高中数学选修2-1 1.4全称量词与存在量词

合集下载

高二数学选修2-1 全称量词与存在量词(一) ppt

高二数学选修2-1 全称量词与存在量词(一) ppt
短语“存在一个”“至少一个” 短语“存在一个”“至少一个” 在逻辑中通常叫做 ”“至少一个 存在量词.用符号“ 表示。 存在量词.用符号“ ”表示。 ∃ 含有存在量词的命题,叫做特称命题 特称命题。 含有存在量词的命题,叫做特称命题。 常见的存在量 例 : 如 词还有“有些” 词还有“有些” 1 有 个 数 是 数 ) 一 素 不 奇 。 有一个” “有一个” 对某个” 2 有 平 四 形 菱 。 “对某个” ) 的 行 边 是 形 有的” “有的”等.
1.4.3 含有一个量词的命题 的否定
想一想? 想一想?
出 列 题 否 写 下 命 的 定
x 1)所 的 形 是 行 边 ; ∀ ∈M,p(x) 有 矩 都 平 四 形
2)每 个 数 是 数 每 一 素 都 奇 ; 2 3)∀x∈R, x − 2x +1≥ 0 否 : 定
2)存 一 素 不 奇 ; 存 在 个 数 是 数
是整数 3)对所有的x∈R, x > 3 4)对任意一个x∈Z,2x +1 短语“所有的”“任意一个” 在逻辑中通常叫做全 短语“所有的”“任意一个” ”“任意一个 称量词.用符号“ 表示。 称量词.用符号“ ”表示。 ∀ 含有全称量词的命题,叫做全称命题。 含有全称量词的命题,叫做全称命题。 全称命题 常见的全称量词 还有“一切” 还有“一切” 1 对 意 ∈ n +1 奇 。 ) 任 n ,2 是 数 每一个” “每一个” “任 2 所 的 方 都 矩 。 ”“所有的” ) 有 正 形 是 形 给”“所有的 所有的” 等.
想一想? 想一想?
出 列 题 否 写 下 命 的 定 1有 实 的 对 是 数 ) 些 数 绝 值 正 ;
∃x∈M,p(x) ∃x∈M,p(x)

四川省成都市第七中学高中数学人教A版选修2-1课件:1.4全称量词和存在量词

四川省成都市第七中学高中数学人教A版选修2-1课件:1.4全称量词和存在量词
它的否定p : x0∈M, ﹁p(x0)
全称命题的否定是特称命题.
第二十页,编辑于星期日:七点 四十一分。
例5. 写出下列全称命题的否定,并判断真假:
(1) p: 所有能被3整除的整数都是奇数; (2) p: 每一个四边形的四个顶点共圆; (3) p: 对任意x∈Z, x2的个位数字不等于3. 解:(1) ¬p:存在一个能被3整除的整数不是奇数. 真命题;
假命题
(“3)x { x | x是无理数},x2是无理数. 假命题
第九页,编辑于星期日:七点 四十一分。
思考:下列语句是命题吗?⑴与⑶, ⑵与⑷之间有什么关系?
⑴ 2x+1=3; ⑵ x 能被 2 和 3 整除; ⑶ 存在一个 x0∈R,使 2x0+1=3; ⑷ 至少有一个 x0∈Z,x0 能被 2 和 3 整除.
含有存在量词的命题叫做特称命题 (或存在命题)
第十一页,编辑于星期日:七点 四十一分。
特称命题“存在M中的一个x,使p(x)成 立”可用符号简记为
x0∈M, p(x0),
读做“存在一个x0,使p(x0)成立”.
第十二页,编辑于星期日:七点 四十一分。
【例 2】判断下列特称命题的真假: (1)有一个实数 x0 ,使 x02 2x0 3 0 ; (2)存在两个相交平面垂直于同一条直线; (3)有些整数只有两个正因数.
2)某些平行四边形是菱形; 3) x0∈R, x02+1<0
否定:
x0∈M, p(x0) x0∈M, p(x0)
1)所有实数的绝对值都不是正数; x M,p(x)
2)每一个平行四边形都不是菱形; x M,p(x)
3) x R, x2 1 0
x M,p(x)
这些命题和它们的否定在形式上有什么变化?

高中数学选修2-1常用逻辑用语1.4 全称量词与存在量词

高中数学选修2-1常用逻辑用语1.4  全称量词与存在量词

1. 构造一个特称命题, 使 “{x|ax2} 为空集” 是真命题.
解: 特称命题为 ∃a0R, 使 {x|ax2} 为空集.
即存在一个 a00 , 使 {x|ax2} 为空集.
2. 将下列全称命题改为特称命题, 并使命题为假: (1) ∀xR, |sinx|≤1; (2) ∀mR, 直线 mx+y-30 不经过定点 P(0, 3).
1. 构造一个全称命题, 使 |x|>0 是假命题. 解: 当 x0 时, |x|>0 不成立.
只要限制范围内有 x0 的即可. 如: ∀xR, |x|>0.
∀x≥0, |x|>0. ∀x≤0, |x|>0. ∀x(-1, 1), |x|>0. ……
2. 判断下列全称命题的真假:
(1) ∀xR, |sinx|<1;
(2) ∀mR, 直线 mx+y-30 经过定点 P(0, 3).
解:
(1)
当 x k
+
2
,
kZ 时,
|sinx|1,
∴ 全称命题 “∀xR, |sinx|<1” 是假命题.
(2) 将点 P(0, 3) 代入直线的方程 mx+y-30 得
0+3-30, ∴ m 为任意实数时, x0, y3 都是方程的解,
解: (1) ¬p: ∀xR, x2+2x+2>0. (2) ¬p: 所有的三角形都不是等边三角形. (3) ¬p: 所有素数都不含三个正因数.
例5. 写出下列命题的否定, 并判断它们的真假: (1) p: 任意两个等边三角形都是相似的; (2) q: ∃x0R, x02+2x0+20. 解: (1) ¬p: 存在两个等边三角形, 它们不相似. ¬p是假命题.

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词课时规范训练 新人教A版高二选修2-1数学

高中数学 第一章 常用逻辑用语 1.4 全称量词与存在量词课时规范训练 新人教A版高二选修2-1数学

1.4 全称量词与存在量词基础练习1.命题“所有能被2整除的整数都是偶数”的否定是( ) A .所有不能被2整除的整数都是偶数 B .所有能被2整除的整数都不是偶数 C .存在一个不能被2整除的整数是偶数 D .存在一个能被2整除的整数不是偶数 【答案】D【解析】原命题是全称命题,其否定是:存在一个能被2整除的数不是偶数. 2.给出下列几个命题:①至少有一个x 0,使x 20+2x 0+1=0成立; ②对任意的x ,都有x 2+2x +1=0成立; ③对任意的x ,都有x 2+2x +1=0不成立; ④存在x 0,使x 20+2x 0+1=0成立. 其中是全称命题的个数为( ) A .1 B .2 C .3 D .0【答案】B【解析】命题②③都含有全称量词“任意的”,故②③是全称命题. 3.以下四个命题既是特称命题又是真命题的是( ) A .锐角三角形的内角是锐角或钝角 B .至少有一个实数x ,使x 2≤0 C .两个无理数的和必是无理数 D .存在一个负数x ,使1x>2【答案】B【解析】选项A 中锐角三角形的内角是锐角或钝角是全称命题;选项B 中x =0时,x 2=0,所以选项B 既是特称命题又是真命题;选项C 中因为3+(-3)=0,所以选项C 是假命题;D 中对于任一个负数x ,都有1x<0,所以选项D 是假命题.4.已知命题p :∀x ∈R ,2x <3x ;命题q :∃x 0∈R ,x 30=1-x 20,则下列命题中为真命题的是( )A .p ∧qB .(¬p )∧qC .p ∧(¬q )D .(¬p )∧(¬q )【答案】B【解析】因为x =-1时,2-1>3-1,所以命题p :“∀x ∈R,2x <3x”为假命题,则¬p 为真命题.令f (x )=x 3+x 2-1,因为f (0)=-1<0,f (1)=1>0,所以函数f (x )=x 3+x 2-1在(0,1)上存在零点,即命题q :“∃x 0∈R ,x 30=1-x 20”为真命题.则(¬p )∧q 为真命题.故选B .5.命题“∃x 0∈R ,x 20-x 0+3=0”的否定是__________. 【答案】∀x ∈R ,x 2-x +3≠0【解析】∵命题“∃x ∈R ,x 2-x +3=0”是特称命题,∴其否定命题为“∀x ∈R ,x 2-x +3≠0”.6.给出下列命题: ①正方形的四条边相等;②有两个角相等的三角形是等腰三角形; ③正数的平方根不等于0; ④至少有一个正整数是偶数.其中是全称命题的是________;是特称命题的是________.(填序号) 【答案】①②③④【解析】①可表述为“每一个正方形的四条边相等”,是全称命题;②是全称命题,即“凡是有两个角相等的三角形都是等腰三角形”;③可表述为“所有正数的平方根不等于0”是全称命题;④是特称命题.7.判断下列命题的真假,并写出这些命题的否定. (1)∀x ∈N ,x 3>x 2;(2)所有可以被5整除的整数,末位数字都是0; (3)∃x ∈R ,x 2-x +1≤0;(4)存在一个四边形,它的对角线互相垂直且平分.解:(1)当x =1时,13=12,∴x =1时,x 3>x 2不成立,即此命题是假命题. 命题的否定:∃x 0∈N ,x 30≤x 20.(2)15可以被5整除,但15的末位数字不是0, ∴此命题是假命题.命题的否定:有些可以被5整除的整数,末位数字不是0.(3)∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34>0恒成立,∴此命题是假命题.命题的否定:∀x ∈R ,x 2-x +1>0.(4)菱形的对角线互相垂直且平分,∴此命题是真命题.命题的否定:任何一个四边形,它的对角线不互相垂直或不互相平分.8.已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”,若命题“p且q”是真命题,某某数a的取值X围.解:若命题p:“∀x∈[1,2],x2-a≥0”为真命题,则a≤x2在区间[1,2]恒成立,所以a≤(x2)min=1.若命题q:“∃x∈R,x2+2ax+2-a=0”为真命题,则Δ=4a2-4(2-a)≥0,所以a≥1或a≤-2.命题“p且q”为真命题,即命题p,q都为真命题,所以取两个X围的交集,实数a的取值X围为a≤-2或a=1.能力提升9.(2019年某某某某模拟)已知函数f(x)的定义域为(a,b),若“∃x0∈(a,b),f(x0)+f(-x0)≠0”是假命题,则f(a+b)的值为( )A.-1 B.0C.1 D.2【答案】B【解析】若“∃x0∈(a,b),f(x0)+f(-x0)≠0”是假命题,则“∀x∈(a,b),f(x)+f(-x)=0”是真命题,即f(-x)=-f(x),则函数f(x)是奇函数,则a+b=0,即f(a+b)=f(0)=0.10.(2019年某某某某期中)下列关于函数f(x)=x2与函数g(x)=2x的描述,正确的是( )A.∃a0∈R,当x>a0时,总有f(x)<g(x)B.∀x∈R,f(x)<g(x)C.∀x<0,f(x)≠g(x)D.方程f(x)=g(x)在(0,+∞)内有且只有一个实数解【答案】A【解析】在同一坐标系内作出两函数的大致图象,两交点为(2,4),(4,16).当x>4时,由图象知f(x)<g(x),选项A正确,选项B,C,D均错误.11.已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若同时满足条件:①∀x∈R,f(x)<0或g(x)<0;②∃x∈(-∞,-4),f(x)g(x)<0.则m的取值X围是________.【答案】(-4,-2)【解析】由题意知m ≠0,∴f (x )=m (x -2m )(x +m +3)为二次函数.若∀x ∈R ,f (x )<0或g (x )<0,则f (x )必须开口向下,即m <0.f (x )=0的两根x 1=2m ,x 2=-m -3,则x 1-x 2=3m +3.(1)当x 1>x 2,即m >-1时,必须大根x 1=2m <1,即m <12;(2)当x 1<x 2,即m <-1时,大根x 2=-m -3<1,即m >-4;(3)当x 1=x 2,即m =-1时,x 1=x 2=-2<1也满足条件.∴满足条件①的m 的取值X 围为-4<m <0.若∃x ∈(-∞,-4),f (x )g (x )<0,则满足方程f (x )=0的小根小于-4.(1)当m >-1时,小根x 2=-m -3<-4且m <0,无解;(2)当m <-1时,小根x 1=2m <-4且m <0,解得m <-2;(3)当m =-1时,f (x )=-(x +2)2≤0恒成立,∴不满足②.∴满足①②的m 的取值X 围是-4<m <-2.12.已知命题p :∃x ∈R ,使得x 2-2ax +2a 2-5a +4=0;命题q :∀x ∈[0,1],都有(a 2-4a +3)x -3<0.若“p 或q ”为真命题,“p 且q ”为假命题,某某数a 的取值X 围.解:若p 为真命题,则Δ=4a 2-4(2a 2-5a +4)≥0, 解得1≤a ≤4.对于q ,令f (x )=(a 2-4a +3)x -3,若q 为真命题,则f (0)<0且f (1)<0,即⎩⎪⎨⎪⎧-3<0,a 2-4a <0,解得0<a <4.由“p 或q ”为真命题,“p 且q ”为假命题,知p ,q 一真一假,所以⎩⎪⎨⎪⎧1≤a ≤4,a ≤0或a ≥4或⎩⎪⎨⎪⎧a <1或a >4,0<a <4.解得0<a <1 或a =4.故a 的取值X 围是{a |0<a <1 或a =4}.。

人教A版高二数学选修2-1 1.4全称量词与存在量词 课件

人教A版高二数学选修2-1 1.4全称量词与存在量词 课件

【解析】A:∃x0∈{无理数},x02∈Q. B:∃x0∈{无理数}, x02∉Q. C:∀x∈Z,2x+1是奇数. D:∃x0∈R,2x0+1是奇数.
【方法技巧】判断一个语句是全称命题还是特称命题 的步骤 (1)判断语句是否为命题,若不是命题,就当然不是全称 命题或特称命题. (2)若是命题,再分析命题中所含的量词,含有全称量词 的命题是全称命题,含有存在量词的命题是特称命题.
2.基本不等式的内容和指数函数的定义域是什么?
提示:基本不等式:a,b∈R+时, a b
,指数函数的 ab
定义域为R.
2
【解析】1.选C.对于①,这是全称命题,因为Δ=(-3)24×2×4<0,所以2x2-3x+4>0恒成立,故①为真命题;对于 ②,这是全称命题,因为当x=-1时,2x+1>0不成立,故② 为假命题;对于③,这是特称命题,当x0=0或x0=1时,有 x02≤x0成立,故③为真命题;对于④,这是特称命题,当 x0=1时,x0为29的约数成立,所以④为真命题.
【解析】1.选C.因为“有的”“存在”为存在量 词,“任意”为全称量词,所以选项A,B,D均为特称命题, 选项C为全称命题.
2.(1)可以改写为“所有的凸多边形的外角和等于 360°”,是全称命题. (2)含有存在量词“有些”,故是特称命题. (3)含有全称量词“任意”,故是全称命题. (4)含有存在量词“有一个”,是特称命题. 【延伸探究】把本例1中的各个选项用符号∃,∀表示:
【知识探究】 探究点 全称量词(全称命题)与存在量词(特称命题) 的理解 1.你能说出一些常用的全称量词和存在量词吗? 提示:全称量词:一切、任意、任给、每一个、都是 (有)、全体、全部、…,存在量词:有一个、有一些、 有的、对某个、不都是、个别的、部分、….

人教版高中数学选修2-1第一章4全称量词与存在量词(共14张PPT)教育课件

人教版高中数学选修2-1第一章4全称量词与存在量词(共14张PPT)教育课件
2.若“x0 R,函数f (x) mx2 xma 的图象x和轴没有公共点”为题假,命 求实数 a的取值范围。
完全达标教学
2. 已知命题 p:∀x∈[1,2],x2-a≥0; 命题 q:∃x0∈R,x20+2ax0+2-a=0. (1)若命题“p∧q”是真命题,求实数 a 的取值范围; (2)若命题“p∨q”为真命题且“p∧q”为假命题, 求 a 的取值范围.

有些 、 有的 .
符号表示 特称命题
含有
∃ 存在量词
的命题
形式
“存在M中的一个x0,使p(x0)成立”,可用符号
记为 “∃x0∈M;p(x0)”
.
否定
xM,p(x)
3.如何判定全称命题和特称命题的真假? 对全称命题,若要判定为真命题,需对每一个x都验 证使p(x)成立; 若要判定为假命题,只需举一个反例.
学习重要还是人脉重要?现在是一 个双赢 的社会 ,你的 价值可 能更多 的决定 了你的 人脉, 我们所 要做的 可能更 多的是 专心打 造自己 ,把自 己打造 成一个 优秀的 人、有 用的人 、有价 值的人 ,当你 真正成 为一个 优秀有 价值的 人的时 候,你 会惊喜 地发现 搞笑人 脉会破 门而入 。从如 下方 面改进 :1、专 心做可 以提升 自己的 事情; 2、学 习并拥 有更多 的技能 ;3、成 为一个 值得交 往的人 ;4学 会独善 其身, 尽量少 给周围 的人制 造麻烦 ,用你 的独立 赢得尊 重。 理财的时候需要做的一方面提高收入, 令一方 面是节 省开支 。这就 是所谓 的开源 节流。 时间管 理也是 如此, 一方面 要提高 效率, 另一方 面是要 节省时 间。主 要做法 有:1、 同时做 两件事 情(备 注:请 认真选 择哪些 事情可 以同时 做), 比如跑 步的时 候边听 有声书 ;2、 压缩休 息时间 提升睡 眠效率 ,比如 晚睡半 小时早 起半小 时(6~7个小 时即可 );3、 充分利 用零碎 时间学 习,比 如做公 交车、 等车、 上厕所 等。

人教版数学选修2-1第一章第四节全称量词和存在量词

人教版数学选修2-1第一章第四节全称量词和存在量词

2. (湖南卷理2)下列命题中的假命题是(B )
A.x R, 2 0 C.x R,lg x 1
x 1
B.x N ,( x 1) 0 D.x R , tan x 2
2

2 x4 3 ” xR x 3.(安徽卷理11)命题“对任何 , 的否定是________。 (安徽卷文11)命题“存在x∈R,使得x2 +2x+5=0 的否定是 .
假命题
¬p:“不是所有的平行四边形是矩形”
也就是说“存在至少一个平行四边形它不是矩形”
所以,¬p : “存在平行四边形不是矩形” 真命题
***讲授新课***
探究:全称命题和特称命题的否定 对于下列命题进行否定:
(1)所有的人都喝水; (2)存在实数a ,使得 | a | 0

从形式看,全称命题的否定是特称命题。
(1)要证明它是真命题,只需在集合M中,找到一个 元素x0,使p(x0)成立即可。 (2)要判断它是假命题,需对集合M中的每一个元素
x,证明p(x)不成立。
***讲授新课***
探究:
设p:“平行四边形是矩形” (1)命题p是真命题还是假命题 (2)请写出命题p的否定形式 (3)判断¬p的真假
p:“所有的平行四边形是矩形”
全称命题、特称命题常用表述形式 同一个全称命题、特称命题,由于自然语言 的不同,可以有不同的表述方法。
命 题 全称命题
(1)所有x A, p( x)成立.
特称命题
(1)存在x0 A, 使p( x0 )成立.
表 (2)对一切x A, p( x)成立. (2)至少有一个x0 A, 使p( x0 ) 述 (3)对每一个x A, p( x)成立. 成立. 方 (4)任选一个x A, 使p( x) (3)对有些x0 A, 使p( x0 )成立. 法 成立. (4)对某个x0 A, 使p( x0 )成立.

人教版数学高二理科选修2-1第一章全称量词与存在量词

人教版数学高二理科选修2-1第一章全称量词与存在量词

1.4全称量词与存在量词[教材研读]1.预习教材P21和P22思考,回答以下问题(1)命题的语句中的限定短语有什么特点?(2)命题中限定短语的出现对命题真假的判断可以用什么方法?2.预习教材P24探究:对三个命题的否定在形式上有什么特点?[知识梳理]1.全称量词与全称命题2.存在量词与特称命题3.全称命题与特称命题的否定(1)全称命题p:∀x∈M,p(x)的否定綈p:∃x0∈M,綈p(x0);全称命题的否定是特称命题.(2)特称命题p:∃x0∈M,p(x0)的否定綈p:∀x∈M,綈p(x);特称命题的否定是全称命题.[反思诊断]判断(正确的打“√”,错误的打“×”)1.在全称命题和特称命题中,量词都可以省略.()2.“有的等差数列也是等比数列”是特称命题.()3.“三角形内角和是180°”是全称命题.()[答案] 1.× 2.√ 3.√题型一全称命题与特称命题思考:全称命题和特称命题中是否一定含有全称量词和特称量词?提示:命题“正方形是特殊的菱形”,该命题中没有全称量词,即全称命题不一定含有全称量词.判断下列语句是全称命题,还是特称命题.(1)凸多边形的外角和等于360°;(2)有的向量方向不定;(3)对任意角α,都有sin2α+cos2α=1;(4)矩形的对角线不相等;(5)若一个四边形是菱形,则这个四边形的对角线互相垂直.[思路导引]找命题中的量词及其命题的含义.[解](1)可以改为所有的凸多边形的外角和等于360°,故为全称命题.(2)含有存在量词“有的”,故是特称命题.(3)含有全称量词“任意”,故是全称命题.(4)可以改为所有矩形的对角线不相等,故为全称命题.(5)若一个四边形是菱形,也就是所有的菱形,故为全称命题.判定命题是全称命题还是特称命题,主要方法是看命题中含有全称量词还是存在量词.要注意的是有些全称命题并不含有全称量词,这时我们就要根据命题涉及的意义去判断.[跟踪训练]用全称量词或存在量词表示下列语句(1)不等式x2+x+1>0恒成立;(2)当x为有理数时,13x2+12x+1也是有理数;(3)等式sin(α+β)=sinα+sinβ对有些角α,β成立;(4)方程3x-2y=10有整数解.[解](1)对任意实数x,不等式x2+x+1>0成立.(2)对任意有理数x,13x2+12x+1是有理数.(3)存在角α,β,使sin(α+β)=sinα+sinβ成立.(4)存在一对整数x,y,使3x-2y=10成立.题型二全称命题与特称命题的否定思考:全称命题和特称命题的否定有什么特点?提示:全称命题和特称命题的否定分别是特称命题和全称命题.(1)设命题p:∃n∈N,n2>2n,则綈p为()A.∀n∈N,n2>2n B.∃n∈N,n2≤2nC.∀n∈N,n2≤2n D.∃n∈N,n2=2n(2)命题“∀x∈R,∃n∈N*,使得n≥x2”的否定形式是()A.∀x∈R,∃n∈N*,使得n<x2B.∀x∈R,∀n∈N*,使得n<x2C.∃x∈R,∃n∈N*,使得n<x2D.∃x∈R,∀n∈N*,使得n<x2[思路导引]明确命题是全称命题还是特称命题,把全称量词和特称量词互换,再把结论否定.[解析](1)因为“∃x∈M,p(x)”的否定是“∀x∈M,綈p(x)”,所以命题“∃n∈N,n2>2n”的否定是“∀n∈N,n2≤2n”,故选C.(2)由于特称命题的否定形式是全称命题,全称命题的否定形式是特称命题,所以“∀x∈R,∃n∈N*,使得n≥x2”的否定形式为“∃x∈R,∀n∈N*,使得n<x2”.[答案](1)C(2)D(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称命题还是特称命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词,同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定.[跟踪训练]判断下列命题是全称命题还是特称命题,并写出这些命题的否定.(1)有一个奇数不能被3整除;(2)∀x∈Z,x2与3的和不等于0;(3)有些三角形的三个内角都为60°;(4)每个三角形至少有两个锐角;(5)与圆只有一个公共点的直线是圆的切线.[解](1)是特称命题,否定为:每一个奇数都能被3整除.(2)是全称命题,否定为:∃x0∈Z,x20与3的和等于0.(3)是特称命题,否定为:任意一个三角形的三个内角不都为60°.(4)是全称命题,否定为:存在一个三角形至多有一个锐角.(5)是全称命题,省略了全称量词“任意”,即“任意一条与圆只有一个公共点的直线是圆的切线”,否定为:存在一条与圆只有一个公共点的直线不是圆的切线.题型三 利用全称命题与特称命题求参数思考:如何用命题的真假求参数?.提示:转化为集合的关系或转化为求最值问题.若命题“∀x ∈[-1,+∞),x 2-2ax +2≥a ”是真命题,求实数a 的取值范围.[思路导引] 令f (x )=x 2-2ax +2,求最值或参变分离法.[解] 解法一:由题意,∀x ∈[-1,+∞),令f (x )=x 2-2ax +2≥a 恒成立,所以f (x )=(x -a )2+2-a 2≥a 可转化为∀x ∈[-1,+∞),f (x )min ≥a 恒成立,而∀x ∈[-1,+∞),f (x )min =⎩⎪⎨⎪⎧2-a 2,a ≥-1,(1+a )2+2-a 2,a <-1. 由f (x )的最小值f (x )min ≥a ,知a ∈[-3,1].解法二:x 2-2ax +2≥a ,即x 2-2ax +2-a ≥0,令f (x )=x 2-2ax +2-a ,所以全称命题转化为∀x ∈[-1,+∞),f (x )≥0恒成立,所以Δ≤0或⎩⎪⎨⎪⎧ Δ=4a 2-4(2-a )>0,a <-1,f (-1)≥0,即-2≤a ≤1或-3≤a <-2.所以-3≤a ≤1.综上,所求实数a 的取值范围是[-3,1].利用全称命题与特称命题求参数范围的两类题型(1)全称命题的常见题型是“恒成立”问题,全称命题为真时,意味着命题对应的集合中的每一个元素都具有某种性质,所以利用代入可以体现集合中相应元素的具体性质;也可以根据函数等数学知识来解决.(2)特称命题的常见题型是以适合某种条件的结论“存在”“不存在”“是否存在”等语句表达.解答这类问题,一般要先对结论作出肯定存在的假设,然后从肯定的假设出发,结合已知条件进行推理证明,若推出合理的结论,则存在性随之解决;若导致矛盾,则否定了假设.[跟踪训练]已知p:“∀x∈[1,2],x2-a≥0”,q:“∃x0∈R,使x20+2ax0+2-a=0”.若命题“p且q”是真命题,求实数a的取值范围.[解]p为真时,x2-a≥0,即a≤x2.∵x∈[1,2]时,上式恒成立,而x2∈[1,4],∴a≤1.q为真时:Δ=(2a)2-4(2-a)≥0,即a≥1或a≤-2.∵p且q为真命题,∴p,q均为真命题.∴a=1或a≤-2.即实数a的取值范围是(-∞,-2]∪{1}.课堂归纳小结1.判断全称命题的关键:一是先判断是不是命题;二是看是否含有全称量词.2.判定全称命题的真假的方法:定义法:对给定的集合的每一个元素x,p(x)都为真;代入法:在给定的集合内找出一个x0,使p(x0)为假,则全称命题为假.3.判定特称命题真假的方法:代入法,在给定的集合中找到一个元素x,使命题p(x)为真,否则命题为假.1.下列全称命题为真命题的是()A.所有的质数是奇数B .∀x ∈R ,x 2+1≥1C .对每一个无理数x ,x 2也是无理数D .所有的能被5整除的整数,其末位数字都是5[解析] A 、C 、D 可用举反例法判断为假.[答案] B2.已知命题p :∀x >0,x +1x ≥2,则綈p 为( )A .∀x >0,x +1x <2B .∀x ≤0,x +1x <2C .∃x ≤0,x +1x <2D .∃x >0,x +1x <2[答案] D3.下列说法不正确的是( )A .“若p 且q ”为假,则p ,q 至少有一个是假命题B .命题“∃x ∈R ,x 2-x -1<0”的否定是“∀x ∈R ,x 2-x -1≥0”C .“φ=π2”是“y =sin(2x +φ)为偶函数”的充要条件D .当α<0时,幂函数y =x α在(0,+∞)上单调递减[解析] 选项A 、B 、D 很容易判断为真命题,只有C 选项,若φ=3π2时,y =sin(2x +φ)也是偶函数,所以C 选项是假命题.[答案]C4.命题p:∃x0∈R,x20+2x0+5<0是__________(填“全称命题”或“特称命题”),它是__________命题(填“真”或“假”),它的否定为綈p:__________.[解析]很显然命题p是特称命题,又∵Δ=22-4×5<0,∴x2+2x+5>0恒成立,所以命题p是假命题,它的否定綈p:∀x∈R,x2+2x+5≥0.[答案]特称命题假∀x∈R,x2+2x+5≥05.由命题“∃x∈R,x2+2x+m≤0”是假命题,求得实数m的取值范围是(a,+∞),则实数a=__________.[解析]∵“∃x∈R,x2+2x+m≤0”是假命题,∴x2+2x+m>0恒成立,即Δ=4-4m<0,∴m>1.又∵m∈(a,+∞),∴a=1.[答案]1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组长评价:
教师评价: §1.4全称量词与存在量词 编者:史亚军 学习目标 1. 认识常见的全称量词和存在量词;并能用数学符号表示含有量词的命题及判断其命题的真假性;掌握含有一个量词的命题与它们的否定在形式上的变化规律.
2. 使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.
3. 激发学生的学习热情,激发学生的求知欲,培养积极进取的精神.
重点:理解全称量词与存在量词的意义.
难点:全称命题和特称命题真假的判定和含一个量词的否定.
学习过程
使用说明: (1)预习教材P 2 ~ P 8,用红色笔画出疑惑之处,并尝试完成下列问题,总结规律方法;
(2)用严谨认真的态度完成导学案中要求的内容;
(3)不做标记的为C 级,标记★为B 级,标记★★为A 级。

预习案(20分钟)
一.知识链接
下列语句是命题吗?假如是命题你能判断它的真假吗?
(1)是整数;
(2);
(3)如果两个三角形全等,那么它们的对应边相等;
(4)平行于同一条直线的两条直线互相平行;
(5)任丘一中今年所有高中一年级的学生数学课本都是人民教育出版社A 版的教科书;
(6)所有有中国国籍的人都是黄种人;
(7)对所有的;
(8)对任意一个是整数。

二.新知导学
问题1:什么是全称量词?什么是存在量词?它们如何表示?
问题2:我们如何对含有全称量词和存在量词的命题进行否定呢?它们的否定形式有何规律?
问题3:请把下列日常用语,哪些表示全称量词,哪些表示存在量词?
“凡”、“所有”、“有一个”、“一切”、 “ 至多有一个”、“任意一个”、“存在一个”、“有些”、“至少有一个”。

其中: 全称量词的有: 存在量词的有:
问题4:辨别下列命题格式?并给出相应的否定形式?
(1)
(2)
探究案(30分钟)
三.新知探究
【知识点一】含有全称量词和存在量词的命题结构与否定
例1:用符号“”与“”表示下列含有量词的命题?并给出相应的否定形式?
(1)负数的平方是正数;
(2)线段的垂直平分线上的点到这条线段两个端点的距离相等;
(3)有些三角形不是等腰三角形;
(4)存在一对整数,使得;
例2:(★)请给出下列命题的否定形式
命题“”的否定是________ ______。

命题“”的否定是_______________________。

【知识点二】(★)含有全称量词和存在量词的命题的综合应用
例3:已知命题:“”,命题:“”.若命题“且”是真命题,则实数的取值范围为( )
A. 或
B. 或
C. D.
例4:已知,都有恒成立,则的取值范围是;
例5:已知,使得成立,则的取值范围是;
四.我的疑惑
(把自己在使用过程中遇到的疑惑之处写在下面,先组内讨论尝试解决,能解决的划“√”,不能解决的划“×”)
(1)()
(2)()
分享收获
(通过解决本节导学案的内容和疑惑点,归纳一下自己本节的收获,和大家交流一下,写下自己的所得)
随堂评价(15分钟)
学习评价
※自我评价你完成本节导学案的情况为().
A. 很好
B. 较好
C. 一般
D. 较差
※当堂检测(时量:15分钟满分:30分)计分:
1.短语“对所有的”“对任意一个”在逻辑中通常叫做___ ___,并用符号____ ___表示;
含有全称量词的命题,叫做_______________,全称量词“对M中任意一个x,有P(x)成立”简记作_______________。

2.短语“存在一个”“至少有一个”在逻辑中通常叫做________,并用符号________表示;含有存在量词的命题,叫做_______________存在性命题“存在M中的一个x,使p(x)成立”简记作_______________。

3.命题的否定:
全称命题______________________的否定是_____________________;
存在命题______________________的否定是_____________________;
4.下列全称命题中,真命题是:
A. 所有的素数是奇数;
B. ;
C. D.
5.下列特称命题中,假命题是:
A. B.至少有一个能被2和3整除
C. 存在两个相交平面垂直于同一直线
D.x2是有理数.
6. (★)用符号“”与“”表示下面含有量词的命题,并对命题加以否定:
(1)一切矩形都是平行四边行;
(2)无论取什么实数,方程必有实根;
(3)方程至少存在一个负根;
课后巩固(30分钟)
(学习目标:掌握全称量词和存在量词及其否定)
1. 下列存在性命题中真命题的个数是()
①;②至少有一个整数,它既不是合数,也不是素数;
③,x2是无理数。

A.0 B.1 C.2 D.3
2.已知命题,则()
A. B.
C. D.
3.命题“存在”的否定是 ( )
A.不存在
B.存在
C.对任意的
D.对任意的
4.命题:“对任意的”的否定是 ( )
A.不存在
B.存在
C.存在
D.对任意的
5.若函数,则下列结论正确的是 ( )
A. 在(0,+∞)上是增函数
B. 在(0,+∞)上是减函数
C. 是偶函数
D. 是奇函数
6.下列命题中真命题的个数是 ( )

②若是假命题,则都是假命题
③命题“”的否定为“”
A.0
B.1
C.2
D.3
7.命题:“对任意的”的否定是 ( )
A.不存在
B.存在
C.存在
D.对任意的
8.已知命题,;命题,;
则下列判断正确的是 ( )
A. 是真命题
B. 是假命题
C. 是假命题
D. 是假命题
9.下列各组命题中,满足“‘p或q’为真、‘p且q’为假、‘非p’为真”的是( )
A.p:0=∅;q:0∈∅
B.p:在△ABC中,若cos2A=cos2B,则A=B;q:y=sin x在第一象限是增函数
C.p:a+b≥2ab(a,b∈R);q:不等式|x|>x的解集是(-∞,0)
D.p:圆(x-1)2+(y-2)2=1的面积被直线x=1平分;q:∀x∈{1,-1,0},2x+1>0
10.有四个关于三角函数的命题: ( )
::
:,:
其中的假命题是 ( )
A. B. C. D.
11.“”的否定是__________________________
3、“”的否定是________________________
12.若命题“∃∈R,使得”是真命题,则实数的取值范围?
课外阅读
1、表示全体的量词称为全称量词。

表示行式为“任意x……”,“每一个x……”,“所有x……”等。

通常用符号“x”表示,读作“对任意X”。

2、存在量词及表示法,表示部分的量称为存在量词。

表示形式为“有x……”,“存在x……”等。

通常用符号“x”表示,读作“存在x”。

注:(1)全称量词的含义及意义形式。

(2)注意全称量词存在的前提。

3、全称命题、存在性命题及表示形式
含有全称量词的命题称为全称命题,表示为:x M,P(x)
含有存在量词的命题称为存在性命题,表示为:x M,P(x)
其中,M为给定的集合,P(x)是一个关于x的命题。

相关文档
最新文档