高考数学知识点总复习教案简单的逻辑联结词、全称量词与存在量词

合集下载

简单的逻辑联结词、全称量词与存在量词(教案)

简单的逻辑联结词、全称量词与存在量词(教案)
课内练习与训练
1、给出下列三个命题
①若 ,则
②若正整数m和n满足 ,则
③设 为圆 上任一点,圆O2以 为圆心且半径为1.当 时,圆O1与圆O2相切
其中假命题的个数为.
2、已知命题p:集合 只有3个真子集, :集合{y|y= }与集合{ }相等.则下列新命题:①p或 ;②p且 ;③非p;④非 .其中真命题序号为________.
【示例】►已知c>0,且c≠1,设p:函数y=cx在R上单调递减;q:函数f(x)=x2-2cx+1在 上为增函数,若“p∧q”为假,“p∨q”为真,求实数c的取值范围.
【试一试】设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根.求使p∨q为真,p∧q为假的实数m的取值范围.
课题
简单的逻辑联结词、全称量词与存在量词
学情分析
学生刚学过这块内容,对其掌握还不是很牢固,需要及时加强巩固。
教学目标与
考点分析
1、理清相关相似概念间的异同点;
2、准确把握逻辑联结词的含义和用法;
3、熟练掌握对含有量词命题的否定的方法。
教学重点
对含有量词命题的否定是本节课的重点。
教学方法
导入法、讲授法、归纳总结法
【例1】►已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬ p1)∨p2和q4:p1∧(¬ p2)中,真命题是().
A.q1,q3B.q2,q3
C.q1,q4D.q2,q4
【训练1】已知命题p:∃x0∈R,使sinx0=;命题q:∀x∈R,都有x2+x+1>0.给出下列结论,其中正确的是().

简单的逻辑联结词、全称量词与存在量词

简单的逻辑联结词、全称量词与存在量词

5 例1、已知命题p : x R, 使得 sin x ;命题q:x R, 2 C ________ 都有x 2 x 1 0, 下列结论中正确的是 __________D A.命题" p q" 是真命题 B.命题" p q" 是真命题 C.命题" p q" 是真命题 D.命题" p q" 是真命题
“有些” “有一个” “对某个” “有 的”等. 通常,将含有变量x的语句用p(x)、q(x)、
r(x)表示,变量x的取值范围用M表示。 特称命题“存在 M中的一个x ,使p(x)成立.
简记为:x M,p(x)
读作“存在一个x属于M,使P(x)成立”。
3、全称命题与特称命题的改写
含有一个量词的全称命题的否定,有下面的结论 全称命题 p : x M,p(x)
① 是真命题的为________.①p∨q;②p∧q.
5、已知命题P :" x [0,1],a e x,命题q :" x R, x 2 4 x a 0" 若命题p q是真命题,则实数a的 C 取值范围是 __________ __ A.( 4,) B.[1,4] C.[e,4] D.( ,1]
通常,将含有变量x的语句用p(x)、q(x)、 r(x)表示,变量x的取值范围用M表示。 全称命题“对 M中任意一个x, 有p(x)成立.
简记为:x M,p(x)
读作“任意x属于M,有P(x)成立”。
2、短语“存在一个”“至少一个” 在逻辑中通 常叫做存在量词.用符号“ ”表示。 含有存在量词的命题,叫做特称命题。 常见的存在量词还有
1.如果命题“p或q”是真命题,命题“p且q” 是假命题,那么( C ) A. 命题p与命题q都是假命题 B. 命题p与命题q都是真命题

简单的逻辑联结词-全称量词与存在量词

简单的逻辑联结词-全称量词与存在量词
解 p为真命题时:m∈[-1,1] m2 8 [2 2,3]. ∵对m∈[-1,1],不等式a2-5a-3≥ m2 8 恒成立,
可得a2-5a-3≥3, ∴a≥6或a≤-1. 命题q:不等式x2+ax+2<0有解,∴Δ=a2-8>0.
a 2 2或a 2 2.
从而命题q为假命题时, 2 2 a 2 2,
∴p真q假时,a的取值范围为 2 2 a 1.
练习: (1)x0 [1,1], x02 x0 1 a 0成立, 求a的取值范围.
(2)x [1,1], x02 x0 1 a 0成立,
求a的取值范围.
解 : (1)x0 [1,1], a x02 x0 1成立,
a ( x02 x0 1)max .
题型分类 深度剖析
题型一 用“或”、“且”、“非” 联结简单命题并判断其真假
【例1】写出由下列各组命题构成的“p∨q”、
“p∧q”、“ p”形式的复合命题,并判断真假.
(1)p:1是质数;q:1是方程x2+2x-3=0的根; (2)p:平行四边形的对角线相等;q:平行四边形的
对角线互相垂直; (3)p:0∈ ;q:{x|x2-3x-5<0} R; (4)p:5≤5;q:27不是质数.
x0 [1,1], x02 x0 a 3 (2)x [1,1],
1的 a x02
值域:[ 3 ,3] x0 14恒成


a ( x02 x0 1)min .
y由(1)知:a 3 4
例5:已知c 0,设P:函数y c x在R上单调 递减,Q : 不等式x x 2c 1的解集为R, 若P和Q有且只有一个正确,求c的取值范围
(C)
A. a∈R,f(x)在(0,+∞)上是增函数

简单的逻辑联结词、全称量词与存在量词讲义

简单的逻辑联结词、全称量词与存在量词讲义

简单的逻辑联结词、全称量词与存在量词讲义一、知识梳理1.简单的逻辑联结词(1)命题中的且、或、非叫做逻辑联结词.(2)命题p且q、p或q、非p的真假判断(1)全称量词:短语“所有的”“任意一个”等在逻辑中通常叫做全称量词,用符号“∀”表示.(2)存在量词:短语“存在一个”“至少有一个”等在逻辑中通常叫做存在量词,用符号“∃”表示.3.全称命题、特称命题及含一个量词的命题的否定1.含有逻辑联结词的命题真假的判断规律(1)p∨q:p,q中有一个为真,则p∨q为真,即有真为真.(2)p∧q:p,q中有一个为假,则p∧q为假,即有假即假.(3)綈p:与p的真假相反,即一真一假,真假相反.2.含有一个量词的命题的否定的规律是“改量词,否结论”.3.命题的否定和否命题的区别:命题“若p,则q”的否定是“若p,则綈q”,否命题是“若綈p,则綈q”.二、基础检验题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)命题“3≥2”是真命题.()(2)命题p和綈p不可能都是真命题.()(3)若命题p,q中至少有一个是真命题,则p∨q是真命题.()(4)“全等三角形的面积相等”是特称命题.()(5)命题綈(p∧q)是假命题,则命题p,q中至少有一个是真命题.()题组二:教材改编2.已知p:2是偶数,q:2是质数,则命题綈p,綈q,p∨q,p∧q中真命题的个数为()A.1 B.2 C.3 D.43.命题“正方形都是矩形”的否定是____________________.题组三易错自纠4.已知命题p,q,“綈p为真”是“p∧q为假”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列命题中的假命题是()A.∃x0∈R,lg x0=1 B.∃x0∈R,sin x0=0C.∀x∈R,x3>0 D.∀x∈R,2x>06.已知命题p:∀x∈R,x2-a≥0;命题p:∃x0∈R,x20+2ax0+2-a=0.若命题“p∧q”是真命题,则实数a的取值范围为__________.三、典型例题题型一:含有逻辑联结词的命题的真假判断1.设a,b,c是非零向量.已知命题p:若a·b=0,b·c=0,则a·c=0;命题q:若a∥b,b∥c,则a∥c.则下列命题中的真命题是()A.p∨q B.p∧qC.(綈p)∧(綈q) D.p∨(綈q)2.已知命题p:∀x>0,ln(x+1)>0;命题q:若a>b,则a2>b2.下列命题为真命题的是()A.p∧q B.p∧(綈q)C.(綈p)∧q D.(綈p)∧(綈q)3.已知命题p:若平面α⊥平面β,平面γ⊥平面β,则有平面α∥平面γ.命题q:在空间中,对于三条不同的直线a,b,c,若a⊥b,b⊥c,则a∥c.对以上两个命题,有以下命题:①p∧q为真;②p∨q为假;③p∨q为真;④(綈p)∨(綈q)为假.其中,正确的是________.(填序号)思维升华:“p∨q”“p∧q”“綈p”等形式命题真假的判断步骤(1)确定命题的构成形式;(2)判断其中命题p、q的真假;(3)确定“p∧q”“p∨q”“綈p”等形式命题的真假.题型二:含有一个量词的命题命题点1:全称命题、特称命题的真假典例下列四个命题:p 1:∃x 0∈(0,+∞),0011()()23x x <; p 2:∃x 0∈(0,1),101023log log x x >;p 3:∀x ∈(0,+∞),x )21(>12log x ; p 4:∀x ∈)310(,,x)21(<13log x .其中真命题是( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4命题点2 含一个量词的命题的否定典例 (1)命题“∀x ∈R ,x)31(>0”的否定是( ) A .∃x 0∈R ,01()3x <0 B .∀x ∈R ,x)31(≤0 C .∀x ∈R ,x)31(<0D .∃x 0∈R ,01()3x ≤0.(2)命题“∃x 0∈R ,1<f (x 0)≤2”的否定形式是( )A .∀x ∈R ,1<f (x )≤2B .∃x 0∈R ,1<f (x 0)≤2C .∃x 0∈R ,f (x 0)≤1或f (x 0)>2D .∀x ∈R ,f (x )≤1或f (x )>2思维升华:(1)判定全称命题“∀x ∈M ,p (x )”是真命题,需要对集合M 中的每一个元素x ,证明p (x )成立;要判断特称命题是真命题,只要在限定集合内找到一个x =x 0,使p (x 0)成立. (2)对全(特)称命题进行否定的方法①找到命题所含的量词,没有量词的要结合命题的含义先加上量词,再改变量词; ②对原命题的结论进行否定.跟踪训练 (1)下列命题是假命题的是( ) A .∃α,β∈R ,使cos(α+β)=cos α+cos β B .∀φ∈R ,函数f (x )=sin(2x +φ)都不是偶函数C .∃x 0∈R ,使x 30+ax 20+bx 0+c =0(a ,b ,c ∈R 且为常数)D .∀a >0,函数f (x )=ln 2x +ln x -a 有零点(2)已知命题p :“∃x 0∈R ,0e x -x 0-1≤0”,则綈p 为( ) A .∃x 0∈R ,0e x -x 0-1≥0 B .∃x 0∈R ,0e x -x 0-1>0 C .∀x ∈R ,e x -x -1>0 D .∀x ∈R ,e x -x -1≥0 题型三 含参命题中参数的取值范围典例 (1)已知命题p :关于x 的方程x 2-ax +4=0有实根;命题q :关于x 的函数y =2x 2+ax +4在[3,+∞)上是增函数,若p ∧q 是真命题,则实数a 的取值范围是________________.(2)已知f (x )=ln(x 2+1),g (x )=x)21(-m ,若对∀x 1∈[0,3],∃x 2∈[1,2],使得f (x 1)≥g (x 2),则实数m 的取值范围是________________.引申探究本例(2)中,若将“∃x 2∈[1,2]”改为“∀x 2∈[1,2]”,其他条件不变,则实数m 的取值范围是___________. 思维升华:(1)已知含逻辑联结词的命题的真假,可根据每个命题的真假,利用集合的运算求解参数的取值范围.(2)对于含量词的命题中求参数的取值范围的问题,可根据命题的含义,利用函数值域(或最值)解决.跟踪训练 (1)已知命题“∃x 0∈R ,使2x 20+(a -1)x 0+12≤0”是假命题,则实数a 的取值范围是( ) A .(-∞,-1) B .(-1,3) C .(-3,+∞)D .(-3,1)(2)(2017·洛阳模拟)已知p :∀x ∈]2141[,,2x <m (x 2+1),q :函数f (x )=4x +2x +1+m -1存在零点,若“p且q ”为真命题,则实数m 的取值范围是__________..四、高频考点一、命题的真假判断典例1(1)(已知a ,b 都是实数,那么“a >b ”是“ln a >ln b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 B解析 由ln a >ln b ⇒a >b >0⇒a >b ,故必要性成立.当a =1,b =0时,满足a >b ,但ln b 无意义,所以ln a >ln b 不成立,故充分性不成立.(2)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x <0,m -x 2,x ≥0,给出下列两个命题:命题p :∃m ∈(-∞,0),方程f (x )=0有解,命题q :若m =19,则f (f (-1))=0,则下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .p ∧(綈q )D .(綈p )∧(綈q )二、充要条件的判断典例2 (1)已知数列{a n }的前n 项和S n =Aq n +B (q ≠0),则“A =-B ”是“数列{a n }是等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 (2)已知圆C :(x -1)2+y 2=r 2(r >0).设p :0<r <3,q :圆C 上至多有2个点到直线x -3y +3=0的距离为1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件三、求参数的取值范围典例3(1)已知命题p :∀x ∈[0,1],a ≥e x ,命题q :∃x 0∈R ,x 20+4x 0+a =0,若命题“p ∧q ”是真命题,则实数a 的取值范围是__________.(2)已知函数f (x )=x +4x ,g (x )=2x +a ,若∀x 1∈]3,21[,∃x 2∈[2,3]使得f (x 1)≥g (x 2),则实数a 的取值范围是________.五、反馈练习1.命题p :对任意x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件.则下列命题为真命题的是( ) A .p ∧q B .(綈p )∧(綈q ) C .(綈p )∧qD .p ∧(綈q )2.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称,则下列判断正确的是( ) A .p 为真 B .綈q 为假 C .p ∧q 为假D .p ∨q 为真3.下列命题中为假命题的是( ) A .∀x ∈)2,0(,x >sin x B .∃x 0∈R ,sin x 0+cos x 0=2C .∀x ∈R ,3x >0D .∃x 0∈R ,lg x 0=04.若定义域为R 的函数f (x )不是偶函数,则下列命题中一定为真命题的是( ) A .∀x ∈R ,f (-x )≠f (x ) B .∀x ∈R ,f (-x )=-f (x ) C .∃x 0∈R ,f (-x 0)≠f (x 0) D .∃x 0∈R ,f (-x 0)=-f (x 0)5.设命题p :∃x 0∈(0,+∞),x 0+1x 0>3;命题q :∀x ∈(2,+∞),x 2>2x ,则下列命题为真的是( )A .p ∧(綈q )B .(綈p )∧qC .p ∧qD .(綈p )∨q6.已知命题p :∃x 0∈R ,cos x 0=54;命题q :∀x ∈R ,x 2-x +1>0.则下列结论正确的是( )A .命题p ∧q 是真命题B .命题p ∧(綈q )是真命题C .命题(綈p )∧q 是真命题D .命题(綈p )∨(綈q )是假命题 7.下列命题中,真命题是( )A .∃x 0∈R ,0e x ≤0B .∀x ∈R ,2x >x 2C .a +b =0的充要条件是ab =-1 D .“a >1,b >1”是“ab >1”的充分条件8.命题p :∀x ∈R ,ax 2+ax +1≥0,若綈p 是真命题,则实数a 的取值范围是( ) A .(0,4]B .[0,4]C .(-∞,0]∪[4,+∞)D .(-∞,0)∪(4,+∞)9.命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为____________________.10.已知函数f (x )的定义域为(a ,b ),若“∃x 0∈(a ,b ),f (x 0)+f (-x 0)≠0”是假命题,则f (a +b )=________. 11.以下四个命题:①∀x ∈R ,x 2-3x +2>0恒成立;②∃x 0∈Q ,x 20=2;③∃x 0∈R ,x 20+1=0;④∀x ∈R,4x 2>2x -1+3x 2.其中真命题的个数为________.12.已知命题p :∃x 0∈R ,(m +1)·(x 20+1)≤0,命题q :∀x ∈R ,x 2+mx +1>0恒成立.若p ∧q 为假命题,则实数m 的取值范围为____________.13.已知命题p :x 2+2x -3>0;命题q :13-x >1,若“(綈q )∧p ”为真,则x 的取值范围是___.14.下列结论:①若命题p :∃x 0∈R ,tan x 0=1;命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(綈q )”是假命题; ②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab =-3;③命题“若x 2-3x +2=0,则x =1”的逆否命题是“若x ≠1,则x 2-3x +2≠0”. 其中正确结论的序号为________.15.已知命题p :∃x 0∈R ,0e x-mx 0=0,命题q :∀x ∈R ,x 2+mx +1≥0,若p ∨(綈q )为假命题,则实数m 的取值范围是____.16.已知函数f (x )=x 2-x +1x -1(x ≥2),g (x )=a x (a >1,x ≥2).(1)若∃x 0∈[2,+∞),使f (x 0)=m 成立,则实数m 的取值范围为________________;(2)若∀x 1∈[2,+∞),∃x 2∈[2, +∞),使得f (x 1)=g (x 2),则实数a 的取值范围为________________.。

简单的逻辑联结词、全称量词与存在量词

简单的逻辑联结词、全称量词与存在量词
第三节
简单的逻辑联结词、全称量词与存在量词
【知识重温】
一、必记3个知识点
1.简单的逻辑联结词
(1) 命 题 中 的 ________
_________ 叫 做 逻 辑 联 结
判断真假 、 __________
判断为真 、判断为假
词.
(2)命题p且q、p或q、非p的真假判断
p
q


p且q
若q,则p
1
-x
+e ≥2,命题q:∃x0∈(0,+∞),2x0 = ,则下列判断正确的是
2
(
)
A.p∧q是真命题
B.(綈p)∧(綈q)是真命题
C.p∧(綈q)是真命题
D.(綈p)∧q是真命题
1
x
-x
x
解析:因为e +e =e + ≥2成立,所以命题p是真命题;又由
e
1
2x0 = =2 - 1 ,得x0 =-1∉(0,+∞),所以命题q是假命题.所以
______


______
綈q,则綈p






p或q
若______
p,则綈q

____
没有关系
____
必要
非p

相同
__
____
充分
____

2.全称量词与存在量词
(1)全称量词:短语“所有的”“任何一个”在逻辑中通常叫做全
充分不必要
称量词,用“∀”表示;含有全称量词的命题叫做________.
不管是全称命题,还是特称命题,若其真假不容易正面判断时,
可先判断其否定的真假.
命题

高考数学复习点拨 《简单的逻辑联结词、全称量词与存在量词》教材解读

高考数学复习点拨 《简单的逻辑联结词、全称量词与存在量词》教材解读

《简单的逻辑联结词、全称量词与存在量词》教材解读一.要点解读1.理解基本逻辑联结词“或”、“且”、“非”的含义,并能加以判断三种复合命题的真假情况。

2.全称量词与存在量词也是刻画命题的常用逻辑用语。

全称命题是陈述某集合中所有元素都具有某种性质的命题,命题中常含有“所有的、对一切、每一个、任意”等全称量词;存在性命题是陈述某集合中有一些元素具有某种性质的命题,命题中常含有“至少存在一个、某些、对某个、有一个”等存在量词。

二.学法指导1.判断复合命题真假的简单程序:(1)确定复合命题的构成形式;(2)判断其中简单命题的真假;(3)根据其真值表判断复合命题的真假。

2.判定全称命题的真假的方法:(1)定义法:对给定的集合的每一个元素x ,)(x p 都为真;(2)代入法:在给定的集合内找出一个0x ,使)(0x p 为假,则全称命题为假。

3.判定存在性命题的真假的方法——代入法:在给定的集合中找到一个元素x ,使命题)(x p 为真,否则命题为假。

4.“若A 则B ”型命题的否定:“若A 则非B ”。

全称命题的否定是存在性命题。

存在性命题的否定是全称命题。

注意命题中可能省略了全称或存在意义的量词,要注意判断。

三.典例剖析1.复合命题的真假判断问题例1.以下判断中正确的是( )A .命题⌝p p b a >122->b a p p ⌝p p p p b a >122->b a b a >122-≤b a b a ≤122-≤b a ⌝p p ⌝p p p p p 212--x x ,那么对命题的补集。

解析:由:|3-4|>2,得:<32或>2,所以﹁:32≤≤2, 即﹁:{|32≤≤2}; 由q :212--x x >0,得q :<-1或>2,所以﹁q :-1≤≤2, 即﹁q :{|-1≤≤2}。

点评:含有一个量词的全称命题的否定,有下面的结论:全称命题:M x ∈∀,)(x p ,它的否定﹁:M x ∈∃,﹁)(x p ,即全称命题的否定是存在命题;含有一个量词的存在命题的否定,有下面的结论:存在命题:M x ∈∃,)(x p ,它的否定﹁:M x ∈∀,﹁)(x p ,即存在命题的否定是全称命题。

高考数学总复习 基础知识名师讲义 第一章 第三节简单的逻辑联结词、全称量词与存在量词 文

高考数学总复习 基础知识名师讲义 第一章 第三节简单的逻辑联结词、全称量词与存在量词 文

第三节 简单的逻辑联结词、全称量词与存在量词知识梳理 一、简单的逻辑联结词常用的逻辑联结词:“且”、“或”、 “非”.二、含有逻辑联结词的命题1.“且”命题:用联结词“且”把命题p 和命题q 联结起来,构成一个新命题,记作p ∧q ,可理解为命题p 和命题q 同时满足.当p ,q 都是真命题时,p ∧q 是真命题;当p ,q 两个命题中有一个命题是假命题时,p ∧q 是假命题.记忆口诀为“一假必假”.2.“或”命题:用联结词“或”把命题p 和命题q 联结起来,构成一个新命题,记作p ∨q ,可理解为命题p 和命题q 至少满足其中一个.当p ,q 两个命题中有一个命题是真命题时,p ∨q 是真命题;当p ,q 都是假命题时,p ∨q 是假命题.记忆口诀为“一真必真”. 3.“非”命题:对一个命题p 全盘否定,构成一个新命题,记作綈p ,可理解为不满足命题p .若p 是真命题,则綈p 必是假命题;若p 是假命题,则綈p 必是真命题.记忆口诀为“真假相对”.命题 否定形式 p 或q 綈p 且綈q p 且q 綈p 或綈q p綈p命题p ,q ,p ∧q ,q p q 非p p ∨q p ∧q 真 真 假 真 真 真 假 假 真 假 假 真 真 真 假 假假真假假4.命题与集合的关系:命题的“且”、“或”、“非”对应集合的“交”、“并”、“补”.5.命题与电路的关系:命题p ∧q 对应着“串联”电路,命题p ∨q 对应着“并联”电路,命题綈p 对应着线路的“断开与闭合”.三、常见词语的否定1.了解逻辑联结词“或”、“且”、“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.正面词语 等于(=) 大于(>) 小于(<) 是 都是 至多有一个 否定 不等于(≠)不大于(≤) 不小于(≥) 不是 不都是 至少有两个 正面词语 或 至多有n 个 任意两个 所有的 任意的 至少有一个 否定且至少有n +1个某两个某些某个一个也没有基础自测1.(2013·东莞二模)命题“∀x ∈R ,x 2+1≥1”的否定是( ) A .∀x ∈R ,x 2+1<1 B .∃x ∈R ,x 2+1≤1 C .∃x ∈R ,x 2+1<1 D .∃x ∈R ,x 2+1≥1解析:∵原命题“∀x ∈R ,有x 2+1≥1”,∴命题“∀x ∈R ,有x 2+1≥1”的否定是:∃x ∈R ,使x 2+1<1. 答案:C2.(2013·大同模拟)已知函数f (x )=x 2+bx (b ∈R ),则下列结论正确的是( ) A .∀b ∈R ,f (x )在(0,+∞)上是增函数 B .∀b ∈R ,f (x )在(0,+∞)上是减函数 C .∃b ∈R ,f (x )为奇函数 D .∃b ∈R ,f (x )为偶函数解析:注意当b =0时,f (x )=x 2是偶函数.故选D. 答案:D3.(2013·山东日照一模)下列命题中,真命题是( ) A .∀x ∈R ,x 2-x -1>0B .∀α,β∈R ,sin(α+β)<sin α+sin βC .函数y =2sin ⎝⎛⎭⎫x +π5的图象的一条对称轴是x =54π D .∃α,β∈R ,sin(α+β)=cos α+cos β解析:对于A :显然x =0,不等式不成立,故∀x ∈R ,x 2-x -1>0是假命题; 对于B :当α=β=0时,sin(α+β)=0,sin α+sin β=0,所以∀α,β∈R ,sin(α+β)<sin α+sin β为假命题;对于C :当x =54π时,y =2sin ⎝⎛⎭⎫x +π5取不到最值,故直线x =54π不是f (x )的对称轴; 对于D :因为sin ⎝⎛⎭⎫π2+π2=cos π2+cos π2=0,所以∃α,β∈R ,sin(α+β)=cos α+cos β成立.故选D.答案:D4. (2012·北京海淀区模拟)已知命题p :∃x ∈R ,x 2+2ax +a ≤0.若命题p 是假命题,则实数a 的取值范围是__________.答案:(0,1)四、全称命题与全称量词、特称命题与存在量词1.全称量词:短语“__________”、“__________”、“________”、“任何”、“任意”、“每一个”在逻辑中通常叫做全称量词,用符号“________”表示.含有全称量词的命题,叫做全称命题.全称命题的形式为“对M 中任意一个x ,有p (x )成立”,记为“∀x ∈M ,p (x )”.2.存在量词:短语“________”、“__________”、“有些”、“某个”、“至少一个”在逻辑中通常叫做存在量词,用符号“________”表示.含有存在量词的命题,叫做特称命题.特称命题的形式为“存在一个x ∈M ,有p (x )成立”,记为“∃x ∈M ,p (x )”.3.含有一个量词的命题的否定.全称命题p :∀x ∈M ,p (x ),它的否定綈p :____________;特称命题p :∃x 0∈M ,p (x 0),它的否定綈p :____________.全称命题的否定是__________命题,特称命题的否定是________命题.1.(2013·湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为( ) A .(綈p )∨(綈q ) B .p ∨(綈q ) C .(綈p )∧(綈q )D .p ∨q解析:“至少有一位学员没有降落在指定范围”即:“甲或乙没有降落在指定范围内”.故选A.答案:A2.(2013·四川卷)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∃x ∈A,2x ∉B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∈B四、1.全部 所有的 一切 任何 任意 每一个 ∀ 2.存在着 有 有些 某个 至少一个 ∃ 3.∃x 0∈M ,綈p (x 0) ∀x ∈M ,綈p (x ) 特称 全称解析:命题p:∀x∈A,2x∈B是一个全称命题,其命题的否定綈p应为∃x∈A ,2x∉B,故选A.答案:A1.(2013·江门一月调研)设命题p:函数y=sin 2x的最小正周期为π2 ;命题q:函数y=2x+12x是偶函数.则下列判断正确的是()A.p为真B.綈q为真C.p∧q为真D.p∨q为真解析:命题p是假命题,命题q是真命题,所以p∨q为真命题.故选D.答案:D2.(2013·湖北襄阳调研)若命题“存在实数x,使x2+ax+1<0”的否定是假命题,则实数a的取值范围为____________.解析:依题意“存在实数x,使x2+ax+1<0”是真命题,所以方程x2+ax+1=0有不等的实根,所以Δ=a2-4>0,得a<-2或a>2.答案:(-∞,-2)∪(2,+∞)。

《 简单的逻辑联结词、全称量词与存在量词》教学设计

《 简单的逻辑联结词、全称量词与存在量词》教学设计

《简单的逻辑联结词、全称量词与存在量词》教学设计一、教材分析:1、教材的地位和作用:正确地使用逻辑用语是现代社会公民应该具备的基本素质。

无论是进行思考、交流,还是从事各项工作,都需要正确的运用逻辑用语表达自己的思维。

常用逻辑用语是认识问题、研究问题不可缺少的工具;在学习数学过程中需要准确全面地理解概念,正确地进行表述、判断和推理,这些都离不开对逻辑知识的掌握和运用,所以逻辑用语在数学中也具有很重要的作用。

而要正确的使用逻辑用语首要的就是准确的使用逻辑联结词,因此本节内容在数学具有很重要的地位。

2、教学的重点和难点:教学重点(1、)会根据《真值表》判断一般复合命题的真假;(2、)全称、特称命题的否定及判断。

教学难点全称、特称命题的否定及判断。

3、教学三维目标:(1)知识与技能:1、理解逻辑联结词“或”、“且”、“非”的含义,会根据《真值表》判断复合命题的真假;2、理解全称量词与存在量词的含义,并会判断一个命题是全称命题还是特称命题,并会判断真假。

(2)过程与方法:在观察和思考、解题中,本节复习课要特别注重学生思维的严密性、总结性品质的培养.(3)情感与态度:减小高考的压力,激发学生的学习热情,激发学生的求知欲,培养严谨的学习态度,培养积极进取的精神,通过探索、发现知识过程,获得成功的体验,锻炼学生克服困难的意志,建立学习数学的自信心。

二、教法与学法分析1、教法分析依据现有学生的年龄特点和心理特征,结合他们的认识水平,在遵循启发式教学原则的基础上,在本节采用讲解法,练习法为主的教学方法,意在通过老师的引导,调动学生学习知识的积极性,从而培养学生观察问题,总结问题和解决问题的能力。

为此,依据新课程的改革要求,本节课采用师生互动的方式,既是以教师为主导,学生为主体的讨论式学习,真正实现新课标下的“以学生为主”的教学摸式。

2、学法分析现代教学理论认为,教师的“教”不仅要让学生“学会知识”,更重要的是让学生“会学知识”,而正确的学法指导是培养学生这种能力的关键,因此在本节的教学中,教师指导学生运用观察,分析讨论,模拟归纳等手段来进行本节课的学习,实现对知识的理解和应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲简单的逻辑联结词、全称量词与存在量词
A级基础演练(时间:30分钟满分:55分)
一、选择题(每小题5分,共20分)
1.(2012·北京朝阳二模)如果命题“p∧q”是假命题,“綈q”也是假命题,则
().A.命题“綈p∨q”是假命题B.命题“p∨q”是假命题
C.命题“綈p∧q”是真命题D.命题“p∧綈q”是真命题
解析由“綈q”为假命题得q为真命题,又“p∧q”是假命题,所以p为假命题,綈p为真命题.所以命题“綈p∨q”是真命题,A错;命题“p∨q”
是真命题,B错;命题“p∧綈q”是假命题,D错;命题“綈p∧q”是真命题,故选C.
答案 C
2.(2012·吉林模拟)已知命题p:有的三角形是等边三角形,则().A.綈p:有的三角形不是等边三角形
B.綈p:有的三角形是不等边三角形
C.綈p:所有的三角形都是等边三角形
D.綈p:所有的三角形都不是等边三角形
解析命题p:有的三角形是等边三角形,其中隐含着存在量词“有的”,所以对它的否定,应该改存在量词为全称量词“所有”,然后对结论进行否定,故有綈p:所有的三角形都不是等边三角形,所以选D.
答案 D
3.(2012·开封二模)下列命题中的真命题是().
A .∃x ∈R ,使得sin x +cos x =32
B .∀x ∈(0,+∞),e x >x +1
C .∃x ∈(-∞,0),2x <3x
D .∀x ∈(0,π),sin x >cos x
解析 因为sin x +cos x =2sin ⎝ ⎛⎭
⎪⎫x +π4≤2<32,故A 错误;当x <0时,y =2x 的图象在y =3x
的图象上方,故C 错误;因为x ∈⎝ ⎛⎭⎪⎫0,π4时有sin x <cos x ,故D 错误.所以选B.
答案 B
4.(2012·潍坊模拟)已知命题p :∃a 0∈R ,曲线x 2
+y 2
a 0=1为双曲线;命题q :x 2
-7x +12<0的解集是{x |3<x <4}.给出下列结论:①命题“p ∧q ”是真命题;②命题“p ∧綈q ”是假命题;③命题“綈p ∨q ”是真命题;④命题“綈p ∨綈q ”是假命题.其中正确的是________.
A .②③
B .①②④
C .①③④
D .①②③④
解析 因为命题p 和命题q 都是真命题,所以命题“p ∧q ”是真命题,命题“p ∧綈q ”是假命题,命题“綈p ∨q ”是真命题,命题“綈p ∨綈q ”是假命题.
答案 D
二、填空题(每小题5分,共10分)
5.命题“存在x ∈R ,使得x 2+2x +5=0成立”的否定是________.
答案 对任意x ∈R ,都有x 2+2x +5≠0
6.(2012·南通调研)存在实数x ,使得x 2-4bx +3b <0成立,则b 的取值范围是
________.
解析 要使x 2-4bx +3b <0成立,只要方程x 2-4bx +3b =0有两个不相等的
实根,即判别式Δ=16b 2-12b >0,解得b <0或b >34.
答案 (-∞,0)∪⎝ ⎛⎭
⎪⎫34,+∞ 三、解答题(共25分)
7.(12分)写出由下列各组命题构成的“p∨q”,“p∧q”,“綈p”形式的新命题,并判断其真假.
(1)p:2是4的约数,q:2是6的约数;
(2)p:矩形的对角线相等,q:矩形的对角线互相平分;
(3)p:方程x2+x-1=0的两个实根的符号相同,q:方程x2+x-1=0的两
实根的绝对值相等.
解(1)p∨q:2是4的约数或2是6的约数,真命题;
p∧q:2是4的约数且2也是6的约数,真命题;
綈p:2不是4的约数,假命题.
(2)p∨q:矩形的对角线相等或互相平分,真命题;
p∧q:矩形的对角线相等且互相平分,真命题;
綈p:矩形的对角线不相等,假命题.
(3)p∨q:方程x2+x-1=0的两个实数根符号相同或绝对值相等,假命题;
p∧q:方程x2+x-1=0的两个实数根符号相同且绝对值相等,假命题;
綈p:方程x2+x-1=0的两个实数根符号不同,真命题.
8.(13分)写出下列命题的否定,并判断真假.
(1)所有的矩形都是平行四边形;
(2)每一个素数都是奇数;
(3)有些实数的绝对值是正数;
(4)某些平行四边形是菱形.
解(1)存在一个矩形不是平行四边形,假命题.
(2)存在一个素数不是奇数,真命题.
(3)所有的实数的绝对值都不是正数,假命题.
(4)每一个平行四边形都不是菱形,假命题.
B级能力突破(时间:30分钟满分:45分)
一、选择题(每小题5分,共10分)
1.(2012·吉林二模)给出如下几个结论:
①命题“∃x∈R,cos x+sin x=2”的否定是“∃x∈R,cos x+sin x≠2”;
②命题“∃x ∈R ,cos x +1sin x ≥2”的否定是“∀x ∈R ,cos x +1sin x <2”;
③对于∀x ∈⎝ ⎛⎭
⎪⎫0,π2,tan x +1tan x ≥2; ④∃x ∈R ,使sin x +cos x = 2.
其中正确的为
( ). A .③ B .③④ C .②③④ D .①②③④
解析 根据全称命题的否定是特称命题,特称命题的否定是全称命题,知①
不正确,②正确;由基本不等式知③正确;由sin x +cos x =2sin ⎝ ⎛⎭
⎪⎫x +π4∈[-2,2]知④正确.
答案 C
2.(2012·江西六校联考)已知命题p :“∀x ∈[1,2]都有x 2≥a ”.命题q :“∃x
∈R ,使得x 2+2ax +2-a =0成立”,若命题“p ∧q ”是真命题,则实数a 的取值范围为
( ). A .(-∞,-2] B .(-2,1)
C .(-∞,-2]∪{1}
D .[1,+∞) 解析 若p 是真命题,即a ≤(x 2)min ,x ∈[1,2],所以a ≤1;若q 是真命题,即x 2+2ax +2-a =0有解,则Δ=4a 2-4(2-a )≥0,即a ≥1或a ≤-2.命题“p ∧q ”是真命题,则p 是真命题,q 也是真命题,故有a ≤-2或a =1. 答案 C
二、填空题(每小题5分,共10分)
3.若命题“∀x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是
________.
解析 当a =0时,不等式显然成立;当a ≠0时,由题意知⎩⎨⎧
a <0,Δ=a 2+8a ≤0,
得-8≤a <0.综上,-8≤a ≤0.
答案 [-8,0]
4.(2012·长沙调研)下列结论:
①若命题p :∃x ∈R ,tan x =33;命题q :∀x ∈R ,x 2-x +1>0.则命题“p
∧綈q ”是假命题;
②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是a b =
-3;
③命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”.其中正确结论的序号为________.
解析 ①中命题p 为真命题,命题q 为真命题,所以p ∧綈q 为假命题,故①正确;
②当b =a =0时,有l 1⊥l 2,故②不正确;
③正确.所以正确结论的序号为①③.
答案 ①③
三、解答题(共25分)
5.(12分)已知c >0,设命题p :函数y =c x 为减函数.命
题q :当x ∈⎣⎢⎡⎦
⎥⎤12,2时,函数f (x )=x +1x >1c 恒成立.如果“p 或q ”为真命题,“p 且q ”为假命题,求c 的取值范围.
解 由命题p 为真知,0<c <1,
由命题q 为真知,2≤x +1x ≤52,
要使此式恒成立,需1c <2,即c >12,
若“p 或q ”为真命题,“p 且q ”为假命题,
则p 、q 中必有一真一假,
当p 真q 假时,c 的取值范围是0<c ≤12;
当p 假q 真时,c 的取值范围是c ≥1.
综上可知,c 的取值范围是⎩⎨⎧⎭
⎬⎫c |0<c ≤12或c ≥1. 6.(13分)已知命题p :方程x 2+mx +1=0有两个不等的负根;命题q :方程4x 2
+4(m -2)x +1=0无实根.若“p ∨q ”为真,“p ∧q ”为假,求实数m 的取值范围.
解 若方程x 2+mx +1=0有两个不等的负根,则
⎩⎨⎧
Δ=m 2-4>0,m >0,解得m >2,即命题p :m >2. 若方程4x 2+4(m -2)x +1=0无实根,
则Δ=16(m -2)2-16=16(m 2-4m +3)<0,
解得1<m <3,即q :1<m <3.
因“p ∨q ”为真,所以p ,q 至少有一个为真,
又“p ∧q ”为假,所以命题p ,q 至少有一个为假,
因此,命题p ,q 应一真一假,即命题p 为真、命题q 为假或命题p 为假、命题q 为真.
∴⎩⎨⎧ m >2,m ≤1或m ≥3或⎩⎨⎧
m ≤2,1<m <3.
解得:m ≥3或1<m ≤2, 即实数m 的取值范围为[3,+∞)∪(1,2].。

相关文档
最新文档