2019年云南省曲靖市中考数学试卷及答案(Word解析版)
2019年云南省中考数学真题试题(解析版)

2019年云南省初中学业水平考试数学试题卷(全卷三个大题,共23个小题,共8页;满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.若零上8℃记作+8℃,则零下6℃记作℃.2.分解因式:x 2-2x +1=.3.如图,若AB∥CD,∠1=40度,则∠2=度.4.若点(3,5)在反比例函数)0(≠=k xky 的图象上,则k =. 5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 .6.在平行四边形ABCD 中,∠A=30°,AD =34,BD =4,则平行四边形ABCD 的面积等于 .二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.下列图形既是轴对称图形,又是中心对称图形的是8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.一个十二边形的内角和等于A.2160°B.2080°C.1980°D.1800°10.要使21x有意义,则x的取值范围为A.x≤0B.x≥-1C.x≥0D.x≤-111.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是A.48πB.45πC.36πD.32π12.按一定规律排列的单项式:x3,-x5,x7,-x9,x11,……第n个单项式是A.(-1)n-1x2n-1B.(-1)n x2n-1C.(-1)n-1x2n+1D.(-1)n x2n+113.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是A.4B.6.25C.7.5D.914.若关于x 的不等式组⎩⎨⎧--02)1(2<>x a x 的解集为x >a ,则a 的取值范围是A.a <2B. a ≤2C.a >2D.a ≥2 三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)计算:1021453--+---)()(π16.(本小题满分6分) 如图,AB =AD ,CB =CD. 求证:∠B=∠D.17.(本小题满分8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(本小题满分6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(本小题满分7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(本小题满分8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB∶∠ODC=4∶3,求∠ADO的度数.21.(本小题满分8分)已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值:(2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.(本小题满分9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y 与x 的函数解析式(也称关系式); (2)求这一天销售西瓜获得的利润的最大值.23.(本小题满分12分)如图,B 是⊙C 的直径,M 、D 两点在AB 的延长线上,E 是OC 上的点,且DE 2=DB·DA.延长AE 至F ,使AE =EF ,设BF =10,cos∠BED 54(1)求证:△DEB∽△DAE; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.参考答案及解析一、填空题(本大题共6小题,每小题3分,共18分) 1.若零上8℃记作+8℃,则零下6℃记作℃.【解析】零上记为正数,则零下记为负数,故答案为-6 2.分解因式:x 2-2x +1=.【解析】本题考查公式法因式分解,222)1(112-=+⋅⋅-x x x ,故答案为2)1(-x 3.如图,若AB∥CD,∠1=40度,则∠2=度.【解析】∵AB∥CD,∴同位角相等,∴∠1与∠2互补,∴∠2=180°-40°=140°,故答案为40°4.若点(3,5)在反比例函数)0(≠=k xky 的图象上,则k =. 【解析】∵点(3,5)在反比例函数x k y =上,∴35k=,∴1553=⨯=k 5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如下:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 .【解析】由频数分布直方图知D 等级的人数为13人,由扇形统计图知D 等级的人数为40×30%=12,∴D 等级较多的人数是甲班,故答案为甲班6.在平行四边形ABCD 中,∠A=30°,AD =43,BD =4,则平行四边形ABCD 的面积等于 .【解析】过点D 作DE⊥AB 于E ,∵∠A=30°,∴DE=ADsin30°=32,AE=ADcos30°=4,在Rt△DBE 中,BE=222=-DE BD ,∴AB=AE+BE=6,或AB=AE-BE=2,∴平行四边形ABCD 的面积为312326=⨯或34322=⨯,故答案为312或34二、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)7.下列图形既是轴对称图形,又是中心对称图形的是【解析】根据轴对称和中心对称定义可知,A 选项是轴对称,B 选项既是轴对称又是中心对称,C 选项是轴对称,D 选项是轴对称图形,故选D8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记 数法表示为A.68.8×104B.0.688×106C.6.88×105D.6.88×106【解析】本题考查科学记数法较大数N a 10⨯,其中101<≤a ,N 为小数点移动的位数.∴5,88.6==N a ,故选C 9.一个十二边形的内角和等于 A.2160°B.2080°C.1980°D.1800°【解析】多边形内角和公式为︒⨯-180)2(n ,其中n 为多边形的边的条数.∴十二边形内角和为︒=︒⨯-1800180)212(,故选D10.要使21+x 有意义,则x 的取值范围为 A.x≤0 B.x ≥-1C.x ≥0D.x≤-1【解析】要使21+x 有意义,则被开方数1+x 要为非负数,即01≥+x ,∴1-≥x ,故选B11.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是 A.48π B.45πC.36π D.32π【解析】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A12.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是 A.(-1)n -1x 2n -1B.(-1)n x 2n -1 C.(-1)n -1x 2n +1D.(-1)n x 2n +1【解析】观察可知,奇数项系数为正,偶数项系数为负,∴可以用1)1(--n 或1)1(+-n ,(n 为大于等于1的整数)来控制正负,指数为从第3开始的奇数,所以指数部分规律为12+n ,故选C13.如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF )的面积是A.4B.6.25C.7.5D.9【解析】,∵AB=5,BC=13,CA=12,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形,且∠A=90°,∵⊙O 为△ABC 内切圆,∴∠AFO=∠AEO=90°,且AE=AF ,∴四边形AEOF 为正方形,设⊙O 的半径为r ,∴OE=OF=r,∴S 四边形AEOF =r²,连接AO ,BO ,CO ,∴S △ABC =S △AOB +S △AOC +S △BOC ,∴AC AB BC AC AB ⋅=++21)(21,∴r=2,∴S 四边形AEOF =r²=4,故选A14.若关于x 的不等式组⎩⎨⎧--02)1(2<>x a x 的解集为x >a ,则a 的取值范围是A.a <2B. a ≤2C.a >2D.a ≥2【解析】解不等式组得2>x ,a x >,根据同大取大的求解集的原则,∴2>a ,当2=a 时,也满足不等式的解集为2>x ,∴2≥a ,故选D 三、解答题(本大题共9小题,共70分) 15.(本小题满分6分)计算:1021453--+---)()(π【解析】解:原式=9+1-2-1 ……………………………………………………………………4分=7. (6)分16.(本小题满分6分) 如图,AB =AD ,CB =CD.求证:∠B=∠D.【解析】证明:在△ABC 和△ADC 中,⎪⎩⎪⎨⎧===AC AC DC BC AD AB ……………………………………………3分 ∴△ABC≌ADC(SSS )…………………………………4分 ∴∠B=∠D.…………………………………………………6分 17.(本小题满分8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数; (2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由. 【解析】(1)这15名销售人员该月销售量数据的 平均数为278,中位数为180,众数为90…………………………………………………6分 (2)解:中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人. 所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标.…………………………………8分18.(本小题满分6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动,已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均速度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【解析】解:设甲校师生所乘大巴车的平均速度为x km/h ,则乙校师生所乘大巴车的平均速度为1.5x km/h.根据题意得15.1270240=-xx ………………………………3分 解得x =60,经检验,x =60是原分式方程的解. 1.5x =90.答:甲、乙两校师生所乘大巴车的平均速度分别为60km/h和90km/h…………………6分19.(本小题满分7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【解析】解:(1)方法一:列表法如下:1 2 3 41 (1,1)(1,2)(1,3)(1,4)2 (2,1)(2,2)(2,3)(2,4)3 (3,1)(3,2)(3,3)(3,4)4 (4,1)(4,2)(4,3)(4,4)(x,y)所有可能出现的结果共有16种.………………………………4分方法二:树形图(树状图)法如下:(x ,y )所有可能出现的结果共有16种。
2019年云南省曲靖市中考数学模拟试卷(解析版)

2019年云南省曲靖市中考数学模拟试卷一.选择题(共8小题,满分32分,每小题4分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.关于x的方程(m﹣1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠﹣1D.m>13.有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为()A.32B.40C.24D.304.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个5.已知点P(﹣4,3)关于原点的对称点坐标为()A.(4,3)B.(﹣4,﹣3)C.(﹣4,3)D.(4,﹣3)6.已知事件A:小明刚到教室,上课铃声就响了:事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6.下列说法正确的是()A.只有事件A是随机事件B.只有事件B是随机事件C.都是随机事件D.都是确定性事件7.如图,点A、B、C、D、E都是⊙O上的点,弧AC=弧AE,∠B=118°,则∠D的度数为()A.122°B.124°C.126°D.128°8.已知某公司一月份的收益为10万元,后引进先进设备,收益连续增长,到三月份统计共收益50万元,求二月、三月的平均增长率,设平均增长率为x,可得方程为()A.10(1+x)2=50B.10(1+x)2=40C.10(1+x)+10(1+x)2=50D.10(1+x)+10(1+x)2=40二.填空题(共6小题,满分18分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,已知⊙O是△ABC的内切圆,且∠ABC=60°,∠ACB=80°,则∠BOC的度数为.11.若代数式2x+3的值为7,则代数式4x﹣5的值为.12.用半径为30的一个扇形纸片围成一个底面半径为10的圆锥的侧面,则这个圆锥的侧面积为.13.函数y=(m+2)x2+2x﹣1是二次函数,则m.14.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为.三.解答题(共9小题,满分70分)15.(5分)计算:(π﹣3.14)0+(﹣)﹣2﹣|﹣5|+16.(6分)先化简,再求值:,其中x=﹣1.17.(6分)如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC绕原点O逆时针方向旋转90°得到的△A'B'C';并直接写出点A',B',C'的坐标:A',B',C'.(2)在(1)的条件下,求在旋转的过程中,点A所经过的路径长,(结果保留π)18.(8分)解方程:(1)x2﹣4x+1=0.(2)x2﹣2x﹣3=0.19.(8分)如图,已知二次函数y=﹣x2+bx+3的图象与x轴交于A、C两点(点A在点C的左侧),与y轴交于点B,且OA=OB.(1)求线段AC的长度:(2)若点P在抛物线上,点P位于第二象限,过P作PQ⊥AB,垂足为Q.已知PQ=,求点P的坐标.20.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.21.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天)(1)设存放x天后销售,则这批产品出售的数量为千克,这批产品出售价为元;(2)商家想获得利润22500元,需将这批产品存放多少天后出售?(3)商家将这批产品存放多少天后出售可获得最大利润?最大利润是多少?22.(9分)如图,在⊙O中,半径OC⊥弦AB于点D,点E为优弧AB上一点,连接AE、BE、AC,过点C的直线与EA延长线交于点F,且∠ACF=∠AEB.(1)求证:CF与⊙O相切;(2)若∠AEB=60°,AB=4,求⊙O的半径;(3)在(2)的条件下,若AE=4,求EC的长.23.(12分)已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求抛物线的解析式;(2)过点D(0,)作x轴的平行线交抛物线于E,F两点,求EF的长;(3)当y≤时,直接写出x的取值范围是.2019年云南省曲靖市中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念,结合选项所给图形即可判断.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项正确;D、不是中心对称图形,也不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.关于x的方程(m﹣1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠﹣1D.m>1【分析】根据一元二次方程的定义求解.一元二次方程必须满足二次项系数不为0,所以m﹣1≠0,即可求得m的值.【解答】解:根据一元二次方程的定义得:m﹣1≠0,即m≠1,故选:B.【点评】此题考查一元二次方程,一元二次方程必须满足三个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.(3)整式方程.要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.3.有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为()A.32B.40C.24D.30【分析】取AE中点O,连接OD,根据三角形的面积公式得到△ODE的面积=×△ADE的面积=4,根据正八边形的性质计算.【解答】解:取AE中点O,则点O为正八边形ABCDEFGH外接圆的圆心,连接OD,∴△ODE的面积=×△ADE的面积=×8=4,圆内接正八边形ABCDEFGH是由8个与△,ODE全等的三角形构成.则圆内接正八边形ABCDEFGH为8×4=32,故选:A.【点评】本题考查的是正多边形和圆,掌握三角形面积公式,正八边形的性质是解题的关键.4.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个【分析】利用频率估计概率得到摸到黄球的概率为0.3,然后根据概率公式计算即可.【解答】解:设袋子中黄球有x个,根据题意,得:=0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.已知点P(﹣4,3)关于原点的对称点坐标为()A.(4,3)B.(﹣4,﹣3)C.(﹣4,3)D.(4,﹣3)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:P(﹣4,3)关于原点的对称点坐标为(4,﹣3),故选:D.【点评】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.6.已知事件A:小明刚到教室,上课铃声就响了:事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6.下列说法正确的是()A.只有事件A是随机事件B.只有事件B是随机事件C.都是随机事件D.都是确定性事件【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件.【解答】解:事件A:小明刚到教室,上课铃声就响了,属于随机事件;事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6,属于必然事件.∴只有事件A是随机事件,故选:A.【点评】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7.如图,点A、B、C、D、E都是⊙O上的点,弧AC=弧AE,∠B=118°,则∠D的度数为()A.122°B.124°C.126°D.128°【分析】连接AC、CE,根据圆内接四边形的性质求出∠AEC,根据三角形内角和定理求出∠CAE,根据圆内接四边形的性质计算即可.【解答】解:连接AC、CE,∵点A、B、C、E都是⊙O上的点,∴∠AEC=180°﹣∠B=62°,∵弧AC=弧AE,∴∠ACE=∠AEC=62°,∴∠CAE=180°﹣62°﹣62°=56°,∵点A、C、D、E都是⊙O上的点,∴∠D=180°﹣56°=124°,故选:B.【点评】本题考查的是圆内接四边形的性质,圆周角定理,三角形内角和定理,掌握圆内接四边形的对角互补是解题的关键.8.已知某公司一月份的收益为10万元,后引进先进设备,收益连续增长,到三月份统计共收益50万元,求二月、三月的平均增长率,设平均增长率为x,可得方程为()A.10(1+x)2=50B.10(1+x)2=40C.10(1+x)+10(1+x)2=50D.10(1+x)+10(1+x)2=40【分析】设平均增长率为x,则二月份的收益为10(1+x)万元,三月份的收益为10(1+x)2万元,根据前三个月的累计收益为50万元,即可得出关于x的一元二次方程,此题得解.【解答】解:设平均增长率为x,则二月份的收益为10(1+x)万元,三月份的收益为10(1+x)2万元,根据题意得:10+10(1+x)+10(1+x)2=50,即10(1+x)+10(1+x)2=40.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共6小题,满分18分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为4.【分析】直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.【解答】解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.【点评】此题主要考查了二次根式有意义的条件以及负指数幂的性质,正确得出a的值是解题关键.10.如图,已知⊙O是△ABC的内切圆,且∠ABC=60°,∠ACB=80°,则∠BOC的度数为110°.【分析】根据三角形的内心的概念得到∠OBC=∠ABC=30°,∠OCB=∠ACB=40°,根据三角形内角和定理计算即可.【解答】解:∵⊙O是△ABC的内切圆,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=40°,∴∠BOC=180°﹣∠OBC﹣∠OCB=110°,故答案为:110°.【点评】本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握三角形的内心是三角形三个内角角平分线的交点是解题的关键.11.若代数式2x+3的值为7,则代数式4x﹣5的值为3.【分析】根据题意确定出2x的值,代入原式计算即可得到结果.【解答】解:根据题意得:2x+3=7,即2x=4,则4x﹣5=2×4﹣5=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.用半径为30的一个扇形纸片围成一个底面半径为10的圆锥的侧面,则这个圆锥的侧面积为300π.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长解答即可.=•2πr•l=πrl=π×10×30=300π,【解答】解:这个圆锥的侧面积为S侧故答案为:300π.【点评】此题考查圆锥的计算,关键是根据圆锥的侧面积为S=•2πr•l=πrl解答.侧13.函数y=(m+2)x2+2x﹣1是二次函数,则m≠﹣2.【分析】根据二次函数的定义进行计算即可.【解答】解:∵函数y=(m+2)x2+2x﹣1是二次函数,∴m+2≠0,∴m≠﹣2.故答案为:≠﹣2.【点评】本题考查了二次函数的定义,掌握二次函数的定义是解题的关键.14.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为10096.【分析】由图象可知点B2019在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B2019在x轴上,∵OA=,OB=4,∠AOB=90°,∴AB=,∴B2(10,4),B4(20,4),B6(30,4),…∴B2018(10090,4).∴点B2019横坐标为10090++=10096.故答案为:10096.【点评】本题考查坐标与图形的变化﹣旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.三.解答题(共9小题,满分70分)15.(5分)计算:(π﹣3.14)0+(﹣)﹣2﹣|﹣5|+【分析】直接利用负指数幂的性质以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=1+4﹣5+3=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.(6分)先化简,再求值:,其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=﹣,当x=﹣1时,原式=﹣1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(6分)如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC绕原点O逆时针方向旋转90°得到的△A'B'C';并直接写出点A',B',C'的坐标:A'(﹣4,﹣3),B'(﹣2,﹣5),C'(﹣1,﹣2).(2)在(1)的条件下,求在旋转的过程中,点A所经过的路径长,(结果保留π)【分析】(1)将三顶点分别绕原点O逆时针方向旋转90°得到对应点,再顺次连接即可得;(2)利用弧长公式求解可得.【解答】解:(1)如图所示,△A'B'C'即为所求.由图知,A′(﹣4,﹣3),B′(﹣2,﹣5),C′(﹣1,﹣2),故答案为:(﹣4,﹣3),(﹣2,﹣5),(﹣1,﹣2);(2)连接OA,则OA==5,所以点A所走的路径长为=π.【点评】本题考查了利用旋转变换作图,以及弧长的计算,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键.18.(8分)解方程:(1)x2﹣4x+1=0.(2)x2﹣2x﹣3=0.【分析】(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解;(2)由“十字相乘法”对等式的左边进行因式分解.【解答】解:(1)x2﹣4x+1=0.移项得,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,即(x﹣2)2=3,开平方,得x﹣2=±,解得,x1=2,x2=2﹣;(2)x2﹣2x﹣3=0,则(x﹣3)(x+1)=0,x﹣3=0或x+1=0解得,x1=3,x2=﹣1.【点评】本题考查了解一元二次方程.解一元二次方程的方法有直接开平方法,配方法,因式分解法以及换元法等,解方程时,需要根据方程的特点选择解方程的方法.19.(8分)如图,已知二次函数y=﹣x2+bx+3的图象与x轴交于A、C两点(点A在点C的左侧),与y轴交于点B,且OA=OB.(1)求线段AC的长度:(2)若点P在抛物线上,点P位于第二象限,过P作PQ⊥AB,垂足为Q.已知PQ=,求点P的坐标.【分析】(1)根据题意可以求得点B的坐标,从而可得到点A的坐标,进而求得函数解析式,再令y=0,即可得到点C的坐标,从而可以得到线段AC的长;(2)根据点A和点B的坐标可以得到直线AB的函数解析式,然后根据二次函数的性质和平行线的性质,可以求得点P的坐标,本题得以解决.【解答】解:(1)∵二次函数y=﹣x2+bx+3的图象与y轴交于点B,且OA=OB,∴点B的坐标为(0,3),∴OB=OA=3,∴点A的坐标为(﹣3,0),∴0=﹣(﹣3)2+b×(﹣3)+3,解得,b=﹣2,∴y=﹣x2﹣2x+3=﹣(x+3)(x﹣1),∴当y=0时,x1=﹣3,x2=1,∴点C的坐标为(1,0),∴AC=1﹣(﹣3)=4,即线段AC的长是4;(2)∵点A(﹣3,0),点B(3,0),∴直线AB的函数解析式为y=x+3,过点P作PD∥y轴交直线AB于点D,设点P的坐标为(m,﹣m2﹣2m+3),则点D的坐标为(m,m+3),∴PD=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m,∵PD∥y轴,∠ABO=45°,∴∠PDQ=∠ABO=45°,又∵PQ⊥AB,PQ=,∴△PDQ是等腰直角三角形,∴PD==2,∴﹣m2﹣3m=2,解得,m1=﹣1,m2=﹣2,当m=﹣1时,﹣m2﹣2m+3=4,当m=﹣2时,﹣m2﹣2m+3=3,∴点P的坐标为(﹣2,3)或(﹣1,4).【点评】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.20.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【分析】(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,根据概率公式计算可得;(2)列表得出所有等可能结果,从中找到乘积为正数的结果数,再利用概率公式求解可得.【解答】解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,所以转出的数字是﹣2的概率为=;(2)列表如下:﹣2﹣21133﹣244﹣2﹣2﹣6﹣6﹣244﹣2﹣2﹣6﹣61﹣2﹣211331﹣2﹣211333﹣6﹣633993﹣6﹣63399由表可知共有36种等可能结果,其中数字之积为正数的有20种结果,所以这两次分别转出的数字之积为正数的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天)(1)设存放x天后销售,则这批产品出售的数量为(1800﹣6x)千克,这批产品出售价为(10+0.5x)元;(2)商家想获得利润22500元,需将这批产品存放多少天后出售?(3)商家将这批产品存放多少天后出售可获得最大利润?最大利润是多少?【分析】(1)根据“销售价格=市场价格+0.5×存放天数,销售数量=原购入量﹣6×存放天数”列出代数式即可;(2)按照等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数方程求解即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【解答】解:(1)存放x天后销售价格为:10+0.5x;销售数量为:1800﹣6x;故答案为:(10+0.5x),(1800﹣6x);(2)由题意y与x之间的函数关系式为y=(10+0.5x)(1800﹣6x)=﹣3x2+840x+18000(1≤x ≤90,且x为整数);﹣3x2+840x+18000﹣10×1800﹣240x=22500解方程得:x1=50,x2=150(不合题意,舍去)故需将这批产品存放50天后出售;(3)设利润为w,由题意得w=﹣3x2+840x+18000﹣10×1800﹣240x=﹣3(x﹣100)2+30000∵a=﹣3<0,∴抛物线开口方向向下,=29700,∴x=90时,w最大∴商家将这批产品存放90天后出售可获得最大利润,最大利润是29700元.【点评】此题主要考查了二次函数的应用以及二次函数的最值求法,根据函数关系式求出以及最值公式求出是解题关键.22.(9分)如图,在⊙O中,半径OC⊥弦AB于点D,点E为优弧AB上一点,连接AE、BE、AC,过点C的直线与EA延长线交于点F,且∠ACF=∠AEB.(1)求证:CF与⊙O相切;(2)若∠AEB=60°,AB=4,求⊙O的半径;(3)在(2)的条件下,若AE=4,求EC的长.【分析】(1)根据垂径定理得到=,求得∠FEC=∠BEC=∠AEB,等量代换得到∠ACF =∠BEC,推出AB∥CF,于是得到结论;(2)连接OA,根据圆周角定理得到∠AEC=30°,求得∠AOD=2∠AEC=60°,解直角三角形的即可得到结论;(3)连接OE,过A作AH⊥CE于H,根据勾股定理的逆定理得到∠AOE=90°,根据圆周角定理得到∠ACE=AOE=45°,解直角三角形即可得到结论.【解答】(1)证明:∵半径OC⊥弦AB于点D,∴=,∴∠FEC=∠BEC=∠AEB,∵∠ACF=∠AEB,∴∠ACF=∠BEC,∵∠BAC=∠BEC,∴∠ACF=∠CAB,∴AB∥CF,∵OC⊥AB,∴OC⊥CF,∴CF与⊙O相切;(2)解:连接OA,∵∠AEB=60°,∴∠AEC=30°,∴∠AOD=2∠AEC=60°,∴在Rt△AOD中,AD=AB=2,∠AOD=60°,∴OA==4,∴⊙O的半径为4;(3)解:连接OE,过A作AH⊥CE于H,∵OE2+OA2=42+42=32=(4)2=AE2,∴∠AOE=90°,∴∠ACE=AOE=45°,在Rt△AEH中,∵∠AEH=30°,AE=4,∴AH=2,EH=2,在Rt△AHC中,∵∠ACH=45°,∴CH=AH=2,∴CE=CH+EH=2+2.【点评】本题考查了切线的判定和性质,解直角三角形,等腰直角三角形的判定和性质,圆周角定理,垂径定理,正确的作出辅助线是解题的关键.23.(12分)已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求抛物线的解析式;(2)过点D(0,)作x轴的平行线交抛物线于E,F两点,求EF的长;(3)当y≤时,直接写出x的取值范围是x或x.【分析】(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+3,即可求解;(2)把点D的y坐标代入y=﹣x2+2x+3,即可求解;(3)直线EF下侧的图象符合要求.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+3,解得:a=﹣1,b=2,抛物线的解析式为y=﹣x2+2x+3;(2)把点D的y坐标y=,代入y=﹣x2+2x+3,解得:x=或,则EF长=﹣(﹣)=2;(3)由题意得:当y≤时,直接写出x的取值范围是x或x,故答案为:x或x.【点评】本题考查的是函数与直线的交点,是一道基本题,难度不大.。
2019年云南省曲靖市中考数学模拟试卷(解析版)

2019年云南省曲靖市中考数学模拟试卷一.选择题(共8小题,满分32分,每小题4分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.关于x 的方程(m ﹣1)x 2+2mx ﹣3=0是一元二次方程,则m 的取值是( ) A .任意实数 B .m ≠1 C .m ≠﹣1 D .m >13.有一圆内接正八边形ABCDEFGH ,若△ADE 的面积为8,则正八边形ABCDEFGH 的面积为( )A .32B .40C .24D .304.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有( )A .12个B .14个C .18个D .28个5.已知点P (﹣4,3)关于原点的对称点坐标为( )A .(4,3)B .(﹣4,﹣3)C .(﹣4,3)D .(4,﹣3) 6.已知事件A :小明刚到教室,上课铃声就响了:事件B :掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6.下列说法正确的是( ) A .只有事件A 是随机事件B .只有事件B 是随机事件C .都是随机事件D .都是确定性事件 7.如图,点A 、B 、C 、D 、E 都是⊙O 上的点,弧AC =弧AE ,∠B =118°,则∠D 的度数为( )A .122°B .124°C .126°D .128°8.已知某公司一月份的收益为10万元,后引进先进设备,收益连续增长,到三月份统计共收益50万元,求二月、三月的平均增长率,设平均增长率为x,可得方程为()A.10(1+x)2=50B.10(1+x)2=40C.10(1+x)+10(1+x)2=50D.10(1+x)+10(1+x)2=40二.填空题(共6小题,满分18分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,已知⊙O是△ABC的内切圆,且∠ABC=60°,∠ACB=80°,则∠BOC的度数为.11.若代数式2x+3的值为7,则代数式4x﹣5的值为.12.用半径为30的一个扇形纸片围成一个底面半径为10的圆锥的侧面,则这个圆锥的侧面积为.13.函数y=(m+2)x2+2x﹣1是二次函数,则m.14.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为.三.解答题(共9小题,满分70分)15.(5分)计算:(π﹣3.14)0+(﹣)﹣2﹣|﹣5|+16.(6分)先化简,再求值:,其中x=﹣1.17.(6分)如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC绕原点O逆时针方向旋转90°得到的△A'B'C';并直接写出点A',B',C'的坐标:A',B',C'.(2)在(1)的条件下,求在旋转的过程中,点A所经过的路径长,(结果保留π)18.(8分)解方程:(1)x2﹣4x+1=0.(2)x2﹣2x﹣3=0.19.(8分)如图,已知二次函数y=﹣x2+bx+3的图象与x轴交于A、C两点(点A在点C的左侧),与y轴交于点B,且OA=OB.(1)求线段AC的长度:(2)若点P在抛物线上,点P位于第二象限,过P作PQ⊥AB,垂足为Q.已知PQ=,求点P的坐标.20.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.21.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天)(1)设存放x天后销售,则这批产品出售的数量为千克,这批产品出售价为元;(2)商家想获得利润22500元,需将这批产品存放多少天后出售?(3)商家将这批产品存放多少天后出售可获得最大利润?最大利润是多少?22.(9分)如图,在⊙O中,半径OC⊥弦AB于点D,点E为优弧AB上一点,连接AE、BE、AC,过点C的直线与EA延长线交于点F,且∠ACF=∠AEB.(1)求证:CF与⊙O相切;(2)若∠AEB=60°,AB=4,求⊙O的半径;(3)在(2)的条件下,若AE=4,求EC的长.23.(12分)已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求抛物线的解析式;(2)过点D(0,)作x轴的平行线交抛物线于E,F两点,求EF的长;(3)当y≤时,直接写出x的取值范围是.2019年云南省曲靖市中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分32分,每小题4分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念,结合选项所给图形即可判断.【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,是轴对称图形,故本选项错误;C、既是中心对称图形,也是轴对称图形,故本选项正确;D、不是中心对称图形,也不是轴对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.关于x的方程(m﹣1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠﹣1D.m>1【分析】根据一元二次方程的定义求解.一元二次方程必须满足二次项系数不为0,所以m﹣1≠0,即可求得m的值.【解答】解:根据一元二次方程的定义得:m﹣1≠0,即m≠1,故选:B.【点评】此题考查一元二次方程,一元二次方程必须满足三个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.(3)整式方程.要特别注意二次项系数a≠0这一条件,当a=0时,上面的方程就不是一元二次方程了.当b=0或c=0时,上面的方程在a≠0的条件下,仍是一元二次方程,只不过是不完全的一元二次方程.3.有一圆内接正八边形ABCDEFGH,若△ADE的面积为8,则正八边形ABCDEFGH的面积为()A.32B.40C.24D.30【分析】取AE中点O,连接OD,根据三角形的面积公式得到△ODE的面积=×△ADE的面积=4,根据正八边形的性质计算.【解答】解:取AE中点O,则点O为正八边形ABCDEFGH外接圆的圆心,连接OD,∴△ODE的面积=×△ADE的面积=×8=4,圆内接正八边形ABCDEFGH是由8个与△,ODE全等的三角形构成.则圆内接正八边形ABCDEFGH为8×4=32,故选:A.【点评】本题考查的是正多边形和圆,掌握三角形面积公式,正八边形的性质是解题的关键.4.在一个不透明的布袋中装有40个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.30左右,则布袋中黄球可能有()A.12个B.14个C.18个D.28个【分析】利用频率估计概率得到摸到黄球的概率为0.3,然后根据概率公式计算即可.【解答】解:设袋子中黄球有x个,根据题意,得:=0.30,解得:x=12,即布袋中黄球可能有12个,故选:A.【点评】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.已知点P(﹣4,3)关于原点的对称点坐标为()A.(4,3)B.(﹣4,﹣3)C.(﹣4,3)D.(4,﹣3)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【解答】解:P(﹣4,3)关于原点的对称点坐标为(4,﹣3),故选:D.【点评】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键.6.已知事件A:小明刚到教室,上课铃声就响了:事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6.下列说法正确的是()A.只有事件A是随机事件B.只有事件B是随机事件C.都是随机事件D.都是确定性事件【分析】事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的.在一定条件下,可能发生也可能不发生的事件,称为随机事件.【解答】解:事件A:小明刚到教室,上课铃声就响了,属于随机事件;事件B:掷一枚质地均匀的骰子(骰子的六个面上分别刻有1到6的点数),向上一面的点数不大于6,属于必然事件.∴只有事件A是随机事件,故选:A.【点评】本题主要考查了随机事件,事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件.7.如图,点A、B、C、D、E都是⊙O上的点,弧AC=弧AE,∠B=118°,则∠D的度数为()A.122°B.124°C.126°D.128°【分析】连接AC、CE,根据圆内接四边形的性质求出∠AEC,根据三角形内角和定理求出∠CAE,根据圆内接四边形的性质计算即可.【解答】解:连接AC、CE,∵点A、B、C、E都是⊙O上的点,∴∠AEC=180°﹣∠B=62°,∵弧AC=弧AE,∴∠ACE=∠AEC=62°,∴∠CAE=180°﹣62°﹣62°=56°,∵点A、C、D、E都是⊙O上的点,∴∠D=180°﹣56°=124°,故选:B.【点评】本题考查的是圆内接四边形的性质,圆周角定理,三角形内角和定理,掌握圆内接四边形的对角互补是解题的关键.8.已知某公司一月份的收益为10万元,后引进先进设备,收益连续增长,到三月份统计共收益50万元,求二月、三月的平均增长率,设平均增长率为x,可得方程为()A.10(1+x)2=50B.10(1+x)2=40C.10(1+x)+10(1+x)2=50D.10(1+x)+10(1+x)2=40【分析】设平均增长率为x,则二月份的收益为10(1+x)万元,三月份的收益为10(1+x)2万元,根据前三个月的累计收益为50万元,即可得出关于x的一元二次方程,此题得解.【解答】解:设平均增长率为x,则二月份的收益为10(1+x)万元,三月份的收益为10(1+x)2万元,根据题意得:10+10(1+x)+10(1+x)2=50,即10(1+x)+10(1+x)2=40.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.二.填空题(共6小题,满分18分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为4.【分析】直接利用二次根式有意义的条件得出a的值,进而利用负指数幂的性质得出答案.【解答】解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.【点评】此题主要考查了二次根式有意义的条件以及负指数幂的性质,正确得出a的值是解题关键.10.如图,已知⊙O是△ABC的内切圆,且∠ABC=60°,∠ACB=80°,则∠BOC的度数为110°.【分析】根据三角形的内心的概念得到∠OBC=∠ABC=30°,∠OCB=∠ACB=40°,根据三角形内角和定理计算即可.【解答】解:∵⊙O是△ABC的内切圆,∴∠OBC=∠ABC=30°,∠OCB=∠ACB=40°,∴∠BOC=180°﹣∠OBC﹣∠OCB=110°,故答案为:110°.【点评】本题考查的是三角形的内切圆与内心,三角形内角和定理,掌握三角形的内心是三角形三个内角角平分线的交点是解题的关键.11.若代数式2x+3的值为7,则代数式4x﹣5的值为3.【分析】根据题意确定出2x的值,代入原式计算即可得到结果.【解答】解:根据题意得:2x+3=7,即2x=4,则4x﹣5=2×4﹣5=3,故答案为:3.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.12.用半径为30的一个扇形纸片围成一个底面半径为10的圆锥的侧面,则这个圆锥的侧面积为300π.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长解答即可.=•2πr•l=πrl=π×10×30=300π,【解答】解:这个圆锥的侧面积为S侧故答案为:300π.=•2πr•l=πrl解答.【点评】此题考查圆锥的计算,关键是根据圆锥的侧面积为S侧13.函数y=(m+2)x2+2x﹣1是二次函数,则m≠﹣2.【分析】根据二次函数的定义进行计算即可.【解答】解:∵函数y=(m+2)x2+2x﹣1是二次函数,∴m+2≠0,∴m≠﹣2.故答案为:≠﹣2.【点评】本题考查了二次函数的定义,掌握二次函数的定义是解题的关键.14.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,4),则点B2019的横坐标为10096.【分析】由图象可知点B2019在第一象限,求出B2,B4,B6的坐标,探究规律后即可解决问题.【解答】解:由图象可知点B2019在x轴上,∵OA=,OB=4,∠AOB=90°,∴AB=,∴B2(10,4),B4(20,4),B6(30,4),…∴B2018(10090,4).∴点B2019横坐标为10090++=10096.故答案为:10096.【点评】本题考查坐标与图形的变化﹣旋转、勾股定理等知识,解题的关键是从特殊到一般探究规律,发现规律,利用规律解决问题,属于中考常考题型.三.解答题(共9小题,满分70分)15.(5分)计算:(π﹣3.14)0+(﹣)﹣2﹣|﹣5|+【分析】直接利用负指数幂的性质以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=1+4﹣5+3=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.(6分)先化简,再求值:,其中x=﹣1.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=÷=•=﹣,当x=﹣1时,原式=﹣1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(6分)如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC绕原点O逆时针方向旋转90°得到的△A'B'C';并直接写出点A',B',C'的坐标:A'(﹣4,﹣3),B'(﹣2,﹣5),C'(﹣1,﹣2).(2)在(1)的条件下,求在旋转的过程中,点A所经过的路径长,(结果保留π)【分析】(1)将三顶点分别绕原点O逆时针方向旋转90°得到对应点,再顺次连接即可得;(2)利用弧长公式求解可得.【解答】解:(1)如图所示,△A'B'C'即为所求.由图知,A′(﹣4,﹣3),B′(﹣2,﹣5),C′(﹣1,﹣2),故答案为:(﹣4,﹣3),(﹣2,﹣5),(﹣1,﹣2);(2)连接OA,则OA==5,所以点A所走的路径长为=π.【点评】本题考查了利用旋转变换作图,以及弧长的计算,熟练掌握网格结构,准确找出对应顶点的位置是解题的关键.18.(8分)解方程:(1)x2﹣4x+1=0.(2)x2﹣2x﹣3=0.【分析】(1)将一元二次方程配成(x+m)2=n的形式,再利用直接开平方法求解;(2)由“十字相乘法”对等式的左边进行因式分解.【解答】解:(1)x2﹣4x+1=0.移项得,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,即(x﹣2)2=3,开平方,得x﹣2=±,解得,x1=2,x2=2﹣;(2)x2﹣2x﹣3=0,则(x﹣3)(x+1)=0,x﹣3=0或x+1=0解得,x1=3,x2=﹣1.【点评】本题考查了解一元二次方程.解一元二次方程的方法有直接开平方法,配方法,因式分解法以及换元法等,解方程时,需要根据方程的特点选择解方程的方法.19.(8分)如图,已知二次函数y=﹣x2+bx+3的图象与x轴交于A、C两点(点A在点C的左侧),与y轴交于点B,且OA=OB.(1)求线段AC的长度:(2)若点P在抛物线上,点P位于第二象限,过P作PQ⊥AB,垂足为Q.已知PQ=,求点P的坐标.【分析】(1)根据题意可以求得点B的坐标,从而可得到点A的坐标,进而求得函数解析式,再令y=0,即可得到点C的坐标,从而可以得到线段AC的长;(2)根据点A和点B的坐标可以得到直线AB的函数解析式,然后根据二次函数的性质和平行线的性质,可以求得点P的坐标,本题得以解决.【解答】解:(1)∵二次函数y=﹣x2+bx+3的图象与y轴交于点B,且OA=OB,∴点B的坐标为(0,3),∴OB=OA=3,∴点A的坐标为(﹣3,0),∴0=﹣(﹣3)2+b×(﹣3)+3,解得,b=﹣2,∴y=﹣x2﹣2x+3=﹣(x+3)(x﹣1),∴当y=0时,x1=﹣3,x2=1,∴点C的坐标为(1,0),∴AC=1﹣(﹣3)=4,即线段AC的长是4;(2)∵点A(﹣3,0),点B(3,0),∴直线AB的函数解析式为y=x+3,过点P作PD∥y轴交直线AB于点D,设点P的坐标为(m,﹣m2﹣2m+3),则点D的坐标为(m,m+3),∴PD=﹣m2﹣2m+3﹣(m+3)=﹣m2﹣3m,∵PD∥y轴,∠ABO=45°,∴∠PDQ=∠ABO=45°,又∵PQ⊥AB,PQ=,∴△PDQ是等腰直角三角形,∴PD==2,∴﹣m2﹣3m=2,解得,m1=﹣1,m2=﹣2,当m=﹣1时,﹣m2﹣2m+3=4,当m=﹣2时,﹣m2﹣2m+3=3,∴点P的坐标为(﹣2,3)或(﹣1,4).【点评】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.20.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形的圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止).(1)转动转盘一次,求转出的数字是﹣2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.【分析】(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,根据概率公式计算可得;(2)列表得出所有等可能结果,从中找到乘积为正数的结果数,再利用概率公式求解可得.【解答】解:(1)将标有数字1和3的扇形两等分可知转动转盘一次共有6种等可能结果,其中转出的数字是﹣2的有2种结果,所以转出的数字是﹣2的概率为=;(2)列表如下:由表可知共有36种等可能结果,其中数字之积为正数的有20种结果,所以这两次分别转出的数字之积为正数的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)某商家按市场价格10元/千克在该市收购了1800千克产品,经市场调查:产品的市场价格每天每千克将上涨0.5元,但仓库存放这批产品时每天需要支出各种费用合计240元,同时平均每天有6千克的产品损耗不能出售(产品在库中最多保存90天)(1)设存放x天后销售,则这批产品出售的数量为(1800﹣6x)千克,这批产品出售价为(10+0.5x)元;(2)商家想获得利润22500元,需将这批产品存放多少天后出售?(3)商家将这批产品存放多少天后出售可获得最大利润?最大利润是多少?【分析】(1)根据“销售价格=市场价格+0.5×存放天数,销售数量=原购入量﹣6×存放天数”列出代数式即可;(2)按照等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数方程求解即可;(3)根据等量关系“利润=销售总金额﹣收购成本﹣各种费用”列出函数关系式并求最大值.【解答】解:(1)存放x天后销售价格为:10+0.5x;销售数量为:1800﹣6x;故答案为:(10+0.5x),(1800﹣6x);(2)由题意y与x之间的函数关系式为y=(10+0.5x)(1800﹣6x)=﹣3x2+840x+18000(1≤x ≤90,且x为整数);﹣3x2+840x+18000﹣10×1800﹣240x=22500解方程得:x1=50,x2=150(不合题意,舍去)故需将这批产品存放50天后出售;(3)设利润为w,由题意得w=﹣3x2+840x+18000﹣10×1800﹣240x=﹣3(x﹣100)2+30000∵a=﹣3<0,∴抛物线开口方向向下,=29700,∴x=90时,w最大∴商家将这批产品存放90天后出售可获得最大利润,最大利润是29700元.【点评】此题主要考查了二次函数的应用以及二次函数的最值求法,根据函数关系式求出以及最值公式求出是解题关键.22.(9分)如图,在⊙O中,半径OC⊥弦AB于点D,点E为优弧AB上一点,连接AE、BE、AC,过点C的直线与EA延长线交于点F,且∠ACF=∠AEB.(1)求证:CF与⊙O相切;(2)若∠AEB=60°,AB=4,求⊙O的半径;(3)在(2)的条件下,若AE=4,求EC的长.【分析】(1)根据垂径定理得到=,求得∠FEC=∠BEC=∠AEB,等量代换得到∠ACF =∠BEC,推出AB∥CF,于是得到结论;(2)连接OA,根据圆周角定理得到∠AEC=30°,求得∠AOD=2∠AEC=60°,解直角三角形的即可得到结论;(3)连接OE,过A作AH⊥CE于H,根据勾股定理的逆定理得到∠AOE=90°,根据圆周角定理得到∠ACE=AOE=45°,解直角三角形即可得到结论.【解答】(1)证明:∵半径OC⊥弦AB于点D,∴=,∴∠FEC=∠BEC=∠AEB,∵∠ACF=∠AEB,∴∠ACF=∠BEC,∵∠BAC=∠BEC,∴∠ACF=∠CAB,∴AB∥CF,∵OC⊥AB,∴OC⊥CF,∴CF与⊙O相切;(2)解:连接OA,∵∠AEB=60°,∴∠AEC=30°,∴∠AOD=2∠AEC=60°,∴在Rt△AOD中,AD=AB=2,∠AOD=60°,∴OA==4,∴⊙O的半径为4;(3)解:连接OE,过A作AH⊥CE于H,∵OE2+OA2=42+42=32=(4)2=AE2,∴∠AOE=90°,∴∠ACE=AOE=45°,在Rt△AEH中,∵∠AEH=30°,AE=4,∴AH=2,EH=2,在Rt△AHC中,∵∠ACH=45°,∴CH=AH=2,∴CE=CH+EH=2+2.【点评】本题考查了切线的判定和性质,解直角三角形,等腰直角三角形的判定和性质,圆周角定理,垂径定理,正确的作出辅助线是解题的关键.23.(12分)已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).(1)求抛物线的解析式;(2)过点D(0,)作x轴的平行线交抛物线于E,F两点,求EF的长;(3)当y≤时,直接写出x的取值范围是x或x.【分析】(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+3,即可求解;(2)把点D的y坐标代入y=﹣x2+2x+3,即可求解;(3)直线EF下侧的图象符合要求.【解答】解:(1)把A(﹣1,0),B(3,0)代入y=ax2+bx+3,解得:a=﹣1,b=2,抛物线的解析式为y=﹣x2+2x+3;(2)把点D的y坐标y=,代入y=﹣x2+2x+3,解得:x=或,则EF长=﹣(﹣)=2;(3)由题意得:当y≤时,直接写出x的取值范围是x或x,故答案为:x或x.【点评】本题考查的是函数与直线的交点,是一道基本题,难度不大.。
2019年云南省曲靖市中考数学试卷

2015年云南省曲靖市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1. −2的倒数是()A.−2B.−12C.2 D.122. 如图是一个六角螺栓,它的主视图和俯视图都正确的是()A.B.C.D.3. 下列运算正确的是()A.a7÷a3=a4B.4a2−2a2=2C.(a2b3)2=a4b5D.5a2⋅a4=5a84. 不等式组{x−3≥012(x+3)≤1的解集在数轴上表示正确的是()A.B.C.D. 5. 某企业为了解员工给灾区“爱心捐款”的情况,随机抽取部分员工的捐款金额整理绘制成如图所示的直方图,根据图中信息,下列结论正确的是()A.样本容量是20B.样本中位数是200元C.该企业员工最大捐款金额是500元D.该企业员工捐款金额的极差是450元6. 方程11−x+xx−1=−1的解是()A.x=1B.x=2C.x=0D.无实数解7. 如图,双曲线y=kx与直线y=−12x交于A、B两点,且A(−2, m),则点B的坐标是()A.(1, −2)B.(2, −1)C.(−1, 12) D.(12, −1)8. 如图,正方形OABC绕着点O逆时针旋转40∘得到正方形ODEF,连接AF,则∠OFA的度数是()A.20∘B.15∘C.25∘D.30∘二、填空题(共8小题,每小题3分,满分24分)2015年云南省约有272000名学生参加高考,272000用科学记数法表示为2.72×10n,则n=________.若平行四边形中两个内角的度数比为1:2,则其中较大的内角是________度.若△ADE∽△ACB,且ADAC =23,DE=10,则BC=________.如图,在半径为3的⊙O中,直径AB与弦CD相交于点E,连接AC,BD,若AC=2,则cosD=________.一个不透明的盒子里装有除颜色外无其他差别的白珠子6颗和黑珠子若干颗,每次随机摸出一颗珠子,放回摇匀后再摸,通过多次试验发现摸到白珠子的频率稳定在0.3左右,则盒子中黑珠子可能有________颗.一元二次方程x2−5x+c=0有两个不相等的实数根且两根之积为正数,若c是整数,则c=________.(只需填一个).用火柴棒按下图所示的方式摆大小不同的“H”:依此规律,摆出第9个“H”需用火柴棒________根.如图,在Rt△ABC中,∠C=30∘,以直角顶点A为圆心,AB长为半径画弧交BC于点D,过D作DE⊥AC于点E.若DE=a,则△ABC的周长用含a的代数式表示为________.三、解答题(共8小题,满分72分)计算:(−1)2015−(13)−2+(2−√2)0−|−2|.先化简,再求值:aa2+4a+4÷(1−2a−4a2−4),其中a=√3−2.水龙头关闭不严会造成滴水,容器内盛水时w(L)与滴水时间t(ℎ)的关系用可以显示水量的容器做如图1的试验,并根据试验数据绘制出如图2的函数图象,结合图象解答下列问题.(1)容器内原有水多少升?(2)求w与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?如图,菱形ABCD的对角线AC与BD相交于点O,且BE // AC,CE // BD.(1)求证:四边形OBEC是矩形;(2)若菱形ABCD的周长是4√10,tanα=12,求四边形OBEC的面积.某中学需在短跑、跳远、乒乓球、跳高四类体育项目中各选一名同学参加中学生运动会,根据平时成绩,把各项目进入复选的人员情况绘制成不完整的统计图、表如下:复选人员扇形统计图:复选人员统计表:(1)求a 、b 的值;(2)求扇形统计图中跳远项目对应圆心角的度数;(3)用列表法或画树状图的方法求在短跑和乒乓球项目中选出的两位同学都为男生的概率.如图,过∠AOB 平分线上一点C 作CD // OB 交OA 于点D ,E 是线段OC 的中点,请过点E 画直线分别交射线CD 、OB 于点M 、N ,探究线段OD 、ON 、DM 之间的数量关系,并证明你的结论.如图,在平面直角坐标系xOy 中,直线l ⊥y 轴于点B(0, −2),A 为OB 的中点,以A 为顶点的抛物线y =ax 2+c 与x 轴交于C 、D 两点,且CD =4,点P 为抛物线上的一个动点,以P 为圆心,PO 为半径画圆.(1)求抛物线的解析式;(2)若⊙P 与y 轴的另一交点为E ,且OE =2,求点P 的坐标;(3)判断直线l 与⊙P 的位置关系,并说明理由.参考答案与试题解析2015年云南省曲靖市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.【答案】此题暂无答案【考点】倒数【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】简单组水都的三视图【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】同底射空的除法合较溴类项幂的乘表与型的乘方单项使性单项式【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】在数较溴表示总等线的解集解一元表次镜等式组【解析】此题暂无解析【解答】此题暂无解答5. 【答案】此题暂无答案【考点】极差总体来个体腺样反措样本容量频数(率)分布直方水中位数【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】解于姆方程【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】函数的验河性问题【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】旋因末性质【解析】此题暂无解析【解答】此题暂无解答二、填空题(共8小题,每小题3分,满分24分)【答案】此题暂无答案【考点】科学较盛法含-表项较大的数【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】平行四表形型性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】相似三来形的循质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】圆明角研理锐角三较函数严定义【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】利用频都升计概率【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】根与三程的关系根体判展式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】规律型:三形的要化类【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】等三三程形写建质与判定含因梯否角样直角三角形勾体定展【解析】此题暂无解析【解答】此题暂无解答三、解答题(共8小题,满分72分)【答案】此题暂无答案【考点】零使数解、达制数指数幂零因优幂实因归运算【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】分式因化简优值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】一次水根的应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二元一明方息组交应先——销售问题【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】菱都资性质矩根的惯定解直于三角姆【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】列表法三树状图州扇表统病图统计表【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】平行体的省质全根三烛形做给质与判定等常三树力良性质与判定【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】二次使如综合题【解析】此题暂无解析【解答】此题暂无解答。
2019年云南省中考数学试题及参考答案(word解析版)

2019年云南省中考数学试题及参考答案与解析(满分120分,考试用时120分钟)一、填空题(本大题共6小题,每小题3分,共18分)1.若零上8℃记作+8℃,则零下6℃记作℃.2.分解因式:x2﹣2x+1=.3.如图,若AB∥CD,∠1=40度,则∠2=度.4.若点(3,5)在反比例函数y=(k≠0)的图象上,则k=.5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是.6.在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.二、选择题(本大题共8小题,每小题4分,共32分)7.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×1069.一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°10.要使有意义,则x的取值范围为()A.x≤0 B.x≥﹣1 C.x≥0 D.x≤﹣111.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π12.按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1 13.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.914.若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2 B.a≤2 C.a>2 D.a≥2三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB =2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.(12分)如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB •DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.参考答案与解析一、填空题(本大题共6小题,每小题3分,共18分)1.若零上8℃记作+8℃,则零下6℃记作℃.【知识考点】正数和负数.【思路分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答过程】解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.【总结归纳】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.分解因式:x2﹣2x+1=.【知识考点】因式分解﹣运用公式法.【思路分析】直接利用完全平方公式分解因式即可.【解答过程】解:x2﹣2x+1=(x﹣1)2.【总结归纳】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.如图,若AB∥CD,∠1=40度,则∠2=度.【知识考点】平行线的性质.【思路分析】根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.【解答过程】解:∵AB∥CD,∠1=40°,∴∠3=∠1=40°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为:140.【总结归纳】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键.4.若点(3,5)在反比例函数y=(k≠0)的图象上,则k=.【知识考点】反比例函数图象上点的坐标特征.【思路分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y=(k≠0)即可.【解答过程】解:把点(3,5)的纵横坐标代入反比例函数y=得:k=3×5=15故答案为:15【总结归纳】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k的值;比较简单.5.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是.【知识考点】频数(率)分布直方图;扇形统计图.【思路分析】由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.【解答过程】解:由题意得:甲班D等级的有13人,乙班D等级的人数为40×30%=12(人),13>12,所以D等级这一组人数较多的班是甲班;故答案为:甲班.【总结归纳】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D等级的人数是解本题的关键.6.在平行四边形ABCD中,∠A=30°,AD=4,BD=4,则平行四边形ABCD的面积等于.【知识考点】平行四边形的性质.【思路分析】过D作DE⊥AB于E,解直角三角形得到AB=8,根据平行四边形的面积公式即可得到结论.【解答过程】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4,∴DE=AD=2,AE=AD=6,在Rt△BDE中,∵BD=4,∴BE===2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB•DE=8×2=16,如图2,AB=4,∴平行四边形ABCD的面积=AB•DE=4×2=8,故答案为:16或8.【总结归纳】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据轴对称图形与中心对称图形的概念求解.【解答过程】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.【总结归纳】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A.68.8×104B.0.688×106C.6.88×105D.6.88×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将688000用科学记数法表示为6.88×105.故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.一个十二边形的内角和等于()A.2160°B.2080°C.1980°D.1800°【知识考点】多边形内角与外角.【思路分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【解答过程】解:十二边形的内角和等于:(12﹣2)•180°=1800°;故选:D.【总结归纳】本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.要使有意义,则x的取值范围为()A.x≤0 B.x≥﹣1 C.x≥0 D.x≤﹣1【知识考点】二次根式有意义的条件.【思路分析】要根式有意义,只要令x+1≥0即可【解答过程】解:要使根式有意义则令x+1≥0,得x≥﹣1故选:B.【总结归纳】考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π【知识考点】圆锥的计算.【思路分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答过程】解:侧面积是:πr2=×π×82=32π,底面圆半径为:,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.【总结归纳】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第n个单项式是()A.(﹣1)n﹣1x2n﹣1B.(﹣1)n x2n﹣1C.(﹣1)n﹣1x2n+1D.(﹣1)n x2n+1【知识考点】规律型:数字的变化类;单项式.【思路分析】观察指数规律与符号规律,进行解答便可.【解答过程】解:∵x3=(﹣1)1﹣1x2×1+1,﹣x5=(﹣1)2﹣1x2×2+1,x7=(﹣1)3﹣1x2×3+1,﹣x9=(﹣1)4﹣1x2×4+1,x11=(﹣1)5﹣1x2×5+1,……由上可知,第n个单项式是:(﹣1)n﹣1x2n+1,故选:A.【总结归纳】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA =12,则阴影部分(即四边形AEOF)的面积是()A.4 B.6.25 C.7.5 D.9【知识考点】勾股定理的逆定理;切线的性质;三角形的内切圆与内心;扇形面积的计算.【思路分析】利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OFAE为正方形,设OE=AE=AF=x,利用切线长定理得到BD=BF=5﹣r,CD=CE=12﹣r,所以5﹣r+12﹣r=13,然后求出r后可计算出阴影部分(即四边形AEOF)的面积.【解答过程】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OFAE为正方形,设OE=r,则AE=AF=x,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5﹣r,CD=CE=12﹣r,∴5﹣r+12﹣r=13,∴r==2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.【总结归纳】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质.14.若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2 B.a≤2 C.a>2 D.a≥2【知识考点】解一元一次不等式组.【思路分析】根据不等式组的解集的概念即可求出a的范围.【解答过程】解:解关于x的不等式组得∴a≥2故选:D.【总结归纳】本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型.三、解答题(本大共9小题,共70分)15.(6分)计算:32+(x﹣5)0﹣+(﹣1)﹣1.【知识考点】实数的运算;零指数幂;负整数指数幂.【思路分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有数的加减运算便可.【解答过程】解:原式=9+1﹣2﹣1=10﹣3=7.【总结归纳】此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.16.(6分)如图,AB=AD,CB=CD.求证:∠B=∠D.【知识考点】全等三角形的判定与性质.【思路分析】由SSS证明△ABC≌△ADC,得出对应角相等即可.【解答过程】证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠B=∠D.【总结归纳】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【知识考点】加权平均数;中位数;众数.【思路分析】(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数得出的数据进行分析即可得出答案.【解答过程】解:(1)这15名营业员该月销售量数据的平均数==278(件),中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【总结归纳】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【知识考点】分式方程的应用.【思路分析】设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答过程】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【总结归纳】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【知识考点】列表法与树状图法;游戏公平性.【思路分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答过程】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率==,乙获胜的概率==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【总结归纳】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.【知识考点】全等三角形的判定与性质;矩形的判定与性质.【思路分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到∠AOB=∠DAO+∠ADO=2∠OAD,求得∠DAO=∠ADO,推出AC=BD,于是得到四边形ABCD是矩形;(2)根据矩形的性质得到AB∥CD,根据平行线的性质得到∠ABO=∠CDO,根据三角形的内角得到∠ABO=54°,于是得到结论.【解答过程】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB=∠DAO+∠ADO=2∠OAD,∴∠DAO=∠ADO,∴AO=DO,∴AC=BD,∴四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形,∴AB∥CD,∴∠ABO=∠CDO,∵∠AOB:∠ODC=4:3,∴∠AOB:∠ABO=4:3,∴∠BAO:∠AOB:∠ABO=3:4:3,∴∠ABO=54°,∵∠BAD=90°,∴∠ADO=90°﹣54°=36°.【总结归纳】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)已知k是常数,抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在物线y=x2+(k2+k﹣6)x+3k上,且P到y轴的距离是2,求点P的坐标.【知识考点】二次函数的性质;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】(1)根据抛物线的对称轴为y轴,则b=0,可求出k的值,再根据抛物线与x轴有两个交点,进而确定k的值和抛物线的关系式;(2)由于对称轴为y轴,点P到y轴的距离为2,可以转化为点P的横坐标为2或﹣2,求相应的y的值,确定点P的坐标.【解答过程】解:(1)∵抛物线y=x2+(k2+k﹣6)x+3k的对称轴是y轴,∴k2+k﹣6=0,解得k1=﹣3,k2=2;又∵抛物线y=x2+(k2+k﹣6)x+3k与x轴有两个交点.∴3k<0∴k=﹣3.此时抛物线的关系式为y=x2﹣9,因此k的值为﹣3.(2)∵点P在物线y=x2﹣9上,且P到y轴的距离是2,∴点P的横坐标为2或﹣2,当x=2时,y=﹣5当x=﹣2时,y=﹣5.∴P(2,﹣5)或P(﹣2,﹣5)因此点P的坐标为:P(2,﹣5)或P(﹣2,﹣5).【总结归纳】主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.【知识考点】二次函数的应用.【思路分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y与x的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x的取值范围可得W的最大值.【解答过程】解:(1)当6≤x≤10时,设y与x的关系式为y=kx+b(k≠0)根据题意得,解得∴y=﹣200x+1200当10<x≤12时,y=200故y与x的函数解析式为:y=(2)由已知得:W=(x﹣6)y当6≤x≤10时,W=(x﹣6)(﹣200x+1200)=﹣200(x﹣)2+1250∵﹣200<0,抛物线的开口向下∴x=时,取最大值,∴W=1250当10<x≤12时,W=(x﹣6)•200=200x﹣1200∵y随x的增大而增大∴x=12时取得最大值,W=200×12﹣1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【总结归纳】本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB •DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=.(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.【知识考点】圆的综合题.【思路分析】(1)∠D=∠D,DE2=DB•DA,即可求解;(2)由,即:,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,即可求解.【解答过程】解:(1)∵∠D=∠D,DE2=DB•DA,∴△DEB∽△DAE;(2)∵△DEB∽△DAE,∴∠DEB=∠DAE=α,∵AB是直径,∴∠AEB=90°,又AE=EF,∴AB=BF=10,∴∠BFE=∠BAE=α,则BF⊥ED交于点H,∵cos∠BED=,则BE=6,AB=8∴,即:,解得:BD=,DE=,则AD=AB+BD=,ED=;(3)点F在B、E、M三点确定的圆上,则BF是该圆的直径,连接MF,∵BF⊥ED,∠BMF=90°,∴∠MFB=∠D=β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=﹣x,则36﹣(﹣x)2=()2﹣x2,解得:x=,则cosβ==,则sinβ=,MB=BFsinβ=10×=,DM=BD﹣MB=.【总结归纳】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.。
2019年云南省中考数学试卷(word版,含答案解析)

2019年云南省中考数学试卷副标题题号一二三总分得分一、选择题(本大题共8小题,共32.0分)1.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为()A. 68.8×104B. 0.688×106C. 6.88×105D. 6.88×1063.一个十二边形的内角和等于()A. 2160°B. 2080°C. 1980°D. 1800°4.要使√x+1有意义,则x的取值范围为()2A. x≤0B. x≥−1C. x≥0D. x≤−15.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A. 48πB. 45πC. 36πD. 32π6.按一定规律排列的单项式:x3,−x5,x7,−x9,x11,……,第n个单项式是()A. (−1)n+1x2n−1B. (−1)n x2n−1C. (−1)n+1x2n+1D. (−1)n x2n+17.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是()A. 4B. 6.25C. 7.5D. 98.若关于x的不等式组{2(x−1)>2,a的取值范围是()a−x<0的解集是x>a,则A. a<2B. a≤2C. a>2D. a≥2二、填空题(本大题共6小题,共18.0分)9.若零上8℃记作+8℃,则零下6℃记作______℃.10.分解因式:x2−2x+1=______.11.如图,若AB//CD,∠1=40度,则∠2=______度.(k≠0)的图象上,则k=______.12.若点(3,5)在反比例函数y=kx13.某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A、B、C、D、E五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D等级这一组人数较多的班是______.14.在平行四边形ABCD中,∠A=30°,AD=4√3,BD=4,则平行四边形ABCD的面积等于______.三、解答题(本大题共9小题,共70.0分)15.计算:.16.如图,AB=AD,CB=CD.求证:∠B=∠D.17.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x+y为奇数,则甲获胜;若x+y为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(x,y)所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.21.已知k是常数,抛物线y=x2+(k2+k−6)x+3k的对称轴是y轴,并且与x轴有两个交点.(1)求k的值;(2)若点P在抛物线y=x2+(k2+k−6)x+3k上,且P到y轴的距离是2,求点P的坐标.22.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W的最大值.23.如图,AB是⊙O的直径,M、D两点AB的延长线上,E是⊙C上的点,且DE2=DB⋅DA,延长AE至F,使得AE=EF,设BF=10,cos∠BED=4.5(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.答案和解析1.【答案】B【解析】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C、此图形旋转180°后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.2.【答案】C【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将688000用科学记数法表示为6.88×105.故选:C.3.【答案】D【解析】解:十二边形的内角和等于:(12−2)⋅180°=1800°;故选:D.n边形的内角和是(n−2)⋅180°,把多边形的边数代入公式,就得到多边形的内角和.本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.4.【答案】B【解析】解:要使根式有意义则令x+1≥0,得x≥−1故选:B.要根式有意义,只要令x+1≥0即可考查了二次根式的意义和性质.概念:式子√a(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.5.【答案】A【解析】解:侧面积是:12πr2=12×π×82=32π,底面圆半径为:2π×82÷2π=4,底面积=π×42=16π,故圆锥的全面积是:32π+16π=48π.故选:A.首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.6.【答案】C【解析】【分析】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.观察指数规律与符号规律,进行解答便可.【解答】解:∵x3=(−1)1+1x2×1+1,−x5=(−1)2+1x2×2+1,x7=(−1)3+1x2×3+1,−x9=(−1)4+1x2×4+1,x11=(−1)5+1x2×5+1,……由上可知,第n个单项式是:(−1)n+1x2n+1,故选C.7.【答案】A【解析】解:∵AB=5,BC=13,CA=12,∴AB2+CA2=BC2,∴△ABC为直角三角形,∠A=90°,∵AB、AC与⊙O分别相切于点E、F∴OF⊥AB,OE⊥AC,∴四边形OFAE为正方形,设OE=r,则AE=AF=x,∵△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,∴BD=BF=5−r,CD=CE=12−r,∴5−r+12−r=13,∴r=5+12−132=2,∴阴影部分(即四边形AEOF)的面积是2×2=4.故选:A.利用勾股定理的逆定理得到△ABC为直角三角形,∠A=90°,再利用切线的性质得到OF⊥AB,OE⊥AC,所以四边形OFAE为正方形,设OE=AE=AF=x,利用切线长定理得到BD=BF=5−r,CD=CE=12−r,所以5−r+12−r=13,然后求出r 后可计算出阴影部分(即四边形AEOF)的面积.本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质.8.【答案】D【解析】【分析】根据不等式组的解集的概念即可求出a 的范围.本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型. 解:解关于x 的不等式组{2(x −1)>2,a −x <0得{x >2x >a ,∵不等式组得解集为x >a ,∴a ≥2故选:D .9.【答案】−6【解析】解:根据正数和负数表示相反的意义,可知 如果零上8℃记作+8℃,那么零下6℃记作−6℃. 故答案为:−6.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量. 10.【答案】(x −1)2【解析】解:x 2−2x +1=(x −1)2, 故答案为(x −1)2.直接利用完全平方公式分解因式即可. 本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键. 11.【答案】140【解析】解:∵AB//CD ,∠1=40°, ∴∠3=∠1=40°,∴∠2=180°−∠3=180°−40°=140°. 故答案为:140.根据两直线平行,同位角相等求出∠3,再根据邻补角的定义列式计算即可得解.本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键. 12.【答案】15【解析】解:把点(3,5)的纵横坐标代入反比例函数y =kx 得:k =3×5=15 故答案为:15点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数y =kx (k ≠0)即可.考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k 的值;比较简单.13.【答案】甲班【解析】解:由题意得:甲班D 等级的有13人, 乙班D 等级的人数为40×30%=12(人), 13>12,所以D 等级这一组人数较多的班是甲班;故答案为:甲班.由频数分布直方图得出甲班D等级的人数为13人,求出乙班D等级的人数为40×30%=12人,即可得出答案.此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D等级的人数是解本题的关键.14.【答案】16√3或8√3【解析】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=4√3,∴DE=12AD=2√3,AE=√32AD=6,在Rt△BDE中,∵BD=4,∴BE=√BD2−DE2=√42−(2√3)2=2,如图1,∴AB=8,∴平行四边形ABCD的面积=AB⋅DE=8×2√3=16√3,如图2,AB=4,∴平行四边形ABCD的面积=AB⋅DE=4×2√3=8√3,故答案为:16√3或8√3.过D作DE⊥AB于E,解直角三角形得到AB,根据平行四边形的面积公式即可得到结论.本题考查了平行四边形的性质以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.15.【答案】解:原式=9+1−2−1=10−3=7.【解析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有理数的加减运算便可.此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(−3)−2=(−3)×(−2)的错误.16.【答案】证明:在△ABC和△ADC中,{AB=ADCB=CDAC=AC,∴△ABC≌△ADC(SSS),∴∠B=∠D.【解析】由SSS证明△ABC≌△ADC,得出对应角相等即可.本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.【答案】解:(1)这15名营业员该月销售量数据的平均数=1770+480+220×3+180×3+120×3+90×415=278(件),数据从大到小排列后最中间的数是180,故中位数为180件,∵90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【解析】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.(1)根据平均数、众数和中位数的意义进行解答即可;(2)根据平均数、中位数和众数的意义以及得出的数据进行分析即可得出答案.18.【答案】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:240x −2701.5x=1,解得:x=60,经检验,x=60是所列方程的解,则1.5x=90,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【解析】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.19.【答案】解:(1)画树状图如图所示,共有16种等可能的结果数;(2)x+y为奇数的结果数为8,x+y为偶数的结果数为8,∴甲获胜的概率=816=12,乙获胜的概率=816=12,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【解析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B 的概率.画树状图展示所有16种等可能的结果数,然后根据概率公式求解判断是否公平.20.【答案】(1)证明:∵AO=OC,BO=OD,∴四边形ABCD是平行四边形,∵∠AOB =∠DAO +∠ADO =2∠OAD ,∴∠DAO =∠ADO ,∴AO =DO ,∴AC =BD ,∴四边形ABCD 是矩形;(2)解:∵四边形ABCD 是矩形,∴AB//CD ,∴∠ABO =∠CDO ,∵∠AOB :∠ODC =4:3,∴∠AOB :∠ABO =4:3,∵OA =OD =OB ,∴∠BAO :∠AOB :∠ABO =3:4:3,∵∠BAO +∠AOB +∠ABO =180°,∴∠ABO =54°,∵∠BAD =90°,∴∠ADO =90°−54°=36°.【解析】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.(1)根据平行四边形的判定定理得到四边形ABCD 是平行四边形,根据三角形的外角的性质得到∠AOB =∠DAO +∠ADO =2∠OAD ,求得∠DAO =∠ADO ,推出AC =BD ,于是得到四边形ABCD 是矩形;(2)根据矩形的性质得到AB//CD ,根据平行线的性质得到∠ABO =∠CDO ,根据三角形的内角和定理得到∠ABO =54°,于是得到结论.21.【答案】解:(1)∵抛物线y =x 2+(k 2+k −6)x +3k 的对称轴是y 轴, ∴k 2+k −6=0,解得k 1=−3,k 2=2;又∵抛物线y =x 2+(k 2+k −6)x +3k 与x 轴有两个交点.∴3k <0,∴k =−3.此时抛物线的关系式为y =x 2−9,因此k 的值为−3.(2)∵点P 在抛物线y =x 2−9上,且P 到y 轴的距离是2,∴点P 的横坐标为2或−2,当x =2时,y =−5当x =−2时,y =−5.∴P(2,−5)或P(−2,−5),因此点P 的坐标为:P(2,−5)或P(−2,−5).【解析】(1)根据抛物线的对称轴为y 轴,则b =0,可求出k 的值,再根据抛物线与x 轴有两个交点,进而确定k 的值和抛物线的关系式;(2)由于对称轴为y 轴,点P 到y 轴的距离为2,可以转化为点P 的横坐标为2或−2,求相应的y 的值,确定点P 的坐标.本题主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.【答案】解:(1)当6≤x ≤10时,设y 与x 的关系式为y =kx +b(k ≠0)根据题意得{1000=6k +b 200=10k +b ,解得{k =−200b =2200∴y =−200x +2200当10<x ≤12时,y =200故y 与x 的函数解析式为:y ={−200x +2200,(6≤x ≤10)200,(10<x ≤12)(2)由已知得:W =(x −6)y当6≤x ≤10时,W =(x −6)(−200x +2200)=−200(x −172)2+1250 ∵−200<0,抛物线的开口向下∴x =172时,取最大值,∴W =1250当10<x ≤12时,W =(x −6)⋅200=200x −1200∵y 随x 的增大而增大∴x =12时取得最大值,W =200×12−1200=1200综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【解析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y 与x 的函数解析式;(2),根据总利润=每千克利润×销售量,列出函数关系式,配方后根据x 的取值范围可得W 的最大值.本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.【答案】解:(1)∵∠D =∠D ,DE 2=DB ⋅DA ,∴△DEB∽△DAE ;(2)∵△DEB∽△DAE ,∴∠DEB =∠DAE =α,∵AB 是直径,∴∠AEB =90°,又AE =EF ,∴AB =BF =10,∴∠BFE =∠BAE =α,则BF ⊥ED 交于点H ,∵cos∠BED =45,则BE =6,AB =8∴ED DA =EB AE =DB ED,即:ED 10+BD =68=BD DE , 解得:BD =907,DE =1207, 则AD =AB +BD =1607, ED =1207;(3)点F 在B 、E 、M 三点确定的圆上,则BF 是该圆的直径,连接MF ,∵BF ⊥ED ,∠BMF =90°,∴∠MFB =∠D =β,在△BED中,过点B作HB⊥ED于点H,设HD=x,则EH=1207−x,则36−(1207−x)2=(907)2−x2,解得:x=43235,则cosβ=x907=2425,则sinβ=725,MB=BFsinβ=10×725=145,DM=BD−MB=35235.【解析】(1)∠D=∠D,DE2=DB⋅DA,即可求解;(2)由EDDA =EBAE=DBED,即:ED10+BD=68=BDDE,即可求解;(3)在△BED中,过点B作HB⊥ED于点H,36−(1207−x)2=(907)2−x2,解得:x=43235,则cosβ=x907=2425,即可求解.此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.。
2019年云南省中考数学试卷以及解析版

2019年云南省中考数学试卷以及逐题解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分)若零上8C ︒记作8C ︒+,则零下6C ︒记作C ︒.2.(3分)分解因式:221x x -+= .3.(3分)如图,若//AB CD ,140∠=度,则2∠= 度.4.(3分)若点(3,5)在反比例函数(0)k y k x=≠的图象上,则k = . 5.(3分)某中学九年级甲、乙两个班参加了一次数学考试,考试人数每班都为40人,每个班的考试成绩分为A 、B 、C 、D 、E 五个等级,绘制的统计图如图:根据以上统计图提供的信息,则D 等级这一组人数较多的班是 .6.(3分)在平行四边形ABCD 中,30A ∠=︒,AD =4BD =,则平行四边形ABCD 的面积等于 .二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯9.(4分)一个十二边形的内角和等于( )A .2160︒B .2080︒C .1980︒D .1800︒10.(4有意义,则x 的取值范围为( ) A .0x … B .1x -… C .0x … D .1x -…11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A .48πB .45πC .36πD .32π12.(4分)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,⋯⋯,第n 个单项式是( )A .121(1)n n x ---B .21(1)n n x --C .121(1)n n x -+-D .21(1)n n x +-13.(4分)如图,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形)AEOF 的面积是( )A .4B .6.25C .7.5D .914.(4分)若关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩的解集是x a >,则a 的取值范围是( ) A .2a < B .2a … C .2a > D .2a …三、解答题(本大共9小题,共70分)15.(6分)计算:2013(5)(1)x -+--.16.(6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x 、y 表示.若x y +为奇数,则甲获胜;若x y +为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(,)x y 所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.20.(8分)如图,四边形ABCD 中,对角线AC 、BD 相交于点O ,AO OC =,BO OD =,且2AOB OAD ∠=∠.(1)求证:四边形ABCD 是矩形;(2)若:4:3AOB ODC ∠∠=,求ADO ∠的度数.21.(8分)已知k 是常数,抛物线22(6)3y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点.(1)求k 的值;(2)若点P 在物线22(6)3y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如图所示:(1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W 的最大值.23.(12分)如图,AB 是O 的直径,M 、D 两点AB 的延长线上,E 是C 上的点,且2DE DB DA =,延长AE 至F ,使得AE EF =,设10BF =,4cos 5BED ∠=.(1)求证:DEB DAE∽;∆∆(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.2019年云南省中考数学试卷答案与解析一、填空题(本大题共6小题,每小题3分,共18分)1.(3分).【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8C ︒记作8C ︒+,那么零下6C ︒记作6C ︒-.故答案为:6-.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.(3分).【分析】直接利用完全平方公式分解因式即可.【解答】解:2221(1)x x x -+=-.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.3.(3分)【分析】根据两直线平行,同位角相等求出3∠,再根据邻补角的定义列式计算即可得解.【解答】解://AB CD ,140∠=︒,3140∴∠=∠=︒,2180318040140∴∠=︒-∠=︒-︒=︒.故答案为:140.【点评】本题考查了平行线的性质,邻补角的定义,熟记性质是解题的关键.4.(3分) .【分析】点在函数的图象上,其纵横坐标一定满足函数的关系式,反之也成立,因此只要将点(3,5)代入反比例函数(0)k y k x=≠即可.【解答】解:把点(3,5)的纵横坐标代入反比例函数k y x=得:3515k =⨯= 故答案为:15 【点评】考查反比例函数图象上点的坐标特征,用待定系数法可直接求出k 的值;比较简单.5.(3分).【分析】由频数分布直方图得出甲班D 等级的人数为13人,求出乙班D 等级的人数为4030%12⨯=人,即可得出答案.【解答】解:由题意得:甲班D 等级的有13人,乙班D 等级的人数为4030%12⨯=(人),1312>,所以D 等级这一组人数较多的班是甲班;故答案为:甲班.【点评】此题考查了频数(率)分布直方图,扇形统计图,弄清题意,求出乙班D 等级的人数是解本题的关键.6.(3分)【分析】过D 作DE AB ⊥于E ,解直角三角形得到8AB =,根据平行四边形的面积公式即可得到结论.【解答】解:过D 作DE AB ⊥于E ,在Rt ADE ∆中,30A ∠=︒,AD =12DE AD ∴==6AE AD ==, 在Rt BDE ∆中,4BD =,2BE ∴=,8AB ∴=,∴平行四边形ABCD 的面积8AB DE ==⨯,故答案为:.【点评】本题考查了平行四边形的以及平行四边形的面积公式的运用和30度角的直角三角形的性质:在直角三角形中,30︒角所对的直角边等于斜边的一半.二、选择题(本大题共8小题,每小题4分,共32分)7.(4分)下列图形既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、此图形旋转180︒后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B 、此图形旋转180︒后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;C 、此图形旋转180︒后能与原图形不重合,此图形不是中心对称图形,是轴对称图形,故此选项错误;D 、此图形旋转180︒后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:B .【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.8.(4分)2019年“五一”期间,某景点接待海内外游客共688000人次,688000这个数用科学记数法表示为( )A .468.810⨯B .60.68810⨯C .56.8810⨯D .66.8810⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值1>时,n 是正数;当原数的绝对值1<时,n 是负数.【解答】解:将688000用科学记数法表示为56.8810⨯.故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中1||10a <…,n 为整数,表示时关键要正确确定a 的值以及n 的值.9.(4分)一个十二边形的内角和等于( )A .2160︒B .2080︒C .1980︒D .1800︒【分析】n 边形的内角和是(2)180n -︒,把多边形的边数代入公式,就得到多边形的内角和.【解答】解:十二边形的内角和等于:(122)1801800-︒=︒;故选:D .【点评】本题主要考查多边形内角与外角的知识点,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容,此题难度不大.10.(4有意义,则x 的取值范围为( ) A .0x … B .1x -… C .0x … D .1x -…【分析】要根式有意义,只要令10x +…即可【解答】解:要使根式有意义则令10x +…,得1x -…故选:B .【点评】0)a …叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.11.(4分)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A .48πB .45πC .36πD .32π【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半径,得到底面面积,据此即可求得圆锥的全面积.【解答】解:侧面积是:221183222r πππ=⨯⨯=, 底面圆半径为:28242ππ⨯÷=, 底面积2416ππ=⨯=,故圆锥的全面积是:321648πππ+=.故选:A .【点评】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.(4分)按一定规律排列的单项式:3x ,5x -,7x ,9x -,11x ,⋯⋯,第n 个单项式是( )A .121(1)n n x ---B .21(1)n n x --C .121(1)n n x -+-D .21(1)n n x +-【分析】观察指数规律与符号规律,进行解答便可.【解答】解:311211(1)x x -⨯+=-,521221(1)x x -⨯+-=-,731231(1)x x -⨯+=-,941241(1)x x -⨯+-=-,1151251(1)x x -⨯+=-,⋯⋯由上可知,第n 个单项式是:121(1)n n x -+-,故选:A .【点评】此题主要考查了数字的变化类,关键是分别找出符号与指数的变化规律.13.(4分)如图,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且5AB =,13BC =,12CA =,则阴影部分(即四边形)AEOF 的面积是( )A .4B .6.25C .7.5D .9【分析】利用勾股定理的逆定理得到ABC ∆为直角三角形,90A ∠=︒,再利用切线的性质得到OF AB ⊥,OE AC ⊥,所以四边形OFAE 为正方形,设OE AE AF x ===,利用切线长定理得到5BD BF r ==-,12CD CE r ==-,所以51213r r -+-=,然后求出r 后可计算出阴影部分(即四边形)AEOF 的面积.【解答】解:5AB =,13BC =,12CA =,222AB CA BC ∴+=,ABC ∴∆为直角三角形,90A ∠=︒, AB 、AC 与O 分别相切于点E 、FOF AB ∴⊥,OE AC ⊥,∴四边形OFAE 为正方形,设OE r =,则AE AF x ==,ABC ∆的内切圆O 与BC 、CA 、AB 分别相切于点D 、E 、F , 5BD BF r ∴==-,12CD CE r ==-, 51213r r ∴-+-=, 5121322r +-∴==, ∴阴影部分(即四边形)AEOF 的面积是224⨯=.故选:A .【点评】本题考查了三角形的内切圆和内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了勾股定理的逆定理和切线的性质. 14.(4分)若关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩的解集是x a >,则a 的取值范围是( )A .2a <B .2a …C .2a >D .2a …【分析】根据不等式组的解集的概念即可求出a 的范围. 【解答】解:解关于x 的不等式组2(1)2,0x a x ->⎧⎨-<⎩得2x x a >⎧⎨>⎩2a ∴…故选:D .【点评】本题考查不等式的解集,解题的关键是正确理解不等式的解集,本题属于基础题型. 三、解答题(本大共9小题,共70分)15.(6分)计算:2013(5)(1)x -+--.【分析】先根据平方性质,0指数幂法则,算术平方根的性质,负指数幂的运算,再进行有 数的加减运算便可.【解答】解:原式91211037=+--=-=.【点评】此题主要考查了实数运算,主要考查了0指数幂法则,负整数幂法则,乘方的意义,有理数的加减运算,正确化简各数是解题关键.计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现2(3)(3)(2)--=-⨯-的错误. 16.(6分)如图,AB AD =,CB CD =.求证:B D ∠=∠.【分析】由SSS 证明ABC ADC ∆≅∆,得出对应角相等即可. 【解答】证明:在ABC ∆和ADC ∆中,AB ADCB CDAC AC =⎧⎪=⎨⎪=⎩,()ABC ADC SSS ∴∆≅∆,B D ∴∠=∠.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解题的关键.17.(8分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.【分析】(1)根据平均数、众数和中位数的意义进行解答即可; (2)根据平均数、中位数和众数得出的数据进行分析即可得出答案. 【解答】解:(1)这15名营业员该月销售量数据的平均数177048022031803120390427815++⨯+⨯+⨯+⨯==(件),中位数为180件,90出现了4次,出现的次数最多,∴众数是90件;(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多, 所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标.【点评】本题考查的是平均数、众数和中位数的定义及运用.要学会根据统计量的意义分析解决问题.18.(6分)为进一步营造扫黑除恶专项斗争的浓厚宣传氛围,推进平安校园建设,甲、乙两所学校各租用一辆大巴车组织部分师生,分别从距目的地240千米和270千米的两地同时出发,前往“研学教育”基地开展扫黑除恶教育活动.已知乙校师生所乘大巴车的平均速度是甲校师生所乘大巴车的平均度的1.5倍,甲校师生比乙校师生晚1小时到达目的地,分别求甲、乙两所学校师生所乘大巴车的平均速度.【分析】设甲学校师生所乘大巴车的平均速度为x 千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x 千米/小时,由时间关系“甲校师生比乙校师生晚1小时到达目的地”列出方程,解方程即可.【解答】解:设甲学校师生所乘大巴车的平均速度为x千米/小时,则乙学校师生所乘大巴车的平均速度为1.5x千米/小时,由题意得:24027011.5x x-=,解得:60x=,经检验,60x=是所列方程的解,则1.590x=,答:甲、乙两所学校师生所乘大巴车的平均速度分别为60千米/小时、90千米/小时.【点评】本题主要考查分式方程的应用,解题的关键是理解题意,找到题目中蕴含的相等关系,并依据相等关系列出方程.19.(7分)甲、乙两名同学玩一个游戏:在一个不透明的口袋中装有标号分别为1,2,3,4的四个小球(除标号外无其它差异).从口袋中随机摸出一个小球,记下标号后放回口袋中,充分摇匀后,再从口袋中随机摸出一个小球,记下该小球的标号,两次记下的标号分别用x、y表示.若x y+为奇数,则甲获胜;若x y+为偶数,则乙获胜.(1)用列表法或树状图法(树状图也称树形图)中的一种方法,求(,)x y所有可能出现的结果总数;(2)你认为这个游戏对双方公平吗?请说明理由.【分析】画树状图展示所有16种等可能的结果数,然后根据概率公式求解.【解答】解:画树状图如图所示,(1)共有16种等可能的结果数;(2)x y+为奇数的结果数为8,x y+为偶数的结果数为8,∴甲获胜的概率81162==,乙获胜的概率81162==,∴甲获胜的概率=乙获胜的概率,∴这个游戏对双方公平.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.20.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO OC=,BO OD=,且2∠=∠.AOB OAD(1)求证:四边形ABCD是矩形;(2)若:4:3∠的度数.AOB ODC∠∠=,求ADO【分析】(1)根据平行四边形的判定定理得到四边形ABCD是平行四边形,根据三角形的外角的性质得到2∠=∠,推出AC BD=,∠=∠+∠=∠,求得DAO ADOAOB DAO ADO OAD于是得到四边形ABCD是矩形;(2)根据矩形的性质得到//AB CD,根据平行线的性质得到ABO CDO∠=∠,根据三角形的内角得到54∠=︒,于是得到结论.ABO【解答】(1)证明:AO OC=,=,BO OD∴四边形ABCD是平行四边形,∠=∠+∠=∠,AOB DAO ADO OAD2∴∠=∠,DAO ADO∴=,AO DO∴=,AC BD∴四边形ABCD是矩形;(2)解:四边形ABCD是矩形,∴,//AB CD∴∠=∠,ABO CDO∠∠=,:4:3AOB ODC∴∠∠=,:4:3AOB ABO∴∠∠∠=,BAO AOB ABO::3:4:3ABO∴∠=︒,54BAD∠=︒,90∴∠=︒-︒=︒.ADO905436【点评】本题考查了矩形的判定和性质,三角形的内角和,正确的理解题意是解题的关键.21.(8分)已知k 是常数,抛物线22(6)3y x k k x k =++-+的对称轴是y 轴,并且与x 轴有两个交点. (1)求k 的值;(2)若点P 在物线22(6)3y x k k x k =++-+上,且P 到y 轴的距离是2,求点P 的坐标. 【分析】(1)根据抛物线的对称轴为y 轴,则0b =,可求出k 的值,再根据抛物线与x 轴有两个交点,进而确定k 的值和抛物线的关系式;(2)由于对称轴为y 轴,点P 到y 轴的距离为2,可以转化为点P 的横坐标为2或2-,求相应的y 的值,确定点P 的坐标.【解答】解:(1)抛物线22(6)3y x k k x k =++-+的对称轴是y 轴, 260k k ∴+-=,解得13k =-,22k =;又抛物线22(6)3y x k k x k =++-+与x 轴有两个交点. 30k ∴<3k ∴=-.此时抛物线的关系式为29y x =-,因此k 的值为3-.(2)点P 在物线29y x =-上,且P 到y 轴的距离是2,∴点P 的横坐标为2或2-,当2x =时,5y =- 当2x =-时,5y =-. (2,5)P ∴-或(2,5)P --因此点P 的坐标为:(2,5)P -或(2,5)P --.【点评】主要考查二次函数的图象和性质,以及二次函数图象上点的坐标特征,善于将线段的长转化为坐标,或将坐标转化为线段的长.22.(9分)某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y (千克)与销售单价x (元/千克)的函数关系如图所示: (1)求y 与x 的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润W 的最大值.【分析】(1),根据函数图象得到直线上的两点,再结合待定系数法即可求得y 与x 的函数解析式;(2),根据总利润=每千克利润⨯销售量,列出函数关系式,配方后根据x 的取值范围可得W 的最大值.【解答】解:(1)当610x 剟时,设y 与x 的关系式为(0)y kx b k =+≠ 根据题意得1000620010k b k b =+⎧⎨=+⎩,解得2002200k b =-⎧⎨=⎩2001200y x ∴=-+当1012x <…时,200y =故y 与x 的函数解析式为:2002200,(610)200,(1012)x x y x -+⎧=⎨<⎩剟…(2)由已知得:(6)W x y =- 当610x 剟时,217(6)(2001200)200()12502W x x x =--+=--+ 2000-<,抛物线的开口向下 172x ∴=时,取最大值, 1250W ∴=当1012x <…时,(6)2002001200W x x =-=-y 随x 的增大而增大12x ∴=时取得最大值,2001212001200W =⨯-=综上所述,当销售价格为8.5元时,取得最大利润,最大利润为1250元.【点评】本题主要考查的是待定系数法求函数解析式及二次函数的应用,根据相等关系列出函数解析式,并由二次函数的性质确定其最值是解题的关键;23.(12分)如图,AB 是O 的直径,M 、D 两点AB 的延长线上,E 是C 上的点,且2DE DB DA =,延长AE 至F ,使得AE EF =,设10BF =,4cos 5BED ∠=. (1)求证:DEB DAE ∆∆∽; (2)求DA ,DE 的长;(3)若点F 在B 、E 、M 三点确定的圆上,求MD 的长.【分析】(1)D D ∠=∠,2DE DB DA =,即可求解; (2)由ED EB DB DA AE ED ==,即:6108ED BDBD DE==+,即可求解; (3)在BED ∆中,过点B 作HB ED ⊥于点H ,2221209036()()77x x --=-,解得:43235x =,则24cos 90257x β==,即可求解. 【解答】解:(1)D D ∠=∠,2DE DB DA =,DEB DAE ∴∆∆∽;(2)DEB DAE ∆∆∽, DEB DAE α∴∠=∠=,AB 是直径,90AEB ∴∠=︒,又AE EF =,10AB BF ∴==,BFE BAE α∴∠=∠=,则BF ED ⊥交于点H , 4cos 5BED ∠=,则6BE =,8AB = ∴ED EB DB DA AE ED ==,即:6108ED BDBD DE==+, 解得:907BD =,1207DE =, 则1607AD AB BD =+=,1207ED =; (3)点F 在B 、E 、M 三点确定的圆上,则BF 是该圆的直径,连接MF ,BF ED ⊥,90BMF ∠=︒,MFB D β∴∠=∠=,在BED ∆中,过点B 作HB ED ⊥于点H , 设HD x =,则1207EH x =-, 则2221209036()()77x x --=-,解得:43235x =, 则24cos 90257x β==,则7sin 25β=, 714sin 10255MB BF β==⨯=, 35235DM BD MB =-=. 【点评】此题属于圆的综合题,涉及了直角三角形的性质、相似三角形的判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来。
2019年云南省曲靖市中考数学模拟试卷(一)(解析版)

2019年云南省曲靖市中考数学模拟试卷(一)一、选择题(每小题4分,满分32分)1.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.2.若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.03.下列计算正确的是()A.(a+b)2=a2+b2B.a2+2a2=3a4C.x2y÷=x2(y≠0)D.(﹣2x2)3=﹣8x64.在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)5.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a6.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.7.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm 8.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17二、填空题(每小题3分,满分15分)9.因式分解:2x2﹣8=.10.如图,点A所表示的数的绝对值是.11.在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是.12.一条数学信息在一周内被转发了2 180 000次,将数据2 180 000用科学记数法表示为.13.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为.三、解答题(本大题共9个小题,满分73分)14.(5分)计算:22+﹣2sin60°+|﹣|.15.(6分)先化简,再求值:(1﹣)÷,其中a=sin30°.16.(6分)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.17.(6分)如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tan C的值.18.(8分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.19.(9分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.20.(9分)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?21.(12分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)22.(12分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.参考答案一、选择题1.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选:C.【点评】此题主要考查了由三视图判断几何体.主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为几边形就是几棱柱.2.若分式的值为0,则x的值为()A.3 B.﹣3 C.3或﹣3 D.0【分析】根据分式的值为零的条件可以求出x的值.解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.【点评】本题考查了分式值为0的条件,具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.3.下列计算正确的是()A.(a+b)2=a2+b2B.a2+2a2=3a4C.x2y÷=x2(y≠0)D.(﹣2x2)3=﹣8x6【分析】根据相关的运算法则即可求出答案.解:(A)原式=a2+2ab+b2,故A错误;(B)原式=3a2,故B错误;(C)原式=x2y2,故C错误;故选:D.【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.4.在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(1,﹣2)【分析】根据题意可知点N旋转以后横纵坐标都互为相反数,从而可以解答本题.解:在平面直角坐标系xOy中,将点N(﹣1,﹣2)绕点O旋转180°,得到的对应点的坐标是(1,2),故选:A.【点评】本题考查坐标与图形变化﹣旋转,解答本题的关键是明确题意,利用旋转的知识解答.5.据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%.假定2018年的年增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A.b=(1+22.1%×2)a B.b=(1+22.1%)2aC.b=(1+22.1%)×2a D.b=22.1%×2a【分析】根据2016年的有效发明专利数×(1+年平均增长率)2=2018年的有效发明专利数.解:因为2016年和2018年我省有效发明专利分别为a万件和b万件,所以b=(1+22.1%)2a.故选:B.【点评】考查了列代数式,掌握2次增长或下降之类方程的等量关系是解决本题的关键.6.如图,矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则cos∠ADF的值为()A.B.C.D.【分析】根据折叠的性质可得出DC=DE、CP=EP,由∠EOF=∠BOP、∠B=∠E、OP=OF 可得出△OEF≌△OBP(AAS),根据全等三角形的性质可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=4﹣x、BF=PC=3﹣x,进而可得出AF=1+x,在Rt△DAF中,利用勾股定理可求出x的值,再利用余弦的定义即可求出cos∠ADF的值.解:根据折叠,可知:△DCP≌△DEP,∴DC=DE=4,CP=EP.在△OEF和△OBP中,,∴△OEF≌△OBP(AAS),∴OE=OB,EF=BP.设EF=x,则BP=x,DF=DE﹣EF=4﹣x,又∵BF=OB+OF=OE+OP=PE=PC,PC=BC﹣BP=3﹣x,∴AF=AB﹣BF=1+x.在Rt△DAF中,AF2+AD2=DF2,即(1+x)2+32=(4﹣x)2,解得:x=,∴DF=4﹣x=,∴cos∠ADF==.故选:C.【点评】本题考查了全等三角形的判定与性质、勾股定理以及解直角三角形,利用勾股定理结合AF=1+x,求出AF的长度是解题的关键.7.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm 【分析】先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥A B,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.二、填空题(本大题共5个小题,每小题3分,满分15分)9.因式分解:2x2﹣8=2(x+2)(x﹣2).【分析】观察原式,找到公因式2,提出即可得出答案.解:2x2﹣8=2(x+2)(x﹣2).【点评】本题考查提公因式法和公式法分解因式,是基础题.10.如图,点A所表示的数的绝对值是 3 .【分析】数轴上某个数与原点的距离叫做这个数的绝对值.由数轴可知,﹣3与原点距离为3,所以|﹣3|=3.解:由数轴可知,﹣3与原点的距离为3,∴|﹣3|=3.故答案为3.【点评】本题考查了绝对值,正确理解绝对值的几何意义是解题的关键.11.在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是(4,1).【分析】直接利用关于x轴对称,横坐标相同,纵坐标不同,进而得出答案.解:∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1).故答案为:(4,1).【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.12.一条数学信息在一周内被转发了2 180 000次,将数据2 180 000用科学记数法表示为2.18×106.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:将2 180 000用科学记数法表示为:2.18×106.故答案为:2.18×106.【点评】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为14°.【分析】依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出∠1=44°﹣30°=14°.解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得∠3=∠1+30°,∴∠1=44°﹣30°=14°,故答案为:14°.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.三、解答题(本大题共9个小题,满分73分)14.(5分)计算:22+﹣2sin60°+|﹣|.【分析】按照从左至右的顺序依次计算即可.解:原式=4+2﹣2×+=6.【点评】本题主要考查了实数的运算,需要熟练掌握绝对值运算、根式运算、特殊角的三角函数值.15.(6分)先化简,再求值:(1﹣)÷,其中a=sin30°.【分析】根据分式的运算法则即可求出答案,解:当a=sin30°时,所以a=原式=•=•==﹣1【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.16.(6分)已知:在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为点E,F,且DE=DF.求证:△ABC是等边三角形.【分析】只要证明Rt△ADE≌Rt△CDF,推出∠A=∠C,推出BA=BC,又AB=AC,即可推出AB=BC=AC;证明:∵DE⊥AB,DF⊥BC,垂足分别为点E,F,∴∠AED=∠CFD=90°,∵D为AC的中点,∴AD=DC,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF,∴∠A=∠C,∴BA=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形.【点评】本题考查全等三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.17.(6分)如图,反比例函数y=(k≠0)的图象与正比例函数y=2x的图象相交于A(1,a),B两点,点C在第四象限,CA∥y轴,∠ABC=90°.(1)求k的值及点B的坐标;(2)求tan C的值.【分析】(1)先利用正比例函数解析式确定A(1,2),再把A点坐标代入y=中求出k得到反比例函数解析式为y=,然后解方程组得B点坐标;(2)作BD⊥AC于D,如图,利用等角的余角相等得到∠C=∠ABD,然后在在Rt△ABD 中利用正切的定义求解即可.解:(1)把A(1,a)代入y=2x得a=2,则A(1,2),把A(1,2)代入y=得k=1×2=2,∴反比例函数解析式为y=,解方程组得或,∴B点坐标为(﹣1,﹣2);(2)作BD⊥AC于D,如图,∴∠BDC=90°,∵∠C+∠CBD=90°,∠CBD+∠ABD=90°,∴∠C=∠ABD,在Rt△ABD中,tan∠ABD===2,即tan C=2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.18.(8分)如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.【分析】(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=25﹣AB,然后根据勾股定理即可求得;(1)证明:∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得,AB=13cm,【点评】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.19.(9分)为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.【分析】(1)用喜爱社会实践的人数除以它所占的百分比得到n的值;(2)先计算出样本中喜爱看电视的人数,然后用1200乘以样本中喜爱看电视人数所占的百分比可估计该校喜爱看电视的学生人数;(3)画树状图展示12种等可能的结果数,再找出恰好抽到2名男生的结果数,然后根据概率公式求解.解:(1)n=5÷10%=50;(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1200×=240,所以估计该校喜爱看电视的学生人数为240人;(3)画树状图为:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.20.(9分)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?【分析】(1)根据点的坐标,利用待定系数法即可求出年销售量y与销售单价x的函数关系式;(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,根据总利润=单台利润×销售数量,即可得出关于x的一元二次方程,解之取其小于70的值即可得出结论.解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),将(40,600)、(45,550)代入y=kx+b,得:,解得:,∴年销售量y与销售单价x的函数关系式为y=﹣10x+1000.(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,根据题意得:(x﹣30)(﹣10x+1000)=10000,整理,得:x2﹣130x+4000=0,解得:x1=50,x2=80.∵此设备的销售单价不得高于70万元,∴x=50.答:该设备的销售单价应是50万元/台.【点评】本题考查了待定系数法求一次函数解析式以及一元二次方程的应用,解题的关键是:(1)根据点的坐标,利用待定系数法求出函数关系式;(2)找准等量关系,正确列出一元二次方程.21.(12分)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D作DE⊥AC分别交AC、AB的延长线于点E、F.(1)求证:EF是⊙O的切线;(2)若AC=4,CE=2,求的长度.(结果保留π)【分析】(1)连接OD,由OA=OD知∠OAD=∠ODA,由AD平分∠EAF知∠DAE=∠DAO,据此可得∠DAE=∠ADO,继而知OD∥AE,根据AE⊥EF即可得证;(2)作OG⊥AE,知AG=CG=AC=2,证四边形ODEG是矩形得OA=OB=OD=CG+CE=4,再证△ADE∽△ABD得AD2=48,据此得出BD的长及∠BAD的度数,利用弧长公式可得答案.解:(1)如图,连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠EAF,∴∠DAE=∠DAO,∴∠DAE=∠ADO,∴OD∥AE,∵AE⊥EF,∴OD⊥EF,∴EF是⊙O的切线;(2)如图,作OG⊥AE于点G,连接BD,则AG=CG=AC=2,∠OGE=∠E=∠ODE=90°,∴四边形ODEG是矩形,∴OA=OB=OD=CG+CE=2+2=4,∠DOG=90°,∵∠DAE=∠BAD,∠AED=∠ADB=90°,∴△ADE∽△ABD,∴=,即=,∴AD2=48,在Rt△ABD中,BD==4,在Rt△ABD中,∵AB=2BD,∴∠BAD=30°,∴∠BOD=60°,则的长度为=.【点评】本题考查切线的判定与性质,解题的关键是掌握切线的判定与性质、矩形的判定与性质、垂径定理、弧长公式等知识点.22.(12分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH 的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:AB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P(﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
云南省曲靖市2019年中考数学试卷一、选择题(共8个小题,每小题3分,共24分)1.(3分)(2019•曲靖)某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是()A.﹣10℃B.﹣6℃C .6℃D.10℃考点:有理数的减法.分析:用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.解答:解:8﹣(﹣2)=8+2=10℃.故选D.点评:本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.2.(3分)(2019•曲靖)下列等式成立的是()A.a2•a5=a10B.C.(﹣a3)6=a18D.考点:二次根式的性质与化简;同底数幂的乘法;幂的乘方与积的乘方.分析:利用同底数的幂的乘法法则以及幂的乘方、算术平方根定义即可作出判断.解答:解:A、a2•a5=a7,故选项错误;B、当a=b=1时,≠+,故选项错误;C、正确;D、当a<0时,=﹣a,故选项错误.故选C.点评:本题考查了同底数的幂的乘法法则以及幂的乘方、算术平方根定义,理解算术平方根的定义是关键.3.(3分)(2019•曲靖)如图是某几何体的三视图,则该几何体的侧面展开图是()A.B.C.D.考点:由三视图判断几何体;几何体的展开图分析:由三视图可以看出,此几何体是一个圆柱,指出圆柱的侧面展开图即可.解答:解:根据几何体的三视图可以得到该几何体是圆柱,圆柱的侧面展开图是矩形,且高度=主视图的高,宽度=俯视图的周长.故选A.点评:本题考查了由三视图判断几何体及几何体的侧面展开图的知识,重点考查由三视图还原实物图的能力,及几何体的空间感知能力,是立体几何题中的基础题.4.(3分)(2019•曲靖)某地资源总量Q一定,该地人均资源享有量与人口数n的函数关系图象是()A.B.C.D.考点:反比例函数的应用;反比例函数的图象.分析:根据题意有:=;故y与x 之间的函数图象双曲线,且根据,n的实际意义,n 应大于0;其图象在第一象限.解答:解:∵由题意,得Q=n,∴=,∵Q为一定值,∴是n的反比例函数,其图象为双曲线,又∵>0,n>0,∴图象在第一象限.故选B.点评:此题考查了反比例函数在实际生活中的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.5.(3分)(2019•曲靖)在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()A.(2,4)B.(1,5)C.(1,﹣3)D.(﹣5,5)考点:坐标与图形变化-平移.分析:根据向右平移,横坐标加,向上平移纵坐标加求出点P′的坐标即可得解.解答:解:∵点P(﹣2,0)向右平移3个单位长度,∴点P′的横坐标为﹣2+3=1,∵向上平移4个单位长度,∴点P′的纵坐标为1+4=5,∴点P′的坐标为(1,5).故选B.点评:本题考查了坐标与图形变化﹣平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.6.(3分)(2019•曲靖)实数a、b在数轴上的位置如图所示,下列各式成立的是()A.B.a﹣b>0 C.a b>0 D.a÷b>0考点:实数与数轴.分析:根据数轴判断出a、b的取值范围,再根据有理数的乘除法,减法运算对各选项分析判断后利用排除法求解.解答:解:由图可知,﹣2<a<﹣1,0<b<1,A、<0,正确,故本选项正确;B、a﹣b<0,故本选项错误;C、ab<0,故本选项错误;D、a÷b<0,故本选项错误.故选A.点评:本题考查了实数与数轴,有理数的乘除运算以及有理数的减法运算,判断出a、b的取值范围是解题的关键.7.(3分)(2019•曲靖)如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC 交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形考点:菱形的判定;平行四边形的性质.分析:首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可.解答:解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.点评:此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键.8.(3分)(2019•曲靖)如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB 内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是()A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称考点:作图—基本作图;全等三角形的判定与性质;角平分线的性质.分析:连接CE、DE,根据作图得到OC=OD、CE=DE,利用SSS证得△EOC≌△EOD从而证明得到射线OE平分∠AOB,判断A正确;根据作图得到OC=OD,判断B正确;根据作图得到OC=OD,由A得到射线OE平分∠AOB,根据等腰三角形三线合一的性质得到OE是CD的垂直平分线,判断C正确;根据作图不能得出CD平分OE,判断D错误.解答:解:A、连接CE、DE,根据作图得到OC=OD、CE=DE.∵在△EOC与△EOD中,,∴△EOC≌△EOD(SSS),∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意;B、根据作图得到OC=OD,∴△COD是等腰三角形,正确,不符合题意;C、根据作图得到OC=OD,又∵射线OE平分∠AOB,∴OE是CD的垂直平分线,∴C、D两点关于OE所在直线对称,正确,不符合题意;D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,∴O、E两点关于CD所在直线不对称,错误,符合题意.故选D.点评:本题考查了作图﹣基本作图,全等三角形的判定与性质,角平分线的性质,等腰三角形、轴对称的性质,从作图语句中提取正确信息是解题的关键.二、填空题(共8个小题,每小题3分,共24分)。
9.(3分)(2019•曲靖)﹣2的倒数是.考点:倒数.分析:根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10.(3分)(2019•曲靖)若a=1.9×105,b=9.1×104,则a>b(填“<”或“>”).考点:有理数大小比较;科学记数法—表示较大的数.分析:还原成原数,再比较即可.解答:解:a=1.9×105=190000,b=9.1×104=91000,∵190000>91000,∴a>b,故答案为:>.点评:本题考查了有理数的大小比较和科学记数法的应用,注意:科学记数法化成a×10n的形式,其中1≤a<10,n是整数.11.(3分)(2019•曲靖)如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=40°.考点:对顶角、邻补角;角平分线的定义.分析:根据对顶角相等求出∠AOC,再根据角平分线的定义解答.解答:解:∵∠BOD=40°,∴∠AOC=∠BOD=40°,∵OA平分∠COE,∴∠AOE=∠AOC=40°.故答案为:40°.点评:本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.12.(3分)(2019•曲靖)不等式和x+3(x﹣1)<1的解集的公共部分是x <1.考点:解一元一次不等式组.分析:先解两个不等式,再用口诀法求解集.解答:解:解不等式,得x<4,解不等式x+3(x﹣1)<1,得x<1,所以它们解集的公共部分是x<1.故答案为x<1.点评:本题考查一元一次不等式组的解法,求一元一次不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).13.(3分)(2019•曲靖)若整数x满足|x|≤3,则使为整数的x的值是﹣2(只需填一个).考点:二次根式的定义.分析:先求出x的取值范围,再根据算术平方根的定义解答.解答:解:∵|x|≤3,∴﹣3≤x≤3,∴当x=﹣2时,==3,x=3时,==2.故,使为整数的x的值是﹣2或3(填写一个即可).故答案为:﹣2.点评:本题考查了二次根式的定义,熟记常见的平方数是解题的关键.14.(3分)(2019•曲靖)一组“穿心箭”按如下规律排列,照此规律,画出2019支“穿心箭”是.考点:规律型:图形的变化类.分析:根据图象规律得出每6个数为一周期,用2019除以6,根据余数来决定2019支“穿心箭”的形状.解答:解:根据图象可得出“穿心箭”每6个一循环,2019÷6=335…3,故2019支“穿心箭”与第3个图象相同是.故答案为:.点评:此题主要考查了图象的变化规律,根据已知得出图形变化规律是解题关键.15.(3分)(2019•曲靖)如图,将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3所得到的三角形和△ABC的对称关系是关于旋转点成中心对称.考点:旋转的性质.分析:先根据三角形内角和为180°得出n′1+n′2+n′3=180°,再由旋转的定义可知,将△ABC 绕其中一个顶点顺时针旋转180°所得到的三角形和△ABC关于这个点成中心对称.解答:解:∵n′1+n′2+n′3=180°,∴将△ABC绕其中一个顶点顺时针连续旋转n′1、n′2、n′3,就是将△ABC绕其中一个顶点顺时针旋转180°,∴所得到的三角形和△ABC关于这个点成中心对称.故答案为:关于旋转点成中心对称.点评:本题考查了三角形内角和定理,旋转的定义与性质,比较简单.正确理解顺时针连续旋转n′1、n′2、n′3,就是顺时针旋转180°是解题的关键.16.(3分)(2019•曲靖)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD=3.考点:直角梯形.分析:过点D作DE⊥BC于E,则易证四边形ABED是矩形,所以AD=BE=1,进而求出CE的值,再解直角三角形DEC即可求出CD的长.解答:解:过点D作DE⊥BC于E.∵AD∥BC,∠B=90°,∴四边形ABED是矩形,∴AD=BE=1,∵BC=4,∴CE=BC﹣BE=3,∵∠C=45°,∴cosC==,∴CD=3.故答案为3.点评:此题考查了直角梯形的性质,矩形的判定和性质以及特殊角的锐角三角函数值,此题难度不大,解题的关键是注意数形结合思想的应用.三、解答题(共8个小题,共72分)17.(6分)(2019•曲靖)计算:2﹣1+|﹣|++()0.考点:实数的运算;零指数幂;负整数指数幂分析:分别进行零指数幂、负整数指数幂的运算,然后合并即可得出答案.解答:解:原式=++2+1=4.点评:本题考查了实数的运算,解答本题的关键是掌握零指数幂、负整数指数幂的运算法则.18.(10分)(2019•曲靖)化简:,并解答:(1)当x=1+时,求原代数式的值.(2)原代数式的值能等于﹣1吗?为什么?考点:分式的化简求值;解分式方程.分析:(1)原式括号中两项约分后,利用乘法分配律化简,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值;(2)先令原式的值为﹣1,求出x的值,代入原式检验即可得到结果.解答:解:(1)原式=[﹣]•=﹣=,当x=1+时,原式==1+;(2)若原式的值为﹣1,即=﹣1,去分母得:x+1=﹣x+1,解得:x=0,代入原式检验,分母为0,不合题意,则原式的值不可能为﹣1.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.19.(8分)(2019•曲靖)某种仪器由1种A部件和1个B部件配套构成.每个工人每天可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?考点:二元一次方程组的应用.分析:设安排x人生产A部件,安排y人生产B部件,就有x+y=16和1000x=600y,由这两个方程构成方程组,求出其解即可.解答:解:设安排x人生产A部件,安排y人生产B部件,由题意,得,解得:.答:设安排6人生产A部件,安排10人生产B部件,才能使每天生产的A部件和B 部件配套.点评:本题考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据条件建立建立反映全题等量关系的两个方程是关键.本题时一道配套问题.20.(8分)(2019•曲靖)甲、乙两名工人同时加工同一种零件,现根据两人7天产品中每天出现的次品数情况绘制成如下不完整的统计图和表,依据图、表信息,解答下列问题:相关统计量表:量众数中位数平均数方差数人甲22 2乙 1 1 1次品数量统计表:天1 2 3 4 5 6 7数人甲 2 2 0 3 1 2 4乙 1 0 2 1 1 0 2(1)补全图、表.(2)判断谁出现次品的波动小.(3)估计乙加工该种零件30天出现次品多少件?考点:折线统计图;用样本估计总体;算术平均数;中位数;众数;方差分析:(1)根据平均数、众数、中位数的定义分别进行计算,即可补全统计图和图表;(2)根据方差的意义进行判断,方差越大,波动性越大,方差越小,波动性越小,即可得出答案;(3)根据图表中乙的平均数是1,即可求出乙加工该种零件30天出现次品件数.解答:解:(1):从图表(2)可以看出,甲的第一天是2,则2出现了3次,出现的次数最多,众数是2,把这组数据从小到大排列为0,1,2,2,2,3,4,最中间的数是2,则中位数是2;乙的平均数是1,则乙的第7天的数量是1×7﹣1﹣0﹣2﹣1﹣1﹣0=2;填表和补图如下:众数中位数平均数方差量数人甲 2 2 2乙 1 1 1次品数量统计表:1 2 3 4 5 6 7天数人甲 2 2 0 3 1 2 4乙 1 0 2 1 1 0 2(2)∵S甲2=,S乙2=,∴S甲2>S乙2,∴乙出现次品的波动小.(3)∵乙的平均数是1,∴30天出现次品是1×30=30(件).点评:此题考查了折线统计图,用到的知识点是平均数、众数、中位数、方差的意义、用样本估计总体;读懂折线统计图和图表,从统计图中得到必要的信息是解决问题的关键.21.(8分)(2019•曲靖)在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是.(1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).考点:列表法与树状图法;概率公式.专题:图表型.分析:(1)设红球有x个,根据概率的意义列式计算即可得解;(2)画出树状图,然后根据概率公式列式计算即可得解.解答:解:(1)设红球有x个,根据题意得,=,解得x=1;(2)根据题意画出树状图如下:一共有9种情况,两次摸到的球颜色不同的有6种情况,所以,P(两次摸到的球颜色不同)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)(2019•曲靖)如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.(1)求证:△DCF≌△ADG.(2)若点E是AB的中点,设∠DCF=α,求sinα的值.考点:正方形的性质;全等三角形的判定与性质;解直角三角形.分析:(1)根据正方形的性质求出AD=DC,∠ADC=90°,根据垂直的定义求出∠CFD=∠CFG=90°,再根据两直线平行,内错角相等求出∠AGD=∠CFG=90°,从而得到∠AGD=∠CFD,再根据同角的余角相等求出∠ADG=∠DCF,然后利用“角角边”证明△DCF和△ADG全等即可;(2)设正方形ABCD的边长为2a,表示出AE,再利用勾股定理列式求出DE,然后根据锐角的正弦等于对边比斜边求出∠ADG的正弦,即为α的正弦.解答:(1)证明:在正方形ABCD中,AD=DC,∠ADC=90°,∵CF⊥DE,∴∠CFD=∠CFG=90°,∵AG∥CF,∴∠AGD=∠CFG=90°,∴∠AGD=∠CFD,又∵∠ADG+∠CDE=∠ADC=90°,∠DCF+∠CDE=90°,∴∠ADG=∠DCF,∵在△DCF和△ADG中,,∴△DCF≌△ADG(AAS);(2)设正方形ABCD的边长为2a,∵点E是AB的中点,∴AE=×2a=a,在Rt△ADE中,DE===a,∴sin∠ADG===,∵∠ADG=∠DCF=α,∴sinα=.点评:本题考查了正方形的性质,全等三角形的判定与性质,锐角三角函数,同角的余角相等的性质,以及勾股定理的应用,熟练掌握各图形的性质并确定出三角形全等的条件是解题的关键.23.(10分)(2019•曲靖)如图,⊙O的直径AB=10,C、D是圆上的两点,且.设过点D的切线ED交AC的延长线于点F.连接OC交AD于点G.(1)求证:DF⊥AF.(2)求OG的长.考点:切线的性质.分析:(1)连接BD,根据,可得∠CAD=∠DAB=30°,∠ABD=60°,从而可得∠AFD=90°;(2)根据垂径定理可得OG垂直平分AD,继而可判断OG是△ABD的中位线,在Rt△ABD中求出BD,即可得出OG.解答:解:(1)连接BD,∵,∴∠CAD=∠DAB=30°,∠ABD=60°,∴∠ADF=∠ABD=60°,∴∠CAD+∠ADF=90°,∴DF⊥AF.(2)在Rt△ABD中,∠BAD=30°,AB=10,∴BD=5,∵=,∴OG垂直平分AD,∴OG是△ABD的中位线,∴OG=BD=.点评:本题考查了切线的性质、圆周角定理及垂径定理的知识,解答本题要求同学们熟练掌握各定理的内容及含30°角的直角三角形的性质.24.(12分)(2019•曲靖)如图,在平面直角坐标系xOy中,直线y=x+4与坐标轴分别交于A、B两点,过A、B两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D 作CD⊥x轴于点C,交抛物线于点E.(1)求抛物线的解析式.(2)当DE=4时,求四边形CAEB的面积.(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.考点:二次函数综合题.分析:(1)首先求出点A、B的坐标,然后利用待定系数法求出抛物线的解析式;(2)设点C坐标为(m,0)(m<0),根据已知条件求出点E坐标为(m,8+m);由于点E在抛物线上,则可以列出方程求出m的值.在计算四边形CAEB面积时,利用S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO,可以简化计算;(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.解答:解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,∴,解得:b=﹣3,c=4,∴抛物线的解析式为:y=﹣x2﹣3x+4.(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m.∵OA=OB=4,∴∠BAC=45°,∴△ACD为等腰直角三角形,∴CD=AC=4+m,∴CE=CD+DE=4+m+4=8+m,∴点E坐标为(m,8+m).∵点E在抛物线y=﹣x2﹣3x+4上,∴8+m=﹣m2﹣3m+4,解得m=﹣2.∴C(﹣2,0),AC=OC=2,CE=6,S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12.(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).∵△ACD为等腰直角三角形,△DBE和△DAC相似∴△DBE必为等腰直角三角形.i)若∠BED=90°,则BE=DE,∵BE=OC=﹣m,∴DE=BE=﹣m,∴CE=4+m﹣m=4,∴E(m,4).∵点E在抛物线y=﹣x2﹣3x+4上,∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,∴D(﹣3,1);ii)若∠EBD=90°,则BE=BD=﹣m,在等腰直角三角形EBD中,DE=BD=﹣2m,∴CE=4+m﹣2m=4﹣m,∴E(m,4﹣m).∵点E在抛物线y=﹣x2﹣3x+4上,∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,∴D(﹣2,2).综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).点评:本题考查了二次函数与一次函数的图象与性质、函数图象上点的坐标特征、待定系数法、相似三角形、等腰直角三角形、图象面积计算等重要知识点.第(3)问需要分类讨论,这是本题的难点.。