河南省郑州二中学区2019----2020学年上学期期中学业水平测试七年级数学(PDF版无答案)

合集下载

2019-2020年七年级上学期期中考试数学试卷含答案

2019-2020年七年级上学期期中考试数学试卷含答案

2019-2020学年七年级(上册)期中考试数学试卷一.选择题(共10小题)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.(﹣7)6的意义是()A.﹣7×6 B.6﹣7相加C.6个﹣7相乘D.7个﹣6相乘3.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×10104.下列各组数中,运算结果相同的是()A.﹣(﹣2)和|﹣2| B.(﹣2)2和﹣22C.()2和D.(﹣2)3和(﹣3)25.单项式的系数和次数分别是()A.B.﹣C.D.﹣2,26.下列化简正确的是()A.4a﹣2a=2 B.3xy﹣4yx=﹣xyC.﹣2m+6n=4mn D.3ab2﹣5ba2=﹣2ab27.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1 C.ax=﹣ay D.3•ax=3•ay8.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A.+ B.﹣C.×D.÷9.已知x<0,x+y>0,那么x,y,x+y这三个数中最小的数是()A.x B.y C.x+y D.无法确定10.将一个两位数的十位和个位调换位置后得到一个新数,将新数与原数相加,所得的结果不可能是以下的()A.99 B.132 C.145 D.187二.填空题(共8小题)11.直接写出结果:(1)﹣1+2=;(2)﹣1﹣1=;(3)(﹣3)3=;(4)6÷(﹣1)=;(5)(﹣1)2n﹣(﹣1)2n﹣1=(n为正整数);(6)方程4x=0的解为;(7)方程﹣x=2的解为.12.在所给数:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有个.13.图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是.14.写出一个只含字母x的二次三项式,使得常数为﹣1,并按降幂排列:.15.a3x+1b与﹣2a3b y﹣1是同类项,则x y的值为.16.已知x=﹣1是关于x的方程5x﹣a=﹣2的解,则a=.17.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是.三.解答题(共11小题)19.画出数轴并把下列各数标在数轴上:﹣2.5,,3,0.20.计算下列各题:(1)(﹣3)﹣(﹣5)﹣(+7)(2)﹣8×+14÷(﹣7)(3)()×(﹣30)(4)﹣24+(1)×|3﹣(﹣3)2|21.化简下列各题:(1)2ab﹣3ab+(﹣ab)(2)3(x﹣1)﹣(x﹣5)(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]22.解下列方程:(1)2x=x﹣5(2)5x﹣2=1+9x23.先化简,再求值(3a2﹣ab﹣1)﹣(5ab+4a2﹣3),其中a=﹣2,b=.24.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157 162 158 154 163 165身高与平均身高的差值﹣3 +2 ﹣2 a+3 b(1)计算得出表中的数据a=;b=;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)25.“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;(2)当x、y互为倒数时,求此时“囧”的面积.26.列一元一次方程解决问题:在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为24?如果能,这三个日期数分别是多少?27.定义:若a+b=ab,则称a、b是“相伴数”例如:3+1.5=3×1.5,因此3和1.5是一组“相伴数”(1)﹣1与是一组“相伴数”;(2)若m、n是一组“相伴数”,2mn﹣[3m+2(n﹣m)+3mn﹣6]的值.28.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.阅读下列材料:问题:利用一元一次方程将0.化成分数.解:设0.=x.方程两边都乘以10,可得10×0.=10x由0.=0.777…,可知10×0.=7.777…=7+0.即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.=.(1)填空:将0.写成分数形式为.(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.29.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB.(1)a=,b=,c=;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x =,最小值为.(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M 运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.参考答案与试题解析一.选择题(共10小题)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】由相反数的定义即可得到答案.【解答】解:2019的相反数是﹣2019.故选:B.2.(﹣7)6的意义是()A.﹣7×6 B.6﹣7相加C.6个﹣7相乘D.7个﹣6相乘【分析】根据有理数乘方的定义解答即可.【解答】解:(﹣7)6的意义是6个﹣7相乘.故选:C.3.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:16亿=1600000000=1.6×109,故选:C.4.下列各组数中,运算结果相同的是()A.﹣(﹣2)和|﹣2| B.(﹣2)2和﹣22C.()2和D.(﹣2)3和(﹣3)2【分析】选项A根据相反数以及绝对值的定义判断;选项B、C、D根据有理数的乘方的定义判断.【解答】解:A.﹣(﹣2)=2,|﹣2|=2,∴﹣(﹣2)=|﹣2|,故本选项符合题意;B.(﹣2)2=4,﹣22=﹣4,故本选项不合题意;C.,,故本选项不合题意;D.(﹣2)3=﹣8,(﹣3)2=9,故本选项不合题意.故选:A.5.单项式的系数和次数分别是()A.B.﹣C.D.﹣2,2【分析】单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,由此可得出答案.【解答】解:单项式的系数和次数分别是﹣π、3.故选:C.6.下列化简正确的是()A.4a﹣2a=2 B.3xy﹣4yx=﹣xyC.﹣2m+6n=4mn D.3ab2﹣5ba2=﹣2ab2【分析】根据合并同类项的法则计算即可.【解答】解:A、4a﹣2a=2a,故不符合题意;B、3xy﹣4yx=﹣xy,故符合题意;C、﹣2m+6n,不是同类项,不能合并;故不符合题意;D、3ab2﹣5ba2,不是同类项,不能合并;故不符合题意;故选:B.7.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1 C.ax=﹣ay D.3•ax=3•ay【分析】根据等式的性质,逐项判断即可.【解答】解:∵ax=ay,a=0时,x、y不一定相等,∴选项A不符合题意;∵ax=ay,∴ax+1=ay+1,∴选项B不符合题意;∵ax=ay,∴ax=﹣ay不一定成立,∴选项C不符合题意;∵ax=ay,∴3•ax=3•ay,∴选项D符合题意.故选:D.8.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A.+ B.﹣C.×D.÷【分析】利用运算法则计算即可确定出相应的运算符号.【解答】解:在算式3﹣|﹣4□5|中的“□”所在的位置中,要使计算出来的值最小,则应填入的运算符号为×,故选:C.9.已知x<0,x+y>0,那么x,y,x+y这三个数中最小的数是()A.x B.y C.x+y D.无法确定【分析】根据有理数的加法运算法则判断出y>0,然后根据有理数的大小比较方法判断出最小的数为x.【解答】解:∵x<0,x+y>0,∴y>0,∴x,y,x+y这三个数中最小的数是x.故选:A.10.将一个两位数的十位和个位调换位置后得到一个新数,将新数与原数相加,所得的结果不可能是以下的()A.99 B.132 C.145 D.187【分析】可设一个两位数的十位是a,个位是b,表示出该两位数和的调换位置后得到一个新数,得到所得的结果是11的倍数,再找到不是11的倍数的数即为所求.【解答】解:设一个两位数的十位是a,个位是b,则10a+b+10b+a=11a+11b=11(a+b),则所得的结果是11的倍数,在99,132,145,187中,只有145不是11的倍数.故选:C.二.填空题(共8小题)11.直接写出结果:(1)﹣1+2= 1 ;(2)﹣1﹣1=﹣2 ;(3)(﹣3)3=﹣27 ;(4)6÷(﹣1)=﹣4 ;(5)(﹣1)2n﹣(﹣1)2n﹣1= 2 (n为正整数);(6)方程4x=0的解为x=0 ;(7)方程﹣x=2的解为x=﹣6 .【分析】依据有理数的运算法则正确计算即可,利用一元一次方程的解法求解即可.【解答】解:(1)﹣1+2=+(2﹣1)=1;(2)﹣1﹣1=﹣(1+1)=﹣2;(3)(﹣3)3=(﹣3)(﹣3)(﹣3)=﹣27;(4)6÷(﹣1)=6×(﹣)=﹣4;(5))(﹣1)2n﹣(﹣1)2n﹣1=1﹣(﹣1)=2;(6)方程4x=0的两边都除以4得:x=0,故解为x=0;(7)方程﹣x=2的两边都乘以(﹣3)得:x=﹣6;故答案为:(1)1,(2)﹣2,(3)﹣27,(4)﹣4,(5)2,(6)x=0,(7)x=﹣6.12.在所给数:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有 3 个.【分析】根据负有理数的定义得出即可.【解答】解:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有:﹣2,﹣2019,﹣5.,一共3个.故答案为:3.13.图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1 .【分析】根据等式的性质判断即可.【解答】解:图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1.故答案为:等式的基本性质1.14.写出一个只含字母x的二次三项式,使得常数为﹣1,并按降幂排列:x2﹣2x﹣1 .【分析】根据二次三项式和多项式的系数、常数项的有关概念以及只含字母x,即可得出答案,(答案不唯一).【解答】解:这个二次三项式的常项是﹣1,只含字母x,∴这个二次三项式是:x2﹣2x﹣1;故答案为:x2﹣2x﹣1.15.a3x+1b与﹣2a3b y﹣1是同类项,则x y的值为.【分析】根据同类项的定义中相同字母的指数也相同,可求得x和y的值.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项.【解答】解:∵a3x+1b与﹣2a3b y﹣1是同类项,∴3x+1=3,y﹣1=1,解得,y=2.∴.故答案为:16.已知x=﹣1是关于x的方程5x﹣a=﹣2的解,则a=﹣3 .【分析】把x=﹣1代入方程即可得到一个关于a的方程,解方程求得a的值.【解答】解:把x=﹣1代入方程得:﹣5﹣a=﹣2,解得:a=﹣3.故答案是:﹣3.17.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是﹣4 .【分析】由B,O两点之间的距离等于A,B两点间的距离,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:0﹣(x+2)=x+2﹣x,解得:x=﹣4.故答案为:﹣4.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是4n﹣2(或2+4(n﹣1))个.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:由图可知:第一个图案有阴影小三角形2个.第二图案有阴影小三角形2+4=6个.第三个图案有阴影小三角形2+8=10个,那么第n个就有阴影小三角形2+4(n﹣1)=4n﹣2个,故答案为:4n﹣2(或2+4(n﹣1))个.三.解答题(共11小题)19.画出数轴并把下列各数标在数轴上:﹣2.5,,3,0.【分析】把各点在数轴上表示出来即可.【解答】解:如图所示:20.计算下列各题:(1)(﹣3)﹣(﹣5)﹣(+7)(2)﹣8×+14÷(﹣7)(3)()×(﹣30)(4)﹣24+(1)×|3﹣(﹣3)2|【分析】(1)先化简再计算;(2)先算乘除,最后算加法;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘法,最后算加减;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(1)(﹣3)﹣(﹣5)﹣(+7)=﹣3+5﹣7=﹣5;(2)﹣8×+14÷(﹣7)=﹣4﹣2=﹣6;(3)()×(﹣30)=×(﹣30))﹣×(﹣30)+×(﹣30)=﹣3+4﹣25=﹣24;(4)﹣24+(1)×|3﹣(﹣3)2|=﹣16+×|3﹣9|=﹣16+×6=﹣16+4=﹣12.21.化简下列各题:(1)2ab﹣3ab+(﹣ab)(2)3(x﹣1)﹣(x﹣5)(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解;(3)先去括号,然后合并同类项即可求解.【解答】解:(1)2ab﹣3ab+(﹣ab)=(2﹣3﹣1)ab=﹣2ab;(2)3(x﹣1)﹣(x﹣5)=3x﹣3﹣x+5=2x+2;(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]=3a2﹣[a﹣5a+a2+a2﹣1]=3a2﹣a+5a﹣a2﹣a2+1=a2+4a+1.22.解下列方程:(1)2x=x﹣5(2)5x﹣2=1+9x【分析】(1)移项、合并同类项,依此即可求解;(2)移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)2x=x﹣52x﹣x=﹣5,x=﹣5;(2)5x﹣2=1+9x,5x﹣9x=1+2,﹣4x=3,x=﹣.23.先化简,再求值(3a2﹣ab﹣1)﹣(5ab+4a2﹣3),其中a=﹣2,b=.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=3a2﹣ab﹣1﹣5ab﹣4a2+3=﹣a2﹣6ab+2,当a=﹣2,b=时,原式=﹣(﹣2)2﹣6×(﹣2)×+2=2.24.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157 162 158 154 163 165身高与平均身高的差值﹣3 +2 ﹣2 a+3 b(1)计算得出表中的数据a=﹣6 ;b=+5 ;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)【分析】(1)根据学生的平均身高为160厘米,即可填写出表格中的数值;(2)求出6名学生的平均身高.【解答】解:(1)由题意:a=154﹣160=﹣6,b=165﹣160=+5;故答案为:﹣6,+5;(2)6名学生的平均身高=160+≈159.8cm,∴这6名学生的平均身高是159.8厘米.25.“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;(2)当x、y互为倒数时,求此时“囧”的面积.【分析】(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积;(2)由图可知,20=3y,则可分别求出x、y的值,将x、y的值代入S=40x﹣2xy即可求解.【解答】解:(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积,∴S=20(x+x)﹣xy﹣2××xy=40x﹣2xy;(2)由图可知,20=3y,∴y=,当xy=1时,x=,∴S=40x﹣2=6﹣2=4.26.列一元一次方程解决问题:在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为24?如果能,这三个日期数分别是多少?【分析】设中间的数为x,其它两个为(x﹣7)与(x+7),表示出之和,根据三个日期数之和为24,列出方程,如果求出的解符合题意,那么相邻三行里同一列的三个日期数之和能为24,否则不能.【解答】解:设中间的数为x,其它两个为(x﹣7)与(x+7),根据题意得:x﹣7+x+x+7=24,解得:x=8,∴x﹣7=1,x+7=15,答:这三个日期数分别是1,8,15.27.定义:若a+b=ab,则称a、b是“相伴数”例如:3+1.5=3×1.5,因此3和1.5是一组“相伴数”(1)﹣1与是一组“相伴数”;(2)若m、n是一组“相伴数”,2mn﹣[3m+2(n﹣m)+3mn﹣6]的值.【分析】(1)设﹣1与m是一组“相伴数”,根据“相伴数”的定义列式计算,得到答案;(2)根据“相伴数”的定义得到m+n=mn,根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:(1)设﹣1与m是一组“相伴数”,由题意得,﹣1+m=﹣m,解得,m=,故答案为:;(2)∵m、n是一组“相伴数”,∴m+n=mn,则2mn﹣[3m+2(n﹣m)+3mn﹣6]=2mn﹣m﹣(n﹣m)﹣mn+3=2mn﹣m﹣n+m﹣mn+3=mn﹣(m+n)+3=3.28.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.阅读下列材料:问题:利用一元一次方程将0.化成分数.解:设0.=x.方程两边都乘以10,可得10×0.=10x由0.=0.777…,可知10×0.=7.777…=7+0.即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.=.(1)填空:将0.写成分数形式为.(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.【分析】(1)根据0.化成分数的方法,设0.=x,仿照例题的解法即可得出结论;(2)①根据0.化成分数的方法,设0.=m,仿照例题的解法(×10换成×100)即可得出结论;②根据0.化成分数的方法,设0.43=n,仿照例题的解法即可得出结论.【解答】解:(1)设0.=x,方程两边都乘以10,可得10×0.=10x即4+x=10x解得x=,即0.=(2)①设0.=m,方程两边都乘以100,可得100×0.=100m即15+m=100m解得m=,即0.=,②设0.43=n,方程两边都乘以10,可得10×0.43=10n由0.43=0.43222…可知10×0.43=4.3222…=3.89+0.43,即3.89+n=10n解得n=,即0.43=,29.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB.(1)a=﹣3 ,b= 1 ,c=9 ;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x = 1 ,最小值为12 .(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M 运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.【分析】(1)利用绝对值及偶次方的非负性可求出a,c的值,结合BC=2AB可求出b值;(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,结合当x=1时|x﹣b|=0,即可得出结论;(3)用含t的代数式表示出点M,N表示的数,结合MN=2,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵a、c满足|a+3|+(c﹣9)2=0,∴a+3=0,c﹣9=0,∴a=﹣3,c=9.又∵点B在点A、C之间,且满足BC=2AB,∴9﹣b=2[b﹣(﹣3)],∴b=1.故答案为:﹣3;1;9.(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,最小值为9﹣(﹣3)=12.∵|x﹣b|≥0,b=1,∴当x=b=1时,|x﹣b|取得最小值,最小值为0,∴当x=1时,|x﹣a|+|x﹣c|+|x﹣b|取得最小值,最小值为12.故答案为:1;12.(3)12÷2=6(秒),4+6=10(秒).当0≤t≤12时,点M表示的数为t﹣3;当t>12时,点M表示的数为9;当4≤t≤10时,点N表示的数为2(t﹣4)﹣3=2t﹣11;当10<t≤16时,点N表示的数为9﹣2(t﹣10)=29﹣2t.①当4≤t≤10时,MN=|t﹣3﹣(2t﹣11)|=2,解得:t=6或t=10,∴t﹣3=3或7;②当10<t≤12时,MN=|t﹣3﹣(29﹣2t)|=2,解得:t=10(舍去)或t=,∴t=3=;③当12<t≤16时,MN=|9﹣(29﹣2t)|=2,解得:t=9(舍去)或者t=11(舍去).综上所述:当t的值为6,10或时,M、N两点之间的距离为2个单位,此时点M表示的数为3,7或.。

河南省郑州市2019_2020学年七年级数学上学期期中试题卷

河南省郑州市2019_2020学年七年级数学上学期期中试题卷

一、选择题(每题 3 分,共 30 分)
1.B 2.B 3.C 4.B 5.A 6.C 7.C 8.C 9.C 10.B
二、填空题(每题 3 分,共 15 分)
11. ①②④12.7
13.8
14.-3
15.-2 或-8
三、解答题(共 55 分)
16.(每题 4 分,共 8 分)计算题
(1) 75 2
22.(11 分)解:(1)∵b 是最小的正整数,∴b=1. 根据题意得:c-5=0 且 a+b=0, ∴a=-1,b=1,c=5. 故答案是:-1;1;5;
6
如果您喜欢这份文档,欢迎下载! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升———————
(2)当 0≤x≤1 时,x+1>0,x-1≤0,x+5>0, 则:|x+1|-|x-1|+2|x+5| =x+1-(1-x)+2(x+5) =x+1-1+x+2x+10 =4x+10; 当 1<x≤2 时,x+1>0,x-1>0,x+5>0. ∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5) =x+1-x+1+2x+10 =2x+12; (3)不变.理由如下: t 秒时,点 A 对应的数为-1-t,点 B 对应的数为 2t+1,点 C 对应的数为 5t+5. ∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t)=3t+2, ∴BC-AB=(3t+4)-(3t+2)=2, 即 BC-AB 值的不随着时间 t 的变化而改变. (另解)∵点 A 以每秒 1 个单位长度的速度向左运动,点 B 每秒 2 个单位长度向右运动, ∴A、B 之间的距离每秒钟增加 3 个单位长度; ∵点 B 和点 C 分别以每秒 2 个单位长度和 5 个单位长度的速度向右运动, ∴B、C 之间的距离每秒钟增加 3 个单位长度. 又∵BC-AB=2, ∴BC-AB 的值不随着时间 t 的变化而改变.

2019-2020学年七年级(上)期中数学试卷

2019-2020学年七年级(上)期中数学试卷

2019-2020学年七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代号填在表格相应位置上1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.82.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×1053.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.76.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种二、填空题(本大题共10小题,每小题2分,共20分请将答案填在题中相应的横线上)9.的倒数是.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作11.写出一个比3大且比4小的无理数:.12.若a<0,且|a|=2,则a﹣1=13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是.17.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示(结果能化简的要化简)18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有(填写所有正确结论的序号)三、解谷题(本大题共7题,计56分)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)9920.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:(1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.参考答案与试题解析一.选择题(共8小题)1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.8【分析】先比较数的大小,再得出选项即可.【解答】解:﹣2<0<1<8,最小的数是﹣2,故选:A.2.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:110000=1.1×105,故选:D.3.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a【分析】根据数轴左边的数小于右边的数即可直接解答.【解答】解:根据实数实数a、0、b在数轴上的位置可以得知:b<0<a,且a距离原点比b近.,故|b|>a,故选:D.4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab【分析】根据有理数的运算法则以及合并同类项法则即可求出答案.【解答】解:(A)原式=﹣9,故A错误;(C)原式=a3﹣a2,故C错误;(D)原式=2a+3b,故D错误;故选:B.5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.7 【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=﹣2,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×(﹣2)=7;故选:D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是三次三项式,故本选项错误.故选:C.7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数【分析】利用绝对值的知识分别判断后即可确定正确的选项.【解答】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选:C.8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【分析】根据运算程序列出方程,然后求解即可.【解答】解:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5,5n+1=5,解得n=(不符合),所以,满足条件的n的不同值有3个二.填空题(共10小题)9.的倒数是﹣3 .【分析】根据倒数的定义.【解答】解:因为(﹣)×(﹣3)=1,所以的倒数是﹣3.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作﹣120元【分析】首先审清题意,明确“正”和“负”所表示的意义,再结合题意作答.【解答】解:如果收入180元记作+180元,那么支出120元记作﹣120元.故答案为﹣120元.11.写出一个比3大且比4小的无理数:π.【分析】根据无理数的定义即可.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.12.若a<0,且|a|=2,则a﹣1=﹣3【分析】直接利用绝对值的性质得出a的值进而得出答案.【解答】解:∵a<0,且|a|=2,∴a=﹣2,∴a﹣1=﹣3.故答案为:﹣3.13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=0 【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵关于x的方程mx m﹣1﹣m+2=0是一元一次方程,∴m﹣1=1,解得:m=2,故2x=0,解得:x=0.故答案为:0.14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为0.8x﹣10=90【分析】设某种书包原价每个x元,根据两次降价后售价为90元,即可得出关于x的一元一次方程,此题得解.【解答】解:设某种书包原价每个x元,根据题意得:0.8x﹣10=90.故答案为:0.8x﹣10=90.15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.【分析】原式利用已知新定义化简,计算即可得到结果.【解答】解:原式==,故答案为:16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是34 .【分析】首先求出A+B,根据多项式A+B不含一次项,列出方程求出m的值即可解决问题.【解答】解:∵A+B=(3x3+2x2﹣5x+7m+2)+(2x2+mx﹣3)=3x3+2x2﹣5x+7m+2+2x2+mx﹣3=3x2+4x2+(m﹣5)x+7m﹣1∵多项式A+B不含一次项,∴m﹣5=0,∴m=5,∴多项式A+B的常数项是34,故答案为3417.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示110a﹣97 (结果能化简的要化简)【分析】根据个位上的数字为a,十位上的数字比个位上的数字小1可以求出三左边的数字,再加上个位上的三,即可求出答案.【解答】解:∵个位上的数字为a,十位上的数字比个位上的数字小1,∴3的左边的数是100(a﹣1)+10a,∴这个三位数可以表示为100(a﹣1)+10a+3=100a﹣100+10a+3=110a﹣97.故答案为:110a﹣97.18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有④(填写所有正确结论的序号)【分析】利用题中的新定义判断即可.【解答】解:①[0)=1;②[x)﹣x无最小值;③[x)﹣x无最大值;④存在实数x,使[x)﹣x=0.4成立,故答案为:④三.解答题(共7小题)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99【分析】(1)根据有理数的加法的运算方法,求出每个算式的值各是多少即可.(2)先计算乘方,再利用乘法分配律变形,利用除法法则计算即可得到结果;【解答】解:(1)23+(﹣17)+(+7)+(﹣13),=23﹣17+7﹣13,=23+7﹣17﹣13,=30﹣30,=0;(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99,=﹣24×+24×+24×+16÷(﹣8)﹣1,=﹣16+12+30﹣2﹣1,=﹣19+42,=23.20.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=【分析】(1)原式去括号、合并同类项即可化简;(2)先将原式去括号、合并同类项化为最简形式,再将x,y的值代入计算可得.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2;(2)原式=x﹣2x+y﹣x+y=﹣3x+y,当x=﹣2,y=时,原式=﹣3×(﹣2)+=6.21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?【分析】(1)根据题意列出算式,再根据有理数的减法法则计算可得;(2)根据题意列出算式B=4x2﹣6x﹣3﹣(2x2﹣x+5),再去括号、合并即可得.【解答】解:(1)根据题意,得:[(﹣1)﹣(﹣)]﹣=﹣1+﹣=﹣;(2)根据题意,得B=4x2﹣6x﹣3﹣(2x2﹣x+5)=4x2﹣6x﹣3﹣2x2+x﹣5=2x2﹣5x﹣8.22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)【分析】(1)求出这些数的和,即可得出答案;(2)求出这些数的绝对值的和,再乘以0.15升即可.【解答】解:(1)∵(+2)+(﹣3)+(+2)+(+1)+(﹣2)+(﹣1)+(﹣2)=﹣3(千米),∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|+|﹣3|=16(千米),16×0.15=2.4(升),故这次巡逻(含返回)共耗油2.4升.23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?【分析】(1)根据题意给出的等式,将a=20代入即可求出b的值.(2)根据题意给出的等式,将a=50时代入求出b的值,然后将b与23相比较即可知道是否有危险.【解答】解:(1)当a=20时,b=0.8(220﹣a)=0.8×(220﹣20)=160,所以在运动时一个20岁的人所能承受的每分钟心跳的最高次数是160;(2)他有危险,当a=50时,b=0.8(220﹣a)=0.8×(220﹣50)=136,因为136÷60×10=<23,所以此人有危险.24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:(1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.【分析】(1)根据A、B两家的优惠办法分别求出两家购买需要的费用即可;(2)根据题意列出式子分别表示出购买x千克太湖蟹所相应的费用即可.【解答】解:(1)A:80×60×95%=4560(元),B:50×70×90%+(80﹣50)×70×85%=4935(元),∵4560元<4935元,∴他在A商家批发合算;(2)A:60×90%x=54x(元),B:50×70×90%+100×70×85%+(x﹣150)×70×80%=56x+700(元).25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (54)(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.。

郑州市2019-2020学年七年级上学期数学期中考试试卷A卷

郑州市2019-2020学年七年级上学期数学期中考试试卷A卷

郑州市2019-2020学年七年级上学期数学期中考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) 2015的相反数是()A . -B .C . ﹣2015D . 20152. (2分) (2017七下·义乌期中) 把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有()个。

(1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°。

A . 1个B . 2个C . 3个D . 43. (2分)在 -3,-,-1, 0 这四个实数中,最大的是()A . -3B . -D . 04. (2分)(2016·北京) 神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A . 2.8×B . 28×C . 2.8×D . 0.28×5. (2分) (2018七上·临沭期末) 已知,化简所得的结果是()A .B .C .D .6. (2分)计算的结果是().A . 4B . 2C . -2D . -47. (2分) (2016七上·高密期末) 如果a2+ab=8,ab+b2=9,那么a2﹣b2的值是()A . ﹣1B . 1D . 不确定8. (2分) (2019七下·郑州开学考) 如图,在数轴上,点A表示1,现将点A沿数轴做如下移动,第一次点A向左移动3个单位长度到达点A1 ,第二次将点A1向右移动6个单位长度到达点A2 ,第三次将点A2向左移动9个单位长度到达点A3 ,按照这种规律下去,第n次移动到点An ,如果点An ,与原点的距离不少于20,那么n的最小值是()A . 11B . 12C . 13D . 209. (2分) (2016七上·绵阳期中) 两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度是50km/h,水流速度是a km/h,2h后两船相距()A . 4a千米B . 2a千米C . 200千米D . 100千米10. (2分)下列各式计算正确的是()A .B .C .D .11. (2分)关于单项式,下列结论正确的是()A . 系数是-2,次数是4B . 系数是-2,次数是5C . 系数是-2,次数是8D . 系数是,次数是512. (2分) (2018七上·山东期中) 有理数a,b,c在数轴上的位置如图所示,下面结论正确的是().A . c>aB . c>0C . |a|<|b|D . a-c<0二、填空题 (共4题;共4分)13. (1分)绝对值不大于3.14的所有有理数之和等于________;不小于﹣4而不大于3的所有整数之和等于________.14. (1分)(2010·华罗庚金杯竞赛) 分数,,,,中最小的一个是________。

2019~2020学年度七年级(上)期中数学试题

2019~2020学年度七年级(上)期中数学试题

区2019~2020学年度七年级(上)期中数学试题(考试时间:120分钟 试卷总分:150分)第Ⅰ卷(本卷满分100分)一、选择题(共10小题,每小题3分,共30分) 1、有理数0,﹣1,﹣2,3中,最小的有理数是 A .0B .﹣1C .﹣2D .32、﹣3的倒数是 A .﹣3B .3C .31﹣D .31 3、2019年10月18日在武汉举行第七届世界军人运动会,“聚志愿力量,铸军运辉煌”,全体武汉市民积极投身志愿服务工作,志愿者人数达25000人。

25000这个数据用科学记数法表示为A .41025⨯B .4105.2⨯C .61025.0⨯D .5105.2⨯4、单项式y x 22﹣的系数和次数分别是 A .﹣2,2B .﹣2,3C .2,3D .﹣2,15、下列各式正确的是 A .55﹣=B .55﹣=﹣C .55﹣=﹣D .()55=﹣﹣﹣6、下列运算中正确的是A .3a +2b =5abB .522532a a a =+C .x x x =-4545D .3332a a a =﹣-7、下列变形中,错误的是A .()y x y x -=﹣+﹣B .()y x y x +=﹣-﹣C .()c b a c b a -+=-+D .()c b a c b a --=-- 8、已知整式x -2y 的值是3,则整式3x -6y -2的值是 A .3B .5C .7D .99、标价a 元的一件上衣,降价10%后的售价为 A .()元+1.0aB .元a 1.0C .元a 9.0D .()元-1.0a10、已知a <0<b <c ,化简c b b a -+-的结果是 A .a c -B .b c -C .c a -D .c 2二、填空题(共6小题,每小题3分,共18分)11、用四舍五入法将1.804精确到0.01后,得到的近似数是 。

12、武汉市去年1月份某天早晨气温为﹣3℃,中午上升了8℃,则中午的气温为 ℃。

2019-2020年初一上学期数学期中试卷及答案

2019-2020年初一上学期数学期中试卷及答案

2019-2020年初一上学期数学期中试卷及答案一、选择题(每小题3分,共30分)1.下列一组数:-8、2.7、-312、 π2、0.66666…、0、2、0.080080008…,其中是有理数的个数是( )A. 5个B. 6个C. 7个D. 8个2. 月球的质量约为73400 000 000亿吨,用科学记数法表示这个数是 ( )A .734×108 亿吨B .73.4×109 亿吨C .7.34×1010 亿吨D .0.734×1011 亿吨3.计算33a a +的结果是( )A .6a B.9a C.32a D.62a4.下列各选项中的两项是同类项的为( )A .-2ab 与b a 221- B .23与35- C .2x 与-2y D .33xy 与222y x 5.下列说法正确的是( )A .32vt -的系数是-2 B .32ab 3的次数是6次 C .5y x +是多项式 D .12-+x x 的常数项为1 6.一个三位数,个位数字是a ,十位数字是b ,百位数字是c ,则这个三位数是( )A. abc B.a+10b+100c C. 100a+10b+c D. a+b+c7.下列各对数中,数值相等的是 ( )A 、23和32B 、()22-和-22C 、-(-2)和2-D 、232⎪⎭⎫ ⎝⎛和322 8.若│a ∣= —a ,则a 是( );A 、 非负数B 、 负数C 、 正数D 、 非正数9.下面运算正确的是( )A 、abc ac ab 633=+B 、04422=-a b b aC 、224279x x x +=D 、22232y y y -=10.下面四个整式中,不能表示图中阴影部分面积的是( )A .()x x x 22)3(-++B .6)3(++x xC .2)2(3x x ++D .x x 52+二、填空题(每小题3分,共24分)11.若支出20元记为+20元,则-50元表示 .12. -3的倒数 ,|-2|的相反数 .13.某日中午,北方某地气温由早晨的零下2℃上升了10℃,傍晚又下降了4℃,这天傍晚北方某地的气温是 ℃. 14、定义a ※b=a 2-b ,则2※3= 15.单项式322ab π-的次数是 ,系数是 . 16.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为1,则cd m mb a -++3的值是 .17.若│y+3∣+(x —2)2= 0,则y x =___________ .18.观察下列等式:11122-=,28255-=,32731010-=,46441717-=,根据你发现的规律,请写出第n 个等式: .三、解答题(共66分)19. (10分)把下列各数在数轴上表示出来,并用“<”号把它们连接起来............ -112, 0, 4, -3, 2.520.计算(每小题6分,共36分)(1)42422+-+-+)()( (2))24()8765143(-⨯-+-;(3)136(2)()2-÷-⨯-(4)20142231(3)32-+--⨯(5)—|—3|2÷(—3)2; (6)0—(—3)2÷3× (—2) 31、二、填空题(3×8)11、收入50元;12、—31;—2;13、4℃;14、115、3;—32π;16、0或—2;17、—9;18、n —1n 2+n =123+n n三、解答题(66)19、(10)—3<—211<0<2.5<4;20、(6×6)(1)、20; (2)、—5;(3)、23; (4)、—64; (5)、—1; (6)、24; 21、(10)12b a 2;4;22、(10)(1)34—12=24;(2)约为26.6岁。

河南郑州市2019~2020学年上期期末考试七年级数学试题

河南郑州市2019~2020学年上期期末考试七年级数学试题

河南郑州市2019~2020学年上期期末考试七年级数学试题注意:本试卷分试题卷和答题卡两部分考试,时间90分钟,满分100分考生应首先读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡一、选择题(每小题3分,,共30分)1.计算|−2020|的结果是()A.−2020B.2020C.−12020 D.120202.下面图形经过折叠可以围成一个棱柱的是( )3.为了解甲、乙、丙、丁四所学校学生对“122交通安全专题”相关知识的掌握情况,小明计划进行抽样调查,你认为以下方案中最合理的是( )A.抽取甲校七年级学生进行调查B.在四个学校随机抽取200名老师进行调查C.在乙校中随机抽取200名学生进行调查D.在四个学校各随机抽取200名学生进行调查4.下面是一次随堂测试中小明同学填空题的答题情况,如果你是数学老师,你觉得他的填空题应该得到的总分是()A.0分B.3分C.6分D.9分5.数学来源于生活,又应用于生活,生活中有下列现象:①建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙;②把弯曲的河道改直,可以缩短航程;③木匠师傅锯木料时,一般先在木板上画出两个点,然后过这两点弹出一条墨线;④从A地到B地架设电线,总是尽可能沿着线段AB架设其中能用“经过两点有且只有一条直线”来解释的现象有()A.①②B.①③C.②④D.③④6.将一副直角三角尺按如图所示的不同方式摆放,则图中∠a与∠B相等的是()7.小明在解一元一次方程“端x−3=3x+11”时,一不小心将墨水滴在了作业本上,x前面的系数看不清了,现已知这个方程的解为x=−2,请帮小明算一算,被墨水覆盖的系数是()A.1B.3C.-1D.-48.已知a+2b=5,则代数式3(2a−3b)−4(a−3b+1)+b的值为()A.1B.10C.-1D.不能确定9.《探寻神奇的幻方》一课的学习激起了小明的探索兴趣,他在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的个数之和都相等,则x2y的值为()A.①②B.①③C.②④D.③④10.如图,给正五边形的顶点依次编号为1,2,3,4,5,若从某一个顶点开始,沿正五边形的边顺时针方向行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”,如:小明在编号为2的顶点上时,那么他应走2个边长,即从2→3→4为第一次“移位”,这时他到达编号为4的顶点,接下来他应走4个边长后从4→5→1→2→3为第二次“移位”若小明从编号为1的顶点开始,第2020次“移位”后,则他所处顶点的编号为A.①②B.①③C.②④D.③④二、填空题(每小题3分,共15分)11.代数式5a的意义可解释为12.郑州奥林匹克体育中心作为2019年中华人民共和国第十一届少数民族传统体育运动会的主会场,它包括6万个座位的大型甲级体育场、1.6万个座位的大型甲级体育馆3000个座位的大型甲级游泳馆,总建筑面积约584000平方米,584000用科学记数法表示为13.一个小立方块的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示,其中A、B、C、D、E、F分别代表数字-2、-1、0、1、2、3,则三个小立方块的下底面所标字母代表的数字的和为14.某街道上有一面长9.8米的长条形空墙,现准备按照如图所示方式在墙上张贴“奋进新时代中原更出彩”这10个字,其中每个字的字宽均为50cm,长条形空墙两头所留边空宽度相同,现要求边空宽度:字距宽度=3:2,如图所示,则字距宽度为米。

2019-2020学年上学期期中考试七年级数学试卷

2019-2020学年上学期期中考试七年级数学试卷

2019-2020学年上学期期中考试七年级数学试卷一、选择题(每题3分) 1. 在2213223,0,2,1,,,32354x y x a ab b x x y----++这些代数式中,整式的个数为( ) A. 2个B. 3个C. 4个D. 5个专题】常规题型;整式.【分析】根据整式的定义即可得.【点评】本题主要考查整式,解题的关键是掌握整式的定义2. 下列计算正确的是( )A. 2x x x ⋅=B. 321x x -=C. 222()a b a b -=-D. 224()a a -=-【分析】根据同底数幂的乘法法则,合并同类项法则,完全平方公式即可作出判断.【解答】解:A 、正确; B 、3x-2x=x ,故选项错误;C 、(a-b )2=a 2-2ab+b 2,故选项错误;D 、(-a 2)2=a 4,故选项错误. 故选:A .【点评】本题考查了同底数幂的乘法法则,合并同类项法则,完全平方公式,熟记公式的几个变形公式对解题大有帮助.3. 如果一个两位数的个位、十位上的数字分别是a 、b ,那么这个数可用代数式表示为( )A. baB. 10b a +C. 10a b +D. 10()a b +【专题】应用题.【分析】两位数=10×十位数字+个位数字,把相关字母代入即可求解. 【解答】解:∵个位上的数字是a ,十位上的数字是b , ∴这个两位数可表示为 10b+a . 故选:B .【点评】本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.4. 下列乘法中,能应用平方差公式的是( )A. ()()x y y x --B. (23)(23)x y y x -+C. ()()x y y x --+D. (23)(32)x y y x ---【专题】计算题.【分析】利用平方差公式的结构特征判断即可.【解答】解:能用平方差公式计算的是(-2x-3y )(3y-2x )=4x 2-9y 2. 故选:D .【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5. 若22()(7)x px q x +++的计算结果中,不含2x 项,则q 的值是( )A. 0B. 7C. -7D. 7±【分析】把式子展开,找到所有x 2项的系数,令它的系数分别为0,列式求解即可.【解答】解:∵(x 2+px+q )(x 2+7) =x 4+7x 2+px 3+7px+qx 2+7q =x 4+px 3+(7+q )x 2+7px+7q . ∵乘积中不含x 2项, ∴7+p=0, ∴q=-7. 故选:C .【点评】考查了多项式乘多项式,灵活掌握多项式乘以多项式的法则,注意各项符号的处理.6. 我们规定:!(1)(2)321n n n n =⨯-⨯-⨯⨯⨯,如:1!1,2!21,3!321,,100!100999821==⨯=⨯⨯=⨯⨯⨯⨯,那么,1!2!3!100!++++的个位数字是( ) A. 1 B. 2C. 3D. 4【专题】规律型.【分析】由于1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,5!=5×4×3×2×1=120,后面的个位数字是都是0,依此可求1!+2!+3!+…+100!的个位数字.【解答】解:∵1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,5!=5×4×3×2×1=120,后面的个位数字是都是0, 1+2+6+24=33,∴1!+2!+3!+…+100!的个位数字是3. 故选:C .【点评】本题主要考查了尾数特征,规律型:数字的变化类,在解题时要注意找出规律列出式子并运用简便方法的计算是本题关键.二、填空题(每题2分)7. 已知正方形的边长为a ,用含a 的代数式表示正方形的周长,应为____________.【分析】利用正方形的周长计算公式直接列式即可. 【解答】解:正方形的边长为a ,周长为4a . 故答案为:4a .【点评】此题考查列代数式,掌握正方形的周长计算方法是解决问题的关键. 8. 单项式233a bc -的次数是____________. 【分析】根据单项式次数的概念求解. 【解答】解:单项式-3a 2bc 3的次数是6. 故答案为:6.【点评】本题考查了单项式的知识,一个单项式中所有字母的指数的和叫做单项式的次数.9. 当4a =时,代数式1(2)2a a -的值为____________. 【专题】计算题;实数.【分析】把a 的值代入代数式计算即可求出值. 【解答】故答案为:4【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 10. 把多项式23324133535a b a b a --+按字母a 的降幂排列是____________. 【专题】常规题型.【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列. 【解答】【点评】此题主要考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.11. 如果122x ab -与315y a b +-是同类项,那么x y ⋅=____________.【专题】整式.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关. 【解答】解:由题意,得 x-1=3,y+1=2, 解得x=4,y=1, xy=4, 故答案为:4.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.12. 计算:239632ab ab a b ⎛⎫--+= ⎪⎝⎭____________. 【专题】常规题型.【分析】直接利用单项式乘以多项式运算法则计算得出答案.【解答】故答案为:-6a 2b 2+a 2b-4ab 2.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.13. 计算:(34)(2)a b a b --=____________. 【专题】整式.【分析】根据多项式乘多项式,可得答案. 【解答】解:原式=3a 2-6ab-4ab+8b 2 =3a 2-10ab+8b 2,故答案为:3a 2-10ab+8b 2.【点评】本题考查了多项式乘多项式,利用多项式的乘法是解题关键.14. 三个连续偶数,中间一个数为n ,则这三个数的积为____________. 【专题】常规题型.【分析】根据连续偶数的特征表示出另外两个偶数,再求出它们的积即可.【解答】解:根据题意得:(n-2)•n•(n+2)=n (n 2-4)=n 3-4n . 故答案为:n 3-4n .【点评】此题考查了列代数式以及单项式乘多项式,正确表示出另外两个偶数是解本题的关键.15. 若231m n +-的值为4,则代数式2263m n +-的值为____________.【专题】计算题;实数.【分析】由题意确定出m 2+3n 的值,原式变形后代入计算即可求出值. 【解答】解:由题意得:m 2+3n-1=4,即m 2+3n=5, 则原式=2(m 2+3n )-3=10-3=7, 故答案为:7【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 16. 若2,3mna a ==,则32m na+=____________.【分析】利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形,进而求出答案.【解答】解:∵a m =2,a n =3, ∴a 3m+2n=(a m )3×(a n )2 =23×32 =72.故答案为:72.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键.17. 若多项式2925x mx ++是一个完全平方式,则m =____________. 【专题】计算题.【分析】利用完全平方公式的结构特征判断即可确定出m 的值. 【解答】解:∵9x 2+mx+25是一个完全平方式, ∴m=±30. 故答案为:±30.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档