7第五章 计量经济学检验
《计量经济学》第五章精选题及答案

第五章 异方差二、简答题1.异方差的存在对下面各项有何影响? (1)OLS 估计量及其方差; (2)置信区间;(3)显著性t 检验和F 检验的使用。
2.产生异方差的经济背景是什么?检验异方差的方法思路是什么? 3.从直观上解释,当存在异方差时,加权最小二乘法(WLS )优于OLS 法。
4.下列异方差检查方法的逻辑关系是什么? (1)图示法 (2)Park 检验 (3)White 检验5.在一元线性回归函数中,假设误差方差有如下结构:()i i i x E 22σε=如何变换模型以达到同方差的目的?我们将如何估计变换后的模型?请列出估计步骤。
三、计算题1.考虑如下两个回归方程(根据1946—1975年美国数据)(括号中给出的是标准差):t t t D GNP C 4398.0624.019.26-+= e s :(2.73)(0.0060) (0.0736)R ²=0.999t t t GNP D GNP GNP C ⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡4315.06246.0192.25 e s : (2.22) (0.0068)(0.0597)R ²=0.875式中,C 为总私人消费支出;GNP 为国民生产总值;D 为国防支出;t 为时间。
研究的目的是确定国防支出对经济中其他支出的影响。
(1)将第一个方程变换为第二个方程的原因是什么?(2)如果变换的目的是为了消除或者减弱异方差,那么我们对误差项要做哪些假设? (3)如果存在异方差,是否已成功地消除异方差?请说明原因。
(4)变换后的回归方程是否一定要通过原点?为什么?(5)能否将两个回归方程中的R²加以比较?为什么?2.1964年,对9966名经济学家的调查数据如下:资料来源:“The Structure of Economists’Employment and Salaries”, Committee on the National Science Foundation Report on the Economics Profession, American Economics Review, vol.55, No.4, December 1965.(1)建立适当的模型解释平均工资与年龄间的关系。
计量经济学第五章协整与误差修正模型

根据需要对数据进行变换,如对数变换、差 分变换等,以满足模型对数据的要求。
模型参数估计方法选择
01
最小二乘法(OLS )
适用于满足经典假设的线性回归 模型,通过最小化残差平方和来 估计模型参数。
02
广义最小二乘法( GLS)
适用于存在异方差性的模型,通 过加权最小二乘法进行参数估计 ,以消除异方差性的影响。
误差修正模型定义
误差修正模型(Error Correction Model,简称ECM)是一种具有特定形式的计 量经济学模型,用于描述变量之间的长期均衡关系和短期动态调整过程。
该模型通过引入误差修正项,将变量的短期波动和长期均衡关系结合起来,从而 更准确地刻画经济现象。
误差修正项解释
误差修正项(Error Correction Term,简称ECT)是误差修正模型中的核 心部分,表示变量之间的长期均衡误差。
长期均衡
协整关系反映了时间序列之间的长期均衡,即使短期内有所偏离,长期内也会恢复到均 衡状态。
线性组合平稳
协整序列的线性组合可以消除非平稳性,得到平稳序列。
协整检验方法
EG两步法
首先通过OLS回归得到残差序列,然 后对残差序列进行单位根检验(如 ADF检验),判断其是否平稳。
Johansen检验
适用于多变量协整关系的检验,通过 构建似然比统计量来判断协整向量的 个数。
计量经济学第五章协 整与误差修正模型
汇报人:XX
目 录
• 协整理论概述 • 误差修正模型介绍 • 协整与误差修正模型关系 • 协整检验方法及应用举例 • 误差修正模型建立与评估 • 案例研究:金融市场波动性分析
01
协整理论概述
协整定义及性质
计量经济学第五章

∴ β 2的显著水平为α的置信区间为
ˆ ˆ ˆ ˆ [ β 2 − t α se( β 2 ),β 2 + t α se( β 2 )]
2 2
同理,β1的显著水平为α的置信区间为
ˆ ˆ ˆ ˆ [ β1 − t α se( β1 ),β1 + t α se( β1 )]
2 2
9
置信区间的宽度与估计量的标准差成 正比,因此,估计量的标准差常被喻 为估计量的精度(precision)
4
置信区间的图形表示
ˆ ˆ Pr( β 2 -δ ≤ β 2 ≤ β 2 + δ ) = 1 - α
置信区间
β2
样本估计值
ˆ β 2 -δ
ˆ β2
真实值存在、未知
置信下限
ˆ β2 + δ
置信上限
区间估计的理解: (1)随机区间包含 β 2 的概率为 1 − α (2)置信区间是一个随机的区间,它随样本的不 同而改变 5 (3)它的概率描述是在平均意义上而言的
步骤 2:给定显著性水平 α 和自由度 n − 2, 查表得到临界值 t α
0.3落在区间外, 所以拒绝H0假设
0.4268
0.5914
17
2、单侧检验 、
有些时候我们可能对要检验的结果具有某些先 验的信息, 例如, 知道 β > 0.3而不会β < 0.3。在 这种情况下,应该做单侧检验: H1 : β > 0.3 H0 : β ≤ 0.3
显著性检验法
显著性检验时利用样本结果,来证实一个零假设 的真伪的一种检验程序。 显著性检验的基本思想:在虚拟假设下,根据 基本思想: 基本思想 样本构造检验统计量(作为估计量)的抽样分布 (置信区间),以此决定是否接受零假设。
计量经济学第五章

Variables-Likelihood Ratio • 出现对话框时,写入删除变量名--OK • 对比删除前后的AIC与SC信息值,信息
值小的结论是应采纳的。
9
用Eviews的误设定检验3
• 第一,估计出简单(单纯)方程 • 第二,在命令窗口上写入genr v_hat=resid 或者 Procs/Generate Series中 v_hat=resid 发现 v_hat • 第三,估计出新的回归方程
无约束模型(U)
有约束模型(K) (general to simple)
计算统计量F
F=(RSSK-RSSu)/J RSSu/(n-k-1)
~F(J, n-k)
J 为表示约束条件数, K 为表示自变量数 或者 应估计的参数数, n 为表示样本数(obs)
4
2. LM检验(Lagrange Multiplier
多重共线性多出现在横截面资料上。
16
三、异方差性的检验及对策
Var(ℇi)≠Var(ℇj) (i≠j)时, ℇi中存在异方差性(Herteroskedasticity)。 即随机项中包含着对因变量的影响因素。 异方差性多发生在横截面资料上。
17
异方差性的检验
1.图示检验法 如模型为Yi=0+1X1i+2X2i+…+ℇi 时,
7
用Eviews的误设定检验1
• 首先估计出简单(单纯)方程 • View/Coefficient Tests/Omitted
Variables-Likelihood Ratio • 出现对话框时,写入新变量名 OK • 检验结果出现在上端,如果P值很小时, 拒
期末精华:计量经济学针对三种误差检验方法

2、近似共线性下普通最小二乘法参数估计量 非有效
在一般共线性(或称近似共线性)下,虽然可以得 到OLS法参数估计量,但是由参数估计量方差的表达 式为
Cov(ˆ ) 2 (XX)1
RESET 检验是 Regression Specification Error Test (回归设定误差检验)的简写。
设 y x β zc ε 设定误差检验是检验上式中 c 是否为零。 但关键哪些变量应该进入 z 呢? (1)在缺失变量的情况下,那些缺失变量将构成 z。 (2)在方程设定有误时,应如何处理呢?
第五章 计量经济学检验 ——违背基本假设的情况
❖ 一方面,建立一个计量经济学模型要经过四 重检验,其中经济意义检验、统计检验、预 测检验已讲,这一章主要讲计量经济学检验 的范畴。
❖ 另一方面,前面讨论了最小二乘估计的优良 性质,但都是基于经典假设。如果这些假设 不满足,会出现什么问题呢?这一章对其进 行分析。
(3) 用F检验比较两个方程的拟合情况(类似于上一章中 联合假设检验采用的方法),如果两方程总体拟合情况 显著不同,则我们得出原方程可能存在误设定的结论。 使用的检验统计量为:
F (RSSM RSS ) / M RSS /(n k 1)
其中:RSSM为第一步中回归(有约束回归)的残差 平方和,RSS为第二步中回归(无约束回归)的残差 平方和,M为约束条件的个数,这里是M=3。
四、 解决解释变量误设定问题的原则
在模型设定中的一般原则是尽量不漏掉有关的解 释变量。因为估计量有偏比增大误差更严重。但如 果方差很大,得到的无偏估计量也就没有多大意义 了,因此也不宜随意乱增加解释变量。
在回归实践中,有时要对某个变量是否应该作为 解释变量包括在方程中作出准确的判断确实不是一 件容易的事,因为目前还没有行之有效的方法可供 使用。尽管如此,还是有一些有助于我们进行判断 的准则可用,它们是:
《计量经济学》第五章 异方差性

(二)检验的特点
不仅能对异方差的存在进行判断,而且还能对异 方差随某个解释变量变化的函数形式 进行诊断。 该检验要求变量的观测值为大样本。
36
(三)检验的步骤
1.建立模型并求 ei 根据样本数据建立回归模型,并求残差序列
4
第一节 异方差性的概念
本节基本内容:
●异方差性的实质 ●异方差产生的原因
5
一、异方差性的实质
同方差的含义
同方差性:对所有的 i (i 1,2,...,n)有:
Var(ui ) = σ 2
(5.1)
因为方差是度量被解释变量 Y的观测值围绕回归线
E(Yi ) 1 2 X 2i 3X3i ... k X ki (5.2)
1.求回归估计式并计算 et2
用OLS估计式(5.14),计算残差
差的平方 et2 。
et
Yt
-Yˆt
,并求残
2.求辅助函数
用残差平方
et2
作为异方差
σ
2 t
的估计,并建立
X
2t
,
X
3t
,
X
2 2t
,
X
2 3t
,
X
2t
X
3t
的辅助回归,即
eˆt2
=
αˆ1
+
αˆ2
X
2t
+
αˆ3
X
3t
+
αˆ4
X
2 2t
+
αˆ5
X
2 3t
+
αˆ6
《计量经济学》各章主要知识点

第一章:绪论1.计量经济学的学科属性、计量经济学与经济学、数学、统计学的关系;2.计量经济研究的四个基本步骤(1)建立模型(依据经济理论建立模型,通过模型识别、格兰杰因果关系检验、协整关系检验建立模型);(2)估计模型参数(满足基本假设采用最小二乘法,否则采用其他方法:加权最小二乘估计、模型变换、广义差分法等);(3 )模型检验:经济意义检验(普通模型、双对数模型、半对数模型中的经济意义解释,见例1、例2 ),统计检验(T检验,拟合优度检验、F检验,联合检验等);计量经济学检验(异方差、自相关、多重共线性、在时间序列模型中残差的白噪声检验等);(4 )模型应用。
例1:在模型中,y某类商品的消费支出,x收入,P商品价格,试对模型进行经济意义检验,并解释A"》的经济学含义。
In X = 0.213 +0.25 In 一0.31£其中参数卩'",都可以通过显著性检验。
经济意义检验可以通过(商品需求与收入正相关、与商品价格负相关\商品消费支出关于收入的弹性为0.25 ( 1心/畑)=0.251】心/仏));价格增加一个单位,商品消费需求将减少31%。
例2 :硏究金融发展与贫富差距的关系,认为金融发展先使贫富差距加大(恶化), 尔后会使贫富差距降<氐(好转),成为倒U型。
贫富差距用GINI系数表示,金融发展用(贷款余额/存款总额)表示。
回归结果G/^VZ r =2.34 + 0.641;-1.29x;/模型参数都可以通过显著性检验。
在X的有意义的变化范围内,GINI系数的值总是大于1 ,细致分析后模型变的毫无意义;同样的模型还有:GINI系数的值总是为负= —13.34 + 7.12 兀一14.31#O3.计量经济学中的一些基本概念数据的三种类型:横截面数据、时间序列数据、面板数据;线性模型的概念;模型的解释变量与被解释变量,被解释变量为随机变量(如果—个变量为随机变量,并与随机扰动项相关,这个变量称为内生变量),被解释变量为内生变量,有些解释变量也为内生变量。
计量经济学第五章 单位根检验和协整分析

0
50
100
150
200 样本容量
图 5.3
⑸ 虚假回归的直观解释 因为上述数据生成系统是真实的,所以对于回归模型
yt = 0 + 1xt + wt ,
应有1 = 0,即 yt 与 xt 不相关,则模型变为
yt = 0 + wt 已知 yt I(1), wt I(0),所以 yt = 0 + wt 两侧的单整阶数出 现矛盾。导致1 无法表现为零。
示的更清楚。
t
t
yt = + yt-1 + ut = + ( + yt-2 + ut-1) + ut = … = y0 + t + ui = t + ui (5.7)
这是一个趋势项和一个随机游走过程之和。所以称作i1 随机趋势i过1 程,见图
5.5,虽然总趋势向上(下),但随机过程围绕总趋势上下漂动。因为对 yt 作一次差分后,序列就平稳了,
(5.1) (5.2) (5.3)
其中 称作位移项(漂移项), t 称为趋势项。 显然,对于以上三个模型,当 < 1 时,yt 是平稳的,当 = 1 时,
yt 是非平稳的。
以模型 (5.1) 为例,若 = 0,统计量,
t(ˆ) =
ˆ s( ˆ )
t (T-1)
(5.4)
该极限分布为标准正态分布。 若 < 1,统计量,
结论却是相关!
图 5.1 三条曲线叠加示意图
图 5.2 t(98)分布和虚假回归条件下的 t 分布
⑵ t 统计量的分布 有如下数据生成系统
xt = xt-1 + ut , x0 = 0, ut IID(0, 1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、多重共线性的后果
1、完全共线性下参数估计量不存在
多元线性模型
Y X
的普通最小二乘参数估计量为:
( X X ) 1 X Y
(2.6.4)
如果存在完全共线性,则(X’X) -1不存在,无法得 到参数的估计量。
例如:对一个离差形式的二元回归模型
y 1 x1 2 x2
如果两个解释变量完全相关,如x2 x1 ,则有
如果我们仅仅将 y 基于 X1 (排除了 X2 )进行回归,则估计量是:
b1 (X1 X1 )1 X1y β 1 (X1 X1 )1 X1 X2β 2 (X1 X1 )1 X1ε 取数学期望,我们发现,除非 X1 X2 0 或者β 2 0 , 则 b1 将是有偏的。
三、 包括无关的解释变量
X 21 X 22
X k1 Xk2
1 X 1n X 2n X kn
中,至少有一列向量可由其他列向量(不包
括第一列)线性表出。
例:有人在建立某地区粮食产量回归模型时,以粮 食产量为因变量y,以化肥用量为x1,水浇地面积为 x2,农业投入资金为x3等作为自变量。 从表面上看到x1,x2,x3都是影响粮食产量的重要因 素,可是建立的回归方程效果很差,原因何在呢?
ln( GDPt ) 0 1t ut
得到一国GDP的年增长率的估计值,这里t为时间 趋势变量。
二、 遗漏有关的解释变量
模型中遗漏了对因变量有显著影响的解释变量 的后果是:可能使模型参数估计量不再是无偏估 计量。证明如下:
(1) 缺乏相关变量所导致的偏差 假设正确的模型指定形式是: y x1β 1 x2 β 2 ε 上述解释变量数据矩阵的列数维数分别是 K1 和 K 2 。
模型中包括无关的解释变量, (1)参数估计量仍无偏,但会增大估计量的方差,
即增大误差(证明如下:)。 (2)出现“过度拟合”,损失模型自由度。
(2) 方差变化证明
有偏估计 b1 的方差是 Var[b1] 2(X1X1)1 如果回归方程包括 X2 ,则 X1 的最小二乘系数估计为 b1.2 (X1M2X1)1X1M2Y ,其中, M 2 I X2 (X2X2 )1 X2 所以,它的协方差矩阵是矩阵 2 (XX) 1 的左上三角矩阵,
第五章 计量经济学检验 ——违背基本假设的情况
▪ 一方面,建立一个计量经济学模型要经过四 重检验,其中经济意义检验、统计检验、预 测检验已讲,这一章主要讲计量经济学检验 的范畴。
▪ 另一方面,前面讨论了最小二乘估计的优良 性质,但都是基于经典假设。如果这些假设 不满足,会出现什么问题呢?这一章对其进 行分析。
四、 解决解释变量误设定问题的原则
在模型设定中的一般原则是尽量不漏掉有关的解 释变量。因为估计量有偏比增大误差更严重。但如 果方差很大,得到的无偏估计量也就没有多大意义 了,因此也不宜随意乱增加解释变量。
在回归实践中,有时要对某个变量是否应该作为 解释变量包括在方程中作出准确的判断确实不是一 件容易的事,因为目前还没有行之有效的方法可供 使用。尽管如此,还是有一些有助于我们进行判断 的准则可用,它们是:
注意: 完全共线性的情况并不多见,一般出现的是在一定
程度上的共线性,即近似共线性。
2、实际经济问题中的多重共线性现象
▪ 经济变量的共同变化趋势
时间序列样本:经济繁荣时期,各基本经济 变量(收入、消费、投资、价格)都趋于增长; 衰退时期,又同时趋于下降。
横截面数据:生产函数中,资本投入与劳动 力投入往往出现高度相关情况,大企业二者都大, 小企业都小。
解该线性方程组得:
x1i yi
ˆ1
x2i yi x12i
x2i x1i
x1i x2i
x1i yi x12i
x22i
x1i yi 2
x12i 0
x1i x2i
x12i x12i
0
x22i
x12i 2 x12i
ˆ1 为不定式; 同理, ˆ2 也为不定式,其值无法确定。
五、 检验误设定的RESET方法
上面给出了选择解释变量的四条准则。可是,有 时这些准则不能提供足够的信息使研究人员确信其 设定是最恰当的,在这种情况下,可考虑使用一些 更正规的检验方法来比较不同估计方程的性质。这 类方法相当多,有一、二十种,这里就不一一列出, 仅介绍Ramsey的回归设定误差检验法(RESET法)。
RESET 检验是 Regression Specification Error Test (回归设定误差检验)的简写。
设 y x β zc ε 设定误差检验是检验上式中 c 是否为零。 但关键哪些变量应该进入 z 呢? (1)在缺失变量的情况下,那些缺失变量将构成 z。 (2)在方程设定有误时,应如何处理呢?
从而造成所谓的“误设定”问题。
一、选择错误的函数形式
这类错误中比较常见的是将非线性关系作为线 性关系处理。
前面介绍了被解释变量和解释变量都采用对数 的双对数模型,下面再介绍一种比较常见的函数形 式的模型:半对数模型。
半对数模型
半对数模型指的是被解释变量和解释变量中一个
为对数形式而另一个为线性的模型。被解释变量为 对数形式的称为对数-线性模型(log-lin model)。解 释 变 量 为 对 数 形 式 的 称 为 线 性 - 对 数 模 型 (lin-log model)。我们先介绍前者,其形式如下:
▪ 滞后变量的引入
在计量经济模型中,往往需要引入滞后经济变 量来反映真实的经济关系。
例如,消费=f(当期收入, 前期收入)
显然,两期收入间有较强的线性相关性。
▪ 一般经验
对于采用时间序列数据作样本、以简单线性形 式建立的计量经济学模型,往往存在多重共线性。
以截面数据作样本时,问题不那么严重,但多 重共线性仍然是存在的。
2、近似共线性下普通最小二乘法参数估计量 非有效
在一般共线性(或称近似共线性)下,虽然可以得 到OLS法参数估计量,但是由参数估计量方差的表达 式为
Cov(ˆ ) 2 (XX)1
由于此时|X’X|0,从而使参数估计值的方差 增大,OLS参数估计量非有效。
当这四项用于判断一个变量是否应加进回归方程的准则 出现不一致的情况时,应当特别小心。在这种情况下,作出 正确判断不是一件容易的事,但可以让事情变得容易一些, 办法是将理论准则放在第一位,再多的统计证据也不能将一 个理论上很重要的变量变成“无关”变量。
在选择变量的问题上,应当坚定不移地根据理论而不是 满意的拟合结果来作决定,对于是否将一个变量包括在回归 方程中的问题,理论是最重要的判断准则。如果不这样做, 产生不正确结果的风险很大。
X X
x12i x2i x1i
x1i x2i
x
2 2i
x12i x12i
2
x12i x12i
x12i
1
Hale Waihona Puke 2X Y x1i x2i
yi yi
1
x1i yi
该回归模型的正规方程为
(XX)Bˆ XY
或
ˆ1 x12i ˆ2 x1i x2i x1i yi
ˆ1 x2i x1i ˆ2 x22i x2i yi
本章内容
▪ 误设定(Misspecification 或 specification error)
▪ 多重共线性(Multicollinearity) ▪ 异方差性(Heteroscedasticity) ▪ 自相关(Autocorrelation)
第一节 误设定
采用OLS法估计模型时,实际上有一个隐含的假 设,即模型是正确设定的。这包括两方面的含义: 函数形式正确和解释变量选择正确。在实践中,这 样一个假设或许从来也不现实。我们可能犯下列三 个方面的错误: ▪ 选择错误的函数形式 ▪ 遗漏有关的解释变量 ▪ 包括无关的解释变量
(3) 用F检验比较两个方程的拟合情况(类似于上一章中 联合假设检验采用的方法),如果两方程总体拟合情况 显著不同,则我们得出原方程可能存在误设定的结论。 使用的检验统计量为:
F (RSSM RSS ) / M RSS /(n k 1)
其中:RSSM为第一步中回归(有约束回归)的残差 平方和,RSS为第二步中回归(无约束回归)的残差 平方和,M为约束条件的个数,这里是M=3。
选择解释变量的四条准则
1.理论: 从理论上看,该变量是否应该作为解释变 量包括在方程中?
2. t检验:该变量的系数估计值是否显著? 3.R 2 :该变量加进方程中后,R 2 是否增大? 4. 偏倚: 该变量加进方程中后,其它变量的系数估
计值是否显著变化?
如果对四个问题的回答都是肯定的,则该变量应该包 括在方程中;如果对四个问题的回答都是“否”, 则该变 量是无关变量,可以安全地从方程中删掉它。
▪ Ramsey的RESET检验只适用于LS估计的方程。
第二节 多重共线性 ( Multi-Collinearity )
▪ 多重共线性的概念 ▪ 多重共线性的后果 ▪ 多重共线性的检验 ▪ 克服多重共线性的方法
一、多重共线性的概念
1、多重共线性 对于模型
Yi=0+1X1i+2X2i++kXki+i
如果存在 c1X1i+c2X2i+…+ckXki+vi=0 i=1,2,…,n
其中ci不全为0,vi为随机误差项,则称为一般共线性
(近似共线性)或交互相关(intercorrelated)。
在矩阵表示的线性回归模型
Y=XB+N 中,完全共线性指:秩(X)<k+1,即矩阵
1 X 11
X
1
X 12
ln Yt 0 1Xt ut
对数-线性模型中,斜率的含义是Y的百分比变动, 即解释变量X变动一个单位引起的被解释变量Y的百 分比变动。这是因为,利用微分可以得出: