生物统计学-第四章抽样分布
统计学抽样分布

常见的样本统计量
X
X
i 1
n
i
Xf f
P n1 n
n
n
S2
X
i 1
i X
n 1
X X f
2
f 1
S S2
假如抽取30名,得到样本平均数、标准差和成数是
x 1554420 x
n 30 s ( x x) 2 n 1 p 19 / 30 0.63
p
(1 ) N n
n ( N 1
)
与样本均值分布的方差一样,对于无限总体进行不重复 抽样时,可以按重复抽样来处理。
附注:正态分布理论与中心极限定理
1、正态分布的密度函数
f ( x)
1
式中 x 为正态分布的平均数, 是它的标 准差。这两个参数决定正态分布密度函 ( x, 2 ) 数的形状。也可简记为N
1
2
3
4
1.0 1.5 2.0 2.5 3.0 3.5 4.0
X
= 2.5
σ2 =1.25
X 2.5
2 X 0.625
显然,不同的样本对应着不同的样本统计量,而由于 样本抽取的随机性,样本统计量即为一种随机变量。 一般地,样本统计量的可能取值及其取值概率,形成 其概率分布,统计上称为抽样分布(sampling distribution)。 ▲正是抽样分布及其特征使得用样本统计量估计总 体参数的“精确程度”能够给予概率上的描述。 ▲由于样本统计量的随机性及其抽样分布的存在,同 样可计算其均值、方差、标准差等数字特征来反映该 分布的中心趋势和离散趋势。
结论:
1、样本平均数的期望值
由于不同的样本可得到不同的样本均值,因此, 考察样本均值的期望就显得非常重要。 用 x 表示样本均值的期望值,X 表示总体均值, 可证明在简单随机抽样中。
生物统计知识点总结

生物统计知识点总结生物统计学基本概念1. 总体和样本生物统计学中,研究对象的全体称为总体,而从总体中选取的部分个体称为样本。
样本是总体的代表,通过对样本进行研究和分析,可以对总体进行推断。
2. 参数和统计量总体的特征称为参数,它是总体的固有属性。
而样本的特征称为统计量,它是样本的统计学特征,用来推断总体的参数。
3. 随机变量在生物统计学中,用来研究某种现象的变量称为随机变量。
随机变量有两种类型,离散型和连续型。
离散型随机变量的取值是有限个或者可数个,而连续型随机变量的取值是连续的。
4. 抽样分布抽样分布是指在总体中随机抽取样本后得到的分布。
当样本容量足够大时,抽样分布具有一些特定的性质,如正态分布、t分布、F分布等,这些分布在生物统计学中是非常重要的。
生物统计学常用方法1. 描述统计描述统计是对数据进行整理、归纳和描述的过程,主要包括测量中心趋势的指标(如均值、中位数、众数)、测量离散程度的指标(如标准差、方差)以及数据的图表展示。
2. 推断统计推断统计是通过样本对总体参数进行推断的过程。
推断统计主要包括参数估计和假设检验两个部分。
参数估计是通过样本来估计总体参数的值,而假设检验是对总体参数的某种假设进行检验的过程。
3. 方差分析方差分析是一种用来比较两个或多个总体均值是否相等的统计方法。
它包括单因素方差分析和多因素方差分析,用于研究不同因素对总体均值的影响。
4. 回归分析回归分析是用来研究一个或多个自变量对因变量的影响程度和方向的统计方法。
回归分析分为简单线性回归和多元线性回归,以及非线性回归等方法。
5. 生存分析生存分析是研究生存时间或事件发生时间的统计方法,它包括生存曲线、生存率和生存分布等内容,主要用于临床医学和流行病学领域。
生物统计学在生物学领域的应用生物统计学在生物学领域有着广泛的应用。
它可以用来设计实验、收集和整理数据、进行数据分析和结果解释。
以下是一些生物统计学在生物学领域的应用示例。
医用数理统计方法课件第四章随机抽样与抽样分布

i 1 n
(2)若总体X的分布密度为 p( x),则样本( X 1 , X 2 ,, X n ) 的分布密度为 p( xi ).
i 1 n
(3)若总体X的分布率为P{ X x } p( x )(i 1,2,),
n i 1 1 n i 1
n
n
n
2
1 n
2
2 2 2 1 (3) E ( S n ) E[ n X X ] i
n 2
2 2 E ( X ) E ( X ) i
2
1 n
( D( X ) ( E( X )) ) ( D( X ) ( E ( X )) )
1 n k Ak X i , k 1, 2, ; n i 1
1 n Bk ( X i X )k , k 2, 3, ; n i 1 1 n k b ( x x ) , k 2, 3, . 其观察值 k i n i 1
样本矩具有下列性质:
n n 1 1 *2 2 2 2 其观察值 sn ( xi x ) xi nx . n 1 i 1 n 1 i 1
(5) 样本 k 阶(原点)矩
(6)样本 k 阶中心矩
1 n k 其观察值 ak xi , k 1, 2, . n i 1
例2 设总体 X 服从两点分布B(1, p), 其中0 p 1,
( X 1 , X 2 ,, X n )是来自总体的样本 , 求样本 ( X 1 , X 2 , , X n ) 的分布律.
解 总体 X 的分布律为
医用数理统计方法课件第四章随机抽样与抽样分布

04
大样本统计推断方法
中心极限定理
总结词
中心极限定理是概率论中的基本定理之一,它表明无论总体分布是什么,只要样本量足够大,样本均值的分布就 会趋近于正态分布。
详细描述
中心极限定理是统计学中非常重要的基础理论,它指出当从一个无限总体中随机抽取的样本量趋于无穷大时,样 本均值的分布将趋近于正态分布,无论总体分布是什么。这个定理是许多大样本统计推断方法的基础,如参数估 计和假设检验。
样本均值的分布性质
总结词
样本均值是统计学中常用的统计量,它表示样本数据的平均水平。样本均值的分布性质 是指在一定条件下,多个样本均值的分布特征。
详细描述
样本均值的分布性质是统计学中的重要概念,它描述了样本均值在不同条件下的变化规 律。在中心极限定理的基础上,我们知道当样本量足够大时,样本均值会趋近于正态分 布。此外,样本均值的方差随着样本量的增加而减小,并且样本均值与总体均值之间的
假设检验
假设检验的定义
假设检验是一种通过检验两个对立假设来推断未知参数的方法, 例如检验某药物是否有效。
假设检验的优缺点
假设检验的优点是能够提供未知参数是否符合某种假设的信息;缺 点是需要设定两个对立假设,可能会引入主观性。
假设检验的常用方法
常用的假设检验方法包括t检验、卡方检验、F检验等。
06
实例三:公共卫生调查中的抽样方法
总结词
在公共卫生调查中,选择合适的抽样方法对 于获取准确的调查结果至关重要。
详细描述
公共卫生调查中常用的抽样方法包括简单随 机抽样、分层抽样、系统抽样和整群抽样等 。根据调查目的和实际情况选择合适的抽样 方法,可以确保调查结果的准确性和可靠性 。此外,公共卫生调查中还需要注意样本量 的大小和抽样的代表性,以确保调查结果能 够反映目标人群的特征和状况。
统计学之抽样与抽样分布课件

期望 —
E X x f x dx
方差 — σ 2 X x E X 2 f x dx
标准差 — σX x E X 2 f x dx
2020/8/8
第四章 抽样和抽样分布
13
第四章 抽样与抽样分布
第三节 抽样分布
3.1 抽样及抽样分布的含义 3.2 重置抽样下的抽样分布 3.3 不重置抽样下的抽样分布
1
F x P3X/4 x
1
4
当
2/4
3 4 当
1/4
4 4 当
0 x1 1 x2 2 x
2020/8/8
1
2
X
第四章 抽样和抽样分布
8
2.2 连续型随机变量概率分布
连续X❖型的密 随概率机度分变函布量数函的数的概性 率分质布:
1.
f
F
xx
0;x
f x dx
2. f x dx 1 ;
X 的概率密度函数
由于连续型随机变量在某点处的概率等于零。 对于连续性随机变量:
P x1 X x2 F x2 F x1
2020/8/8
第四章 抽样和抽样分布
5
2.2 离散型随机变量概率分布
设:正面向上的次数为 X,
则 X = 0、1、2
P X 0 1 1 1
22 4
PX
1
1 2
1 2
1 2
1 2
方差:σ 2 X X i E X 2 Pi i 1
N
标准差: σ X X i E X 2 Pi i 1
2020/8/8
第四章 抽样和抽样分布
11
2.3 随机变量的数字特征
概 数学期望 率 论
生物统计学 第4章 抽样分布

df1 df2
df1 df2 2
F
,F
0
0, F 0
F分布的平均数和方差分别为:
F
df2 , df df2 2
2
2 F
2df22 (df1 df2 2) df1(df2 2)2 (df2 4)
,
df
2
4
线性内插法求F值
求F12,17,0.05 1. 先查F12,15,0.05 =2.475, F12,20,0.05 =2.278 2. 公式: F12,17,0.05 = F12,15,0.05 +(F12,20,0.05 F12,15,0.05 )/(20-15)×(17-15) 3. 结果:=2.3962
( df 1) 2
(1
t2
df 1
) 2 ,
t
df ( )( df ) df
2
式中df=n-1
t分布的特征数:
t 0 (df 1)
t
df df 2
(df 2)
1:t 0 (df 3)
2:t
6 df 4
(df 4)
P(t≥tα)= P(t≤-tα)=α
P(| t | t )
当用σi2去出si2之后, si2 就被标准化了,标准化
的样本方差之比称为F:
s12
2
1
F df1,df2
2
s2
2 2
F分布是由一对自由度df1和df2确定的,F分布的 密度函数为:
f df1 ,df2
df1 df2
df1
2
df1 df2
2
df1 df2 2 2
1
df1 1
,2
0
统计学 抽样分布和理论分布

抽样分布与理论分布一、抽样分布总体分布:总体中所有个体关于某个变量的取值所形成的分布。
样本分布:样本中所有个体关于某个变量大的取值所形成的分布。
抽样分布:样品统计量的概率分布,由样本统计量的所有可能取值和相应的概率组成。
即从容量为N 的总体中抽取容量为n 的样本最多可抽取m 个样本,m 个样本统计值形成的频率分布,即为抽样分布。
样本平均数的抽样分布:设变量X 是一个研究总体,具有平均数μ和方差σ2。
那么可以从中抽取样本而得到样本平均数x ,样本平均数是一个随机变量,其概率分布叫做样本平均数的抽样分布。
由样本平均数x 所构成的总体称为样本平均数的抽样总体。
它具有参数μx 和σ2x ,其中μx 为样本平均数抽样总体的平均数,σ2x 为样本平均数抽样总体的方差,σx 为样本平均数的标准差,简称标准误。
统计学上可以证明x 总体的两个参数 μx 和σ2x 与X 总体的两个参数μ和σ2有如下关系:μx = μσ2x = σ2 /n 由中心极限定理可以证明,无论总体是什么分布,如果总体的平均值μ和σ2都存在,当样本足够大时(n>30),样本平均值x 分布总是趋近于N (μ,n2σ)分布。
但在实际工作中,总体标准差σ往往是未知的,此时可用样本标准差S 估计σ。
于是,以nS估计σx ,记为X S ,称为样本标准误或均数标准误。
样本平均数差数的抽样分布:二、正态分布2.1 正态分布的定义:若连续型随机变量X 的概率密度函数是⎪⎭⎫ ⎝⎛--=σμπσx e x f 22121)( (-∞<x <+∞)则称随机变量X 服从平均数为μ、方差为σ2的正态分布,记作X~N (μ,σ2)。
相应的随机变量X 概率分布函数为 F (x )=⎰∞-x dx x f )(它反映了随机变量X 取值落在区间(-∞,x )的概率。
2.2 标准正态分布当正态分布的参数μ=0,σ2=1时,称随机变量X 服从标准正态分布,记作X~N (0,1)。
生物统计理论分布和抽样分布

第四章理论分布和抽样分布一、基本概念1.必然事件:在同一组条件的实现下必然要发生的一类事件。
如人总是要死的,水在标准大气压下加热到100℃必然化为蒸汽。
P(A)=1。
2.不可能事件:在同一组条件的实现下必然不发生的一类事件。
如水在标准大气压下温度低于0℃不可能呈气态。
P(A)=0。
3.随机事件(偶然事件):在同一组条件的实现下可能发生,也可能不发生的一类事件。
如种子可能发芽,也可能不发芽;硬币抛上落下可能正面朝上,也可能反面朝上。
P(A)∈[0,1]。
4.频率a:假定在相似条件下重复进行同一类试验调查,事件A发生的次数a与总试验次数n的比称之。
如抛硬币,10次有7次朝上,a=7/10。
5.概率P:当试验总次数n逐渐增大时,事件A的频率愈来愈稳定地接近定值P,则事件A地概率为P。
6.小概率的实际不可能性原理:凡概率很小的事件(农业上一般指P<0.05的事件),在二、计算事件概率的法则1.和事件:C=A+B A:身高在1.65以下;B:身高在1.65~1.75之间;C:身高在1.75以下。
2.积事件:C=A×B A:身高在1.65以下;B:男同学;C:身高在1.65以下的男同学。
3. 互斥事件:A·B=V (V表示空集) A:小麦种子发芽;B:小麦种子不发芽。
4.对立事件:如果A+B是必然事件,即A+B=U(U为全集);而A·B=V,即A与B 是互斥事件,则称B为A的对立事件,B=A(补集),如上例发芽与不发芽。
5.完全事件:如A·B=V且A+B=U,则称A与B为完全事件系,如小麦发芽与不发芽就构成完全事件系。
6.对立事件的概率:A()1(A)=-P P7.互斥事件的概率加法:()(A)()P=+=+如身高小于1.60m的概率为(A)P A B P P B0.15;身高小于1.70m且大于等于1.60m的概率为()P B=0.62;则身高小于1.70m的概率()(A)()+=+=0.77P A B P P B8.独立事件的概率乘法:()(A)()P A B P P B=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
t
y
s
,具有n -1的自由度
n 其中,s 称为样本标准差。t分布只有一个参数。
n
16
标准差未知时的平均数分布
自由度(df):
自由度是指独立观测值的个数,在计算s时所使用的n个观测值受到平均 值的约束,这就等于有一个观测值不能独立取值,因此自由度df=n-1。
fdf (t)
df 1 2
df(πf df
2 1
22
n1 n2
1 2 ( y1 y 2)
( y1 y 2)
2 1
22
n1 n2
23
如果两个总体都是正态分布,则有
标准化
N (1
2
,
(12
n1
2 2
n2
))
u ( y1 y2) (1 2 )
2 1
2 2
n1
n2
24
二、标准差未知时,两个平均数的 和与差的分布
t (df1df2 ) t (n1 n2 2)
9
在统计上,如果所有可能样本的某一统计
数等于总体的相应参数,则称该统计数为
总体_ 相应参数的无偏估计值(unbiased estyimate)
13
1、 是μ的无偏估计值。
2、s2是σ2的无偏估计值。 3、以n为除数的样本方差
估计值。
4、s不是σ的无偏估计值。
不是σ2的无偏
14
标准差已知时的平均数分布
生物统计学
西安电子科技大学 生命科学技术学院
刘鹏
1
第四章抽样分布
2
抽样分布
研究总体与从中抽取的样本之间的关系是 统计学的中心内容。
生物统计学的最基本问题是研究总体和样本 间的关系。
总体类型: (1)实际研究对象所构成的总体 (2)数字的总体
3
抽样分布
对这种关系(总体与样本)的研究可从两方面着 手: 一是从总体到样本,这就是研究抽样分布的问题; 二是从样本到总体,这就是统计推断问题。
2
62
6
4
64
6
6
总和
66
∑(y)
4 6 8 6 8 10 8 10 12 72
_
y
s02
s2
s
2
0
0 0.0000
3
1
2 1.4142
4
4
8 2.8284
3
1
2 1.4142
4
0
0 0.0000
5
1
2 1.4142
4
4
8 2.8284
5
1
2 1.4142
6
0
0 0.0000
36
12
24 11.3136
统计推断是以总体分布和样本抽样分布的理论关 系为基础的。
4
总体
随机样本1
……
2
3
4
无穷多个样本
总体和样本的关系示意图
5
抽样分布
从样本
到总体
总体与 样本间 的关系
从总体 到样本
统计推
断(目的)
抽样分 布(基础)
本章研究的内容就是:从总体到样本(抽样分布)
6
抽样分布
抽样分布全部建立在正态分布的基础之上(在正 态分布的总体中抽样)。
每个样本可以计算一个平均数,这样就得到许多 平均数,如果将这些平均数集合起来便构成一个 新总体。由于每次随机抽样所得的平均数可能会 存在差异,所以由平均数构成的新总体也应该有 其分布,这种分布称为平均数的抽样分布。
9
下面用一个抽样实验进一步说明样本平均数的抽 样分布及其分布的参数。
假定用一个很小的总体N=3,其观察值为2、4、6 以样本容量n=2从中进行抽样。
29
例题
例3:已知男生智商平均数为100,方差 为64,女生智商平均为102,方差为49. 现随机抽取25男生和16名女生进行智力 测验,问两个样本平均数之差(男生-女 生)介于1~3之间的概率是多少?
30
例题
例4:某次试验欲采购一批药品,已知 两个公司的产品的使用寿命分别为1270 小时和1260小时,样本方差分别为802和 942,现从该两个公司的产品中各自抽 取50个样本进行寿命检验。假设两者之 间没有显著性差别。那么,两公司的样 本平均数使用寿命之差(第一个公司-第 二个公司)服从怎么样的分布呢?
( y1 y2) (1 2 )
df1s12 df2s22 ( 1 1 ) df1 df2 df1 11 df2 1
( y1 y2) (1 2 )
(n1 1)s12 (n2 1)s22 ( 1 1 ) (n1 1) (n2 1) n1 n2
25
三、两个样本方差比的分布
s12
2
1
F df1,df2
2
这个变量就是服从n-1个自由度的卡方分布(χ2 – distribution)。
19
其密度函数为:
f
( 2 )
df 2 2
1 ( df
)
df
y2
1 2
e2
,
2
y0
0
其他.
2 (n)分布的概率密度曲线如图.
20
对于给定的正数 , 0 1, 称满足条件
P{ 2 2 (n)}
1
t2 df
df 1
2 ,
2
t
17
1. 具有自由度为n的t分布t ~ t(df ), 其数学期望
与方差为:E(t) 0, D(t) df (df 2)
(n 2)
2. t分布的密度函数关于t 0对称.当n充分大时, 其图形近似于标准正态分布概率密度的图形,
再 由函数的性质有
从两个正态总体中抽取样本: 两个平均数的和与差,与正态分布、t分布 有关。 两个样本方差比的分布,与F分布有关。
36
f ( y)dy
2 ( n)
的点
2
(n)
为
2 (n)
分布的上
分位点.
对于不同的 , n,
可以通过查表求
得上 分位点的值.
如何查表,附表6.
21
§4·2 从两个正态总体分 布中抽取的样本统计量的
分布
22
一、标准差已知时,两个平均数的 和与差的分布
1 2 ( y1 y 2)
( y1 y 2)
2
s2
22
f df1 ,df2
(F)
(
df1 df2
df1
)2
( df1 df2 ) 2
( df1 )( df2 ) 22
F ( df1 1) 2
(1
df1
( df1 df2 )
F) 2
df2
,
F
0
0, F 0
26
F分布的平局数和方差分别为:
F
df2 df2
2
,df
2
2
2 F
2df22 (df1 df2 df1(df2 2)2 (df
Y ~ N(, 2 )
n
u
y
n
变量是正态的或近似正态的,则标准化的变量服从或 近似服从N(0,1)分布。如果整体是非正态分布,当n 足够大的时,其样本平局数还是服从正态分布。
15
标准差未知时的平均数分布
未知时,可以用样本标准差变量不服从正态分布,而服从n -1的t分布
2) 2 4)
,df
2
4
F分布的概率密度曲线图
如何查表,附表7.
27
例题
例1:某类药物产品的有效性服从正态 分布,其总体平均数为100,总体标准差 为5.现从该总体中抽取一个容量为25的 简单随机样本,求这一样本的样本平均 数介于99~101的概率。
28
例题
例2:某次测量老鼠的体重,其服从正 态分布,其总体平均数为100,样本标准 差为4。现从该总体中抽取一个容量为16 的简单随机样本,求问其样本平均数服 从怎么样的分布。如果样本容量是64呢? 如果样本容量是64,样本平均数大于102 的概率有多大?
首先计算出总体参数:
μ=(2+4+6)/3=4 σ2=〔(2-4)2+(4-4)2+(6-4)2〕/3=8/3
所有可能的样本数=Nn=32=9
10
总体N=3,样本容量n=2时所有样本的总和数、平均数和方差表
第一个 第二个 样本
观察值 观察值
2
2
22
2
4
24
2
6
26
4
2
42
4
4
44
4
6
46
6
平均数的抽样分布对总体正态性的要求不十分严 格。
(根据中心极限定理,从非正态分布的总体中抽取 的含量为n的样本,当n充分大时,样本平均数渐 近服从正态分布)
方差的抽样分布对总体正态性的要求十分严格。
7
§4·1 从一个正态总体分 布中抽取的样本统计量的
分布
8
一、样本平均数的抽样及其分布
如果从容量为N的有限总体抽样,若每次抽取容 量为n的样本,那么一共可以得到Nn个样本。
31
例题
例6:某实验室让一组10人用第一种工艺 进行试验,方差为25;让另一组10人用 第二种工艺进行试验,方差为144。现假 定工作时间服从正态分布,两个总体平 均数相等,两总体方差有显著性差别。 问;两种工艺平均数用时之差服从怎样 的分布呢?
32
总结
从一个正态总体中抽取样本: 样本平均数的分布与正态分布、t分布有关。 样本方差的分布与卡方分布有关。
11
从表中我们可以算出 样本平均数 的平均数:
_
_
y
N