11月26 日设有501501⨯的实对称矩阵A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=5011A a b c b c c b c b a其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1.0-==⋅⋅⋅=--=c b i e i i a ii 。

矩阵A 的特征值为)501,,2,1(⋅⋅⋅=i i λ,并且有||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤1λ,501λ和s λ的值。

A 的与数4015011λλλμ-+=kk 最接近的特征值)39,,2,1(⋅⋅⋅=k k i λ。

A 的(谱范数)条件数2)A (cond 和行列式detA 。

一 方案设计1 求1λ,501λ和s λ的值。

s λ为按模最小特征值,||min ||5011i i s λλ≤≤=。

可使用反幂法求得。

1λ,501λ分别为最大特征值及最小特征值。

可使用幂法求出按模最大特征值,如结果为正,即为501λ,结果为负,那么为1λ。

使用位移的方式求得另一特征值即可。

2 求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,...,2,1(=k k i λ。

题目可看成求以k μ为偏移量后,按模最小的特征值。

即以k μ为偏移量做位移,使用反幂法求出按模最小特征值后,加上k μ,即为所求。

3 求A 的(谱范数)条件数2)(A cond 和行列式detA 。

矩阵A 为非奇异对称矩阵,可知,||)(min max2λλ=A cond(1-1)其中m ax λ为按模最大特征值,min λ为按模最小特征值。

detA 可由LU 分解得到。

因LU 均为三角阵,那么其主对角线乘积即为A 的行列式。

二 算法实现1 幂法使用如下迭代格式:⎪⎪⎩⎪⎪⎨⎧⋅===⋅⋅⋅=------||max |)|sgn(max ||max /),,(111111)0()0(10k k k k k k k k Tn u u Ay u u u y u u u β任取非零向量 (2-1)终止迭代的控制理论使用εβββ≤--||/||1k k k , 实际使用εβββ≤--||/||||||1k k k(2-2)由于不保存A 矩阵中的零元素,只保存主对角元素a[501]及b,c 值。

北航数值分析计算实习第一题编程

北航数值分析计算实习第一题编程

i − t + s +1,t t − k + s +1, k t = max(1,i − r ,k − s )
∑c
c
) / cs +1, k
[i = k + 1, k + 2,⋯ , min( k + r , n); k < n]
(2) 求解 Ly = b,Ux = y (数组 b 先是存放原方程右端向量,后来存放中间向量 y)
0 b a2
b c
c b a3 b c
⋯ ⋯ ⋯ ⋯ ⋯
c b a499 b c
c b a500 b 0
c ⎤ b ⎥ ⎥ a501 ⎥ ⎥ 0 ⎥ 0 ⎥ ⎦
在数组 C 中检索矩阵 A 的带内元素 aij 的方法是: A 的带内元素 aij =C 中的元素 ci − j + s +1, j
2
数值分析计算实习题目一
i −1
bi := bi −
பைடு நூலகம்
i − t + s +1,t t t = max(1,i − r )
∑c
b
(i = 2,3,⋯ , n)
xn := bn / cs +1, n
min( i + s )
xi := (bi −
t = i +1
∑c
i −t + s +1,t t
x ) / cs +1,i
(i = n − 1, n − 2,⋯ ,1)
3、Doolittle 分解求解 n 元带状线性方程组(doolittle()函数)
按照上述对带状矩阵 A 的存储方法和元素 aij 的检索方法,并且把三角分解的结果 ukj 和 lik 分 别存放在 akj 和 aik 原先的存储单元内,那么用 Doolittle 分解法求解 n 元带状线性方程组的算法 可重新表述如下(其中“:=”表示赋值) : (1) 作分解 A = LU 。 对于 k=1,2, ……,n 执行

数值分析第一次大作业

数值分析第一次大作业

《数值分析》计算实习报告第一题院系:机械工程及自动化学院_学号: _____姓名: _ ______2017年11月7日一、算法设计方案1、求λ1,λ501和λs 的值1)利用幂法计算出矩阵A 按模最大的特征值,设其为λm 。

2)令矩阵B =A −λm I (I 为单位矩阵),同样利用幂法计算出矩阵B 按模最大的特征值λm ′。

3)令λm ′′=λm ′+λm 。

由计算过程可知λm 和λm ′′分别为矩阵A 所有特征值按大小排序后,序列两端的值。

即,λ1=min⁡{λm ,λm ′′},λ501=max⁡{λm ,λm ′′}。

4) 利用反幂法计算λs 。

其中,反幂法每迭代一次都要求解线性方程组1k k Au y -=,由于矩阵A 为带状矩阵,故可用三角分解法解带状线性方程组的方法求解得到k u 。

2、求A 的与数μk =λ1+k λ501−λ140最接近的特征值λi k (k =1,2, (39)1) 令矩阵D k =A −μk I ,利用反幂法计算出矩阵D k 按模最小的特征值λi k ′,则λi k =λi k ′+μk 。

3、求A 的(谱范数)条件数cond(A )2和行列式det A1) cond(A)2=|λm λs |,前文已算出m λ和s λ,直接带入即可。

2) 反幂法计算λs 时,已经对矩阵A 进行过Doolittle 分解,得到A=LU 。

而L 为对角线上元素全为1的下三角矩阵,U 为上三角矩阵,可知det 1L =,5011det ii i U u ==∏,即有5011det det det ii i A L U u ====∏。

最后,为节省存储量,需对矩阵A 进行压缩,将A 中带内元素存储为数组C [5][501]。

二、源程序代码#include<windows.h>#include<iostream>#include<iomanip>#include<math.h>using namespace std;#define N 501#define K 39#define r 2#define s 2#define EPSI 1.0e-12//求两个整数中的最大值int int_max2(int a, int b){return(a>b ? a : b);}//求两个整数中的最小值int int_min2(int a, int b){return(a<b ? a : b);}//求三个整数中的最大值int int_max3(int a, int b, int c){int t;if (a>b)t = a;else t = b;if (t<c) t = c;return(t);}//定义向量内积double dianji(double x[], double y[]) {double sum = 0;for (int i = 0; i<N; i++)sum = sum + x[i] * y[i];return(sum);}//计算两个数之间的相对误差double erro(double lamd0, double lamd1){double e, d, l;e = fabs(lamd1 - lamd0);d = fabs(lamd1);l = e / d;return(l);}//矩阵A的压缩存储初始化成Cvoid init_c(double c[][N]){int i, j;for (i = 0; i<r + s + 1; i++)for (j = 0; j<N; j++)if (i == 0 || i == 4)c[i][j] = -0.064;else if (i == 1 || i == 3)c[i][j] = 0.16;elsec[i][j] = (1.64 - 0.024*(j + 1))*sin(0.2*(j + 1)) - 0.64*exp(0.1 / (j + 1)); }//矩阵复制void fuzhi_c(double c_const[][N], double c[][N]){int i, j;for (i = 0; i<r + s + 1; i++)for (j = 0; j<N; j++)c[i][j] = c_const[i][j];}//LU三角分解void LUDet_c(double c_const[][N], double c_LU[][N]){double sum;int k, i, j;fuzhi_c(c_const, c_LU);for (k = 1; k <= N; k++){for (j = k; j <= int_min2(k + s, N); j++){sum = 0;for (i = int_max3(1, k - r, j - s); i <= k - 1; i++)sum += c_LU[k - i + s][i - 1] * c_LU[i - j + s][j - 1];c_LU[k - j + s][j - 1] -= sum;}for (j = k + 1; j <= int_min2(k + r, N); j++){sum = 0;for (i = int_max3(1, j - r, k - s); i <= k - 1; i++)sum += c_LU[j - i + s][i - 1] * c_LU[i - k + s][k - 1];c_LU[j - k + s][k - 1] = (c_LU[j - k + s][k - 1] - sum) / c_LU[s][k - 1];}}}//三角分解法解带状线性方程组void jiefc(double c_const[][N], double b_const[], double x[]){int i, j;double b[N], c_LU[r + s + 1][N], sum;for (i = 0; i<N; i++)b[i] = b_const[i];LUDet_c(c_const, c_LU);for (i = 2; i <= N; i++){sum = 0;for (j = int_max2(i - 2, 1); j <= i - 1; j++)sum += c_LU[i - j + 2][j - 1] * b[j - 1];b[i - 1] -= sum;}x[N - 1] = b[N - 1] / c_LU[2][N - 1];for (i = N - 1; i >= 1; i--){sum = 0;for (j = i + 1; j <= int_min2(i + 2, N); j++)sum += c_LU[i - j + 2][j - 1] * x[j - 1];x[i - 1] = (b[i - 1] - sum) / c_LU[2][i - 1];}}//幂法求按模最大特征值double mifa_c(double c_const[][N]){double u[N], y[N];double sum, length_u, beta0, beta1;int i, j;for (i = 0; i<N; i++)//迭代初始向量u[i] = 0.5;length_u = sqrt(dianji(u, u));for (i = 0; i<N; i++)y[i] = u[i] / length_u;for (i = 1; i <= N; i++){sum = 0;for (j = int_max2(i - 2, 1); j <= int_min2(i + 2, N); j++)sum = sum + c_const[i - j + 2][j - 1] * y[j - 1];u[i - 1] = sum;}beta1 = dianji(u, y);do{beta0 = beta1;length_u = sqrt(dianji(u, u));for (i = 0; i<N; i++)y[i] = u[i] / length_u;for (i = 1; i <= N; i++){sum = 0;for (j = int_max2(i - 2, 1); j <= int_min2(i + 2, N); j++)sum = sum + c_const[i - j + 2][j - 1] * y[j - 1];u[i - 1] = sum;}beta1 = dianji(u, y);} while (erro(beta0, beta1) >= EPSI);return(beta1);}//反幂法求按模最小特征值double fmifa_c(double c_const[][N]){double u[N], y[N];double length_u, beta0, beta1;int i;for (i = 0; i<N; i++)//迭代初始向量u[i] = 0.5;length_u = sqrt(dianji(u, u));for (i = 0; i<N; i++)y[i] = u[i] / length_u;jiefc(c_const, y, u);beta1 = dianji(y, u);do{beta0 = beta1;length_u = sqrt(dianji(u, u));for (i = 0; i<N; i++)y[i] = u[i] / length_u;jiefc(c_const, y, u);beta1 = dianji(y, u);} while (erro(beta0, beta1) >= EPSI);beta1 = 1 / beta1;return(beta1);}//计算lamd_1、lamd_501、lamd_svoid calculate1(double c_const[][N], double &lamd_1, double &lamd_501, double &lamd_s) {int i;double lamd_mifa0, lamd_mifa1, c[r + s + 1][N];lamd_mifa0 = mifa_c(c_const);fuzhi_c(c_const, c);for (i = 0; i<N; i++)c[2][i] = c[2][i] - lamd_mifa0;lamd_mifa1 = mifa_c(c) + lamd_mifa0;if (lamd_mifa0<lamd_mifa1){lamd_1 = lamd_mifa0;lamd_501 = lamd_mifa1;}else{lamd_501 = lamd_mifa0;lamd_1 = lamd_mifa1;}lamd_s = fmifa_c(c_const);}//平移+反幂法求最接近u_k的特征值void calculate2(double c_const[][N], double lamd_1, double lamd_501, double lamd_k[]){int i, k;double c[r + s + 1][N], h, temp;temp = (lamd_501 - lamd_1) / 40;for (k = 1; k <= K; k++){h = lamd_1 + k*temp;fuzhi_c(c_const, c);for (i = 0; i<N; i++)c[2][i] = c[2][i] - h;lamd_k[k - 1] = fmifa_c(c) + h;}}//计算cond(A)和det(A)void calculate3(double c_const[][N], double lamd_1, double lamd_501, double lamd_s, double &cond_A, double &det_A){int i;double c_LU[r + s + 1][N];if (fabs(lamd_1)>fabs(lamd_501))cond_A = fabs(lamd_1 / lamd_s);elsecond_A = fabs(lamd_501 / lamd_s);LUDet_c(c_const, c_LU);det_A = 1;for (i = 0; i<N; i++)det_A *= c_LU[2][i];}//*主程序*//int main(){int i, count = 0;double c_const[5][N], lamd_k[K];double lamd_1, lamd_501, lamd_s;double cond_A, det_A;//设置白背景黑字system("Color f0");//矩阵A压缩存储到c[5][501]init_c(c_const);cout << setiosflags(ios::scientific) << setiosflags(ios::right) << setprecision(12) << endl;//计算lamd_1、lamd_501、lamd_scalculate1(c_const, lamd_1, lamd_501, lamd_s);cout << " 矩阵A的最小特征值:λ1 = " << setw(20) << lamd_1 << endl;cout << " 矩阵A的最大特征值:λ501 = " << setw(20) << lamd_501 << endl;cout << " 矩阵A的按模最小的特征值:λs = " << setw(20) << lamd_s << endl;//求最接近u_k的特征值calculate2(c_const, lamd_1, lamd_501, lamd_k);cout << endl << " 与数u_k最接近的特征值:" << endl;for (i = 0; i<K; i++){cout << " λ_ik_" << setw(2) << i + 1 << " = " << setw(20) << lamd_k[i] << " ";count++;if (count == 2){cout << endl;count = 0;}}//计算cond_A和det_Acalculate3(c_const, lamd_1, lamd_501, lamd_s, cond_A, det_A);cout << endl << endl;cout << " 矩阵A的条件数:cond(A) = " << setw(20) << cond_A << endl;cout << " 矩阵A的行列式的值:det(A) = " << setw(20) << det_A << endl << endl;return 0;}三,计算结果四,分析初始向量选择对计算结果的影响当选取初始向量0(1,1,,1)Tu=时,计算的结果如下:此结果即为上文中的正确计算结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数值分析B》大作业一SY1103120 朱舜杰一.算法设计方案:1.矩阵A的存储与检索将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] .由于C语言中数组角标都是从0开始的,所以在数组MatrixC[5][501]中检索A的带内元素a ij的方法是:A的带内元素a ij=C中的元素c i-j+2,j2.求解λ1,λ501,λs①首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。

λmin即为λs;如果λmax>0,则λ501=λmax;如果λmax<0,则λ1=λmax。

②使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求出对应的按摸最大的特征值λ,max,如果λmax>0,则λ1=λ,max+p;如果λmax<0,则λ501=λ,max+p。

3.求解A的与数μk=λ1+k(λ501-λ1)/40的最接近的特征值λik (k=1,2,…,39)。

使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λik。

4.求解A的(谱范数)条件数cond(A)2和行列式d etA。

①cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和最小特征值。

②矩阵A的行列式可先对矩阵A进行LU分解后,detA等于U所有对角线上元素的乘积。

二.源程序#include<stdio.h>#include<iostream.h>#include<stdlib.h>#include<math.h>#include<float.h>#include<iomanip.h>#include<time.h>#define E 1.0e-12 /*定义全局变量相对误差限*/int max2(int a,int b) /*求两个整型数最大值的子程序*/{if(a>b)return a;elsereturn b;}int min2(int a,int b) /*求两个整型数最小值的子程序*/{if(a>b)return b;elsereturn a;}int max3(int a,int b,int c) /*求三整型数最大值的子程序*/{ int t;if(a>b)t=a;else t=b;if(t<c) t=c;return(t);}void assignment(double array[5][501]) /*将矩阵A转存为数组C[5][501]*/{int i,j,k;//所有元素归零for(i=0;i<=4;){for(j=0;j<=500;){array[i][j]=0;j++;}i++;}//第0,4行赋值for(j=2;j<=500;){k=500-j;array[0][j]=-0.064;array[4][k]=-0.064;j++;}//第1,3行赋值for(j=1;j<=500;){k=500-j;array[1][j]=0.16;array[3][k]=0.16;j++;}//第2行赋值for(j=0;j<=500;){ k=j;j++;array[2][k]=(1.64-0.024*j)*sin((double)(0.2*j))-0.64*exp((double)(0.1/j));}}double mifa(double u[501],double array[5][501],double p) /*带原点平移的幂法*/ {int i,j; /* u[501]为初始迭代向量*/double a,b,c=0; /* array[5][501]为矩阵A的转存矩阵*/double y[501]; /*p为平移量*/for(;;){a=0;b=0;/*选用第一种迭代格式*///求ηk-1for(i=0;i<=500;i++){a=a+u[i]*u[i];}a=sqrt(a);//求y k-1for(i=0;i<=500;i++){y[i]=u[i]/a;}//求u kfor(i=0;i<=500;i++){u[i]=0;for(j=max2(i-2,0);j<=min2(i+2,500);j++){u[i]+=array[i-j+2][j]*y[j];}u[i]=u[i]-p*y[i]; /*引入平移量*/}//求βkfor(i=0;i<=500;i++){b+=y[i]*u[i];}if(fabs((b-c)/b)<=E) /*达到精度水平,迭代终止*/break;c=b;}return (b+p); /*直接返回A的特征值*/}void chuzhi(double a[]) /*用随机数为初始迭代向量赋值*/ {int i;srand((int)time(0));for(i=0;i<=500;i++){a[i]=(10.0*rand()/RAND_MAX); /*生成0~10的随机数*/}}void chuzhi2(double a[],int j) /*令初始迭代向量为e i*/{int i;for(i=0;i<=500;i++){a[i]=0;}a[j]=1;}void LU(double array[5][501]) /*对矩阵A进行Doolittle分解*/{ /*矩阵A转存在C[5][501]中*/int j,k,t; /*分解结果L,U分别存在C[5][501]的上半部与下半部*/ for(k=0;k<=500;k++){for(j=k;j<=min2((k+2),500);j++){for(t=max3(0,k-2,j-2);t<=(k-1);t++){array[k-j+2][j]-=array[k-t+2][t]*array[t-j+2][j];}}if(k<500)for(j=k+1;j<=min2((k+2),500);j++){for(t=max3(0,k-2,j-2);t<=(k-1);t++){array[j-k+2][k]-=array[j-t+2][t]*array[t-k+2][k];}array[j-k+2][k]=array[j-k+2][k]/array[2][k];}}}double fmifa(double u[501],double array[5][501],double p){ /*带原点平移的反幂法*/ int i,j;double a,b,c=0;double y[501];//引入平移量for(i=0;i<=500;i++){array[2][i]-=p;}//先将矩阵Doolittle分解LU(array);for(;;){a=0;b=0;//求ηk-1for(i=0;i<=500;i++){a=a+u[i]*u[i];}a=sqrt(a);//求y k-1for(i=0;i<=500;i++){y[i]=u[i]/a;}//回带过程,求解u kfor(i=0;i<=500;i++){u[i]=y[i];}for(i=1;i<=500;i++){for(j=max2(0,(i-2));j<=(i-1);j++){u[i]-=array[i-j+2][j]*u[j];}}u[500]=u[500]/array[2][500];for(i=499;i>=0;i--){for(j=i+1;j<=min2((i+2),500);j++){u[i]-=array[i-j+2][j]*u[j];}u[i]=u[i]/array[2][i];}//求βkfor(i=0;i<=500;i++){b+=y[i]*u[i];}if(fabs((b-c)/b)<=E) /*达到精度要求,迭代终止*/break;c=b;}return (p+(1/b)); /*直接返回距离原点P最接近的A的特征值*/ }//主函数main(){ int i;double d1,d501,ds,d,a;double u[501];double MatrixC[5][501];printf(" 《数值分析》计算实习题目第一题\n");printf(" SY1103120 朱舜杰\n");//将矩阵A转存为MatrixCassignment(MatrixC);//用带原点平移的幂法求解λ1,λ501chuzhi(u);d=mifa(u,MatrixC,0);chuzhi(u);a=mifa(u,MatrixC,d);if(d<0){d1=d;d501=a;}else{d501=d;d1=a;}printf("λ1=%.12e\n",d1);printf("λ501=%.12e\n",d501);//用反幂法求λschuzhi(u);ds=fmifa(u,MatrixC,0);printf("λs=%.12e\n",ds);//用带原点平移的反幂法求λikfor(i=1;i<=39;i++){a=d1+(i*(d501-d1))/40;assignment(MatrixC);chuzhi(u);d=fmifa(u,MatrixC,a);printf("与μ%02d=%+.12e最接近的特征值λi%02d=%+.12e\n",i,a,i,d);}//求A的条件数d=fabs((d1/ds));printf("A的(谱范数)条件数cond<A>2=%.12e\n",d);//求detAassignment(MatrixC);LU(MatrixC);a=1;for(i=0;i<=500;i++){a*=MatrixC[2][i];}printf("行列式detA=%.12e\n",a);//测试不同迭代初始向量对λ1计算结果的影响。

printf("改变迭代初始向量对λmax计算结果的测试如下:\n");assignment(MatrixC);for(i=0;i<=500;i++){chuzhi2(u,i);d1=mifa(u,MatrixC,0);printf("u%03d,λmax=%+e ",i,d1);if(((i+1)%3)==0)printf("\n");}printf("Press any key to continue\n");getchar();}三.程序结果:四.分析初始向量选择对计算结果的影响矩阵的初始向量选择,对结果的影响很大,选择不同的初始向量可能会得到的特征值。

相关文档
最新文档