2020初三数学期末考试总结与反思

合集下载

2020-2021学年北京市西城区初三数学第一学期期末试卷及解析

2020-2021学年北京市西城区初三数学第一学期期末试卷及解析

2020-2021学年北京市西城区初三数学第一学期期末试卷一、选择题(本题共24分,每小题3分)第1~8题均有四个选项,符合题意的选项只有一个. 1.(3分)在抛物线245y x x =--上的一个点的坐标为( ) A .(0,4)-B .(2,0)C .(1,0)D .(1,0)-2.(3分)在半径为6cm 的圆中,60︒的圆心角所对弧的弧长是( ) A .cm πB .2cm πC .3cm πD .6cm π3.(3分)将抛物线2y x =先向右平移3个单位长度,再向上平移5个单位长度,所得抛物线的解析式为( )A .2(3)5y x =++B .2(3)5y x =-+C .2(5)3y x =++D .2(5)3y x =-+4.(3分)2020年是紫禁城建成600年暨故宫博物院成立95周年,在此之前有多个国家曾发行过紫禁城元素的邮品.图1所示的摩纳哥发行的小型张中的图案,以敞开的紫禁城大门和大门内的石狮和太和殿作为邮票和小型张的边饰,如果标记出图1中大门的门框并画出相关的几何图形(图2),我们发现设计师巧妙地使用了数学元素(忽略误差),图2中的四边形ABCD 与四边形A B C D ''''是位似图形,点O 是位似中心,点A '是线段OA 的中点,那么以下结论正确的是( )A .四边形ABCD 与四边形ABCD ''''的相似比为1:1 B .四边形ABCD 与四边形A B C D ''''的相似比为1:2 C .四边形ABCD 与四边形A B C D ''''的周长比为3:1 D .四边形ABCD 与四边形A B C D ''''的面积比为4:15.(3分)如图,AB 是O 的直径,CD 是弦,若32CDB ∠=︒,则ABC ∠等于( )A .68︒B .64︒C .58︒D .32︒6.(3分)若抛物线2(0)y ax bx c a =++≠经过(1,0)A ,(3,0)B 两点,则抛物线的对称轴为( ) A .1x =B .2x =C .3x =D .4x =7.(3分)近年来我国无人机产业迅猛发展,无人机驾驶员已正式成为国家认可的新职业,中国民用航空局的现有统计数据显示,从2017年底至2019年底,全国拥有民航局颁发的民用无人机驾驶执照的人数已由约2.44万人增加到约6.72万人.若设2017年底至2019年底,全国拥有民用无人机驾驶执照人数的年平均增长率为x ,则可列出关于x 的方程为( ) A .2.44(1) 6.72x += B .2.44(12) 6.72x +=C .22.44(1) 6.72x +=D .22.44(1) 6.72x -=8.(3分)现有函数24()2()x x a y x x x a +<⎧=⎨-⎩如果对于任意的实数n ,都存在实数m ,使得当x m =时,y n =,那么实数a 的取值范围是( ) A .54a -B .14a -C .41a -D .45a -二、填空题(本题共24分,每小题3分)9.(3分)若正六边形的边长为2,则它的外接圆半径是 .10.(3分)若抛物线2(0)y ax a =≠经过(1,3)A ,则该抛物线的解析式为 . 11.(3分)如图,在Rt ABC ∆中,90C ∠=︒,6AC =,9AB =,则sin B = .12.(3分)若抛物线2(0)y ax bx c a =++≠的示意图如图所示,则a 0,b 0,c 0(填“>”,“ =”或“<” ).13.(3分)如图,AB 为O 的直径,10AB =,CD 是弦,AB CD ⊥于点E ,若6CD =,则EB = .14.(3分)如图,PA,PB是O的两条切线,A,B为切点,若2OA=,60APB∠=︒,则PB=.15.(3分)放缩尺是一种绘图工具,它能把图形放大或缩小.制作:把钻有若干等距小孔的四根直尺用螺栓分别在点A,B,C,D处连接起来,使得直尺可以绕着这些点转动,O为固定点,OD DA CB==,DC AB BE==,在点A,E处分别装上画笔.画图:现有一图形M,画图时固定点O,控制点A处的笔尖沿图形M的轮廓线移动,此时点E处的画笔便画出了将图形M放大后的图形N.原理:若连接OA,OE,可证得以下结论:①ODA∆和OCE∆为等腰三角形,则1(180)2DOA ODA∠=︒-∠,1(1802COE∠=︒-∠);②四边形ABCD为平行四边形(理由是);③DOA COE∠=∠,于是可得O,A,E三点在一条直线上;④当35DCCB=时,图形N是以点O为位似中心,把图形M放大为原来的倍得到的.16.(3分)如图,在平面直角坐标系xOy中,(4,3)P,O经过点P.点A,点B在y轴上,PA PB=,延长PA,PB分别交O于点C,点D,设直线CD与x轴正方向所夹的锐角为α.(1)O的半径为;(2)tan α= .三、解答题(本题共52分,第17、18、20~22题每小题5分,第19题6分,第23~25题每小题5分) 17.(5分)计算:22sin60tan 45cos 30︒-︒+︒. 18.(5分)已知关于x 的方程2240x x k ++-=. (1)如果方程有两个不相等的实数根,求k 的取值范围; (2)若1k =,求该方程的根. 19.(6分)借助网格画图并说理:如图所示的网格是正方形网格,ABC ∆的三个顶点是网格线的交点,点A 在BC 边的上方,AD BC ⊥于点D ,4BD =,2CD =,3AD =.以BC 为直径作O ,射线DA 交O 于点E ,连接BE ,CE . (1)补全图形;(2)填空:BEC ∠= ︒,理由是 ; (3)判断点A 与O 的位置关系并说明理由;(4)BAC ∠ BEC ∠(填“>”,“ =”或“<” ).20.(5分)二次函数2(0)y ax bx c a =++≠的图象经过(3,0)点,当1x =时,函数的最小值为4-. (1)求该二次函数的解析式并画出它的图象;(2)直线x m =与抛物线2(0)y ax bx c a =++≠和直线3y x =-的交点分别为点C ,点D ,点C 位于点D 的上方,结合函数的图象直接写出m 的取值范围.21.(5分)如图,AB 为O 的直径,AC 为弦,点D 在O 外,BCD A ∠=∠,OD 交O 于点E . (1)求证:CD 是O 的切线; (2)若4CD =, 2.7AC =,9cos 20BCD ∠=,求DE 的长.22.(5分)如图,正方形ABCD 的边长为4,点E 在AB 边上,1BE =,F 为BC 边的中点.将正方形截去一个角后得到一个五边形AEFCD ,点P 在线段EF 上运动(点P 可与点E ,点F 重合),作矩形PMDN ,其中M ,N 两点分别在CD ,AD 边上.设CM x =,矩形PMDN 的面积为S .(1)DM = (用含x 的式子表示),x 的取值范围是 ; (2)求S 与x 的函数关系式;(3)要使矩形PMDN 的面积最大,点P 应在何处?并求最大面积.23.(7分)已知抛物线212y x x =-+.(1)直接写出该抛物线的对称轴,以及抛物线与y 轴的交点坐标; (2)已知该抛物线经过1(34,)A n y +,2(21,)B n y -两点. ①若5n <-,判断1y 与2y 的大小关系并说明理由;②若A ,B 两点在抛物线的对称轴两侧,且12y y >,直接写出n 的取值范围.24.(7分)在Rt ABC ∆中,90ACB ∠=︒,30ABC ∠=︒,3BC =ABC ∆绕点B 顺时针旋转(0120)αα︒<︒得到△A BC '',点A ,点C 旋转后的对应点分别为点A ',点C '.(1)如图1,当点C '恰好为线段AA '的中点时,α= ︒,AA '= ; (2)当线段AA '与线段CC '有交点时,记交点为点D .①在图2中补全图形,猜想线段AD 与A D '的数量关系并加以证明; ②连接BD ,请直接写出BD 的长的取值范围.25.(7分)对于平面内的图形1G 和图形2G ,记平面内一点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”. 在平面直角坐标系xOy 中,已知点(6,0)A ,(0B ,23).(1)在(3,0)R ,(2,0)S ,3)T 三点中,点A 和点B 的等距点是 ; (2)已知直线2y =-.①若点A 和直线2y =-的等距点在x 轴上,则该等距点的坐标为 ; ②若直线y a =上存在点A 和直线2y =-的等距点,求实数a 的取值范围; (3)记直线AB 为直线1l ,直线23:l y =,以原点O 为圆心作半径为r 的O .若O 上有m 个直线1l 和直线2l 的等距点,以及n 个直线1l 和y 轴的等距点(0,0)m n ≠≠,当m n ≠时,求r 的取值范围.参考答案与试题解析一、选择题(本题共24分,每小题3分)第1~8题均有四个选项,符合题意的选项只有一个. 1.【解答】解:当0x =时,5y =-,因此(0,4)-不在抛物线245y x x =--, 当2x =时,4859y =--=-,因此(2,0)不在抛物线245y x x =--上, 当1x =时,1458y =--=-,因此(1,0)不在抛物线245y x x =--上, 当1x =-时,1450y =+-=,因此(1,0)-在抛物线245y x x =--上, 故选:D .2.【解答】解:弧长为:6062()180cm ππ⨯=. 故选:B .3.【解答】解:将抛物线2y x =先向右平移3个单位长度,得:2(3)y x =-; 再向上平移5个单位长度,得:2(3)5y x =-+, 故选:B .4.【解答】解:四边形ABCD 与四边形A B C D ''''是位似图形,点O 是位似中心,点A '是线段OA 的中点,:1:2OA OA ∴'=, :1:2A B AB ∴''=,∴四边形ABCD 与四边形A B C D ''''的相似比为2:1,周长的比为2:1,面积比为4:1.故选:D . 5.【解答】解:AB 是O 的直径,90ADB ∴∠=︒, 90ADC CDB ∴∠+∠=︒,90903258ADC CDB ∴∠=︒-∠=︒-︒=︒, ABC ADC ∠=∠, 58ABC ∴∠=︒,故选:C .6.【解答】解:抛物线2y x bx c =++经过(1,0)A 、(3,0)B 两点,∴抛物线对称轴为直线1322x +==, 故选:B .7.【解答】解:设2017年底至2019年底,全国拥有民用无人机驾驶执照人数的年平均增长率为x , 则可列出关于x 的方程为22.44(1) 6.72x +=, 故选:C . 8.【解答】解:222(1)1y x x x =-=--,∴函数22y x x =-的最小值为1-,把1y =-代入4y x =+得,14x -=+,解得5x =-,由图象可知,当54a -时,对于任意的实数n ,都存在实数m ,使得当x m =时,函数y n =, 故选:A .二、填空题(本题共24分,每小题3分) 9.【解答】解:如图所示,连接OB 、OC ; 此六边形是正六边形, 360606BOC ︒∴∠==︒, OB OC =,BOC ∴∆是等边三角形, 2OB OC BC ∴===.故答案为:2.10.【解答】解:把(1,3)A 代入2(0)y ax a =≠中, 得231a =⨯, 解得3a =,所以该抛物线的解析式为23y x =. 故答案为:23y x =.11.【解答】解:在Rt ABC ∆中,90C ∠=︒,6AC =,9AB =, 则62sin 93AC B AB ===, 故答案为:23. 12.【解答】解:抛物线开口方向向上, 0a ∴>,对称轴在y 轴的右侧, 0b ∴<,抛物线与y 轴交于负半轴, 0c ∴<.故答案为>,<,<.13.【解答】解:连接OC ,如图所示: 弦CD AB ⊥于点E ,6CD =, 132CE ED CD ∴===,在Rt OEC ∆中,90OEC ∠=︒,3CE =,152OC AB ==, 22534OE ∴=-=, 15412BE OB OE AB OE ∴=-=-=-=, 故答案为:1.14.【解答】解:PA 、PB 是O 的两条切线,60APB ∠=︒,2OA OB ==, 1302BPO APB ∴∠=∠=︒,BO PB ⊥.24PO AO ∴==,22224223PB PO OB ∴=-=-=. 故答案是:23.15.【解答】解:①ODA ∆和OCE ∆为等腰三角形, 1(180)2DOA ODA ∴∠=︒-∠,1(180)2COE OCE ∠=︒-∠;②AD BC =,DC AB =,∴四边形ABCD 为平行四边形(两组对边分别相等的四边形是平行四边形);③连接OA ,AE ,DOA COE ∠=∠,O ∴,A ,E 三点在一条直线上;④35DC BC =,∴设3CD AB BE x ===,5OD AD BC x ===,四边形ABCD 是平行四边形, //AD BC ∴, AOD EOC ∴∆∆∽,∴35855OC x x OD x +==, ∴图形N 是以点O 为位似中心,把图形M 放大为原来的85,故答案为:OCE ;两组对边分别相等的四边形是平行四边形;85.16.【解答】解:(1)连接OP . (4,3)P ,5OP ∴==, 故答案为:5.(2)设CD 交x 轴于J ,过点P 作PT AB ⊥交O 于T ,交AB 于E ,连接CT ,DT ,OT . (4,3)P ,4PE ∴=,3OE =,在Rt OPE ∆中,4tan 3PE POE OE ∠==, OE PT ⊥,OP OT =, POE TOE ∴∠=∠,12PDT POT POE ∴∠=∠=∠,PA PB =.PE AB ⊥, APT DPT ∴∠=∠,∴TC DT =,TDC TCD ∴∠=∠, //PT x 轴, CJO CKP ∴∠=∠,CKP TCK CTK ∠=∠+∠,CTP CDP ∠=∠,PDT TDC CDP ∠=∠+∠, TDP CJO ∴∠=∠, CJO POE ∴∠=∠,4tan tan 3CJO POE ∴∠=∠=. 补充方法:证明CJO EOP ∠=∠时,可以这样证明:90CJO TOJ ∠+∠=︒,90TOJ EOT ∠+∠=︒, CJO EOT ∴∠=∠, EOT EOB ∠=∠,CJO EOP ∴∠=∠,可得结论.故答案为:43.三、解答题(本题共52分,第17、18、20~22题每小题5分,第19题6分,第23~25题每小题5分) 17.【解答】解:原式23321(=-+ 3314+ 134=. 18.【解答】解:(1)△2241(4)204k k =-⨯⨯-=-. 方程有两个不相等的实数根,∴△0>.2040k ∴->,解得5k <;k ∴的取值范围为5k <.(2)当1k =时,原方程化为2230x x +-=, (1)(3)0x x -+=, 10x -=或30x +=,解得11x =,23x =-.19.【解答】解:(1)补全图形见图1.(2)BC 是直径,90BEC ∴∠=︒(直径所对的圆周角是直角). 故答案为:90,直径所对的圆周角是直角. (3)点A 在O 外. 理由如下:连接OA .4BD =,2CD =,6BC BD CD ∴=+=,32BCr ==. AD BC ⊥, 90ODA ∴∠=︒,在Rt AOD ∆中,3AD =,1OD BD OB =-=,∴22221310OA OD AD =++103>,OA r ∴>,∴点A 在O 外.(4)观察图象可知:BAC BEC ∠<∠. 故答案为:<.20.【解答】解:(1)当1x =时,二次函数2(0)y ax bx c a =++≠的最小值为4-,∴二次函数的图象的顶点为(1,4)-,∴二次函数的解析式可设为2(1)4(0)y a x a =--≠,二次函数的图象经过(3,0)点,2(31)40a ∴--=. 解得1a =.∴该二次函数的解析式为2(1)4y x =--;如图,(2)由图象可得0m <或3m >. 21.【解答】(1)证明:如图,连接OC .AB 为O 的直径,AC 为弦,90ACB ∴∠=︒,90OCB ACO ∠+∠=︒. OA OC =, ACO A ∴∠=∠. BCD A ∠=∠, ACO BCD ∴∠=∠. 90OCB BCD ∴∠+∠=︒. 90OCD ∴∠=︒. CD OC ∴⊥. OC 为O 的半径, CD ∴是O 的切线;(2)解:BCD A ∠=∠,9cos 20BCD ∠=, 9cos cos 20A BCD ∴=∠=.在Rt ABC ∆中,90ACB ∠=︒, 2.7AC =,9cos 20A =. 2.769cos 20AC AB A∴===. 32ABOC OE ∴===. 在Rt OCD ∆中,90OCD ∠=︒,3OC =,4CD =,∴5OD =.532DE OD OE ∴=-=-=.22.【解答】解:(1)正方形ABCD 的边长为4,CM x =,1BE =, 4DM DC CM x ∴=-=-,其中01x .故答案是:4x -,01x ; (2)如图,延长MP 交AB 于G ,正方形ABCD 的边长为4,F 为BC 边的中点,四边形PMDN 是矩形,CM x =,1BE =, //PM BC ∴,122BF FC BC ===,BG MC x ==,4GM BC ==, EGP EBF ∴∆∆∽,1EG x =-,∴EG PG EB BF =,即112x PG-=. 22PG x ∴=-,4(22)22DN PM GM PG x x ∴==-=--=+,2(4)(22)268S DM DN x x x x ∴=⋅=-+=-++,其中01x . (3)由(2)知,2268S x x =-++, 20a =-<,∴此抛物线开口向下,对称轴为322b x a =-=,即32x =,∴当32x <时,y 随x 的增大而增大. x 的取值范围为01x ,∴当1x =时,矩形PMDN 的面积最大,此时点P 与点E 重合,此时最大面积为12.23.【解答】解:(1)212y x x =-+,∴对称轴为直线1112()2x =-=⨯-,令0x =,则0y =,∴抛物线与y 轴的交点坐标为(0,0),(2)(34)(21)5A B x x n n n -=+--=+,1(34)1333(1)A x n n n -=+-=+=+,1(21)1222(1)B x n n n -=--=-=-.①当5n <-时,10A x -<,10B x -<,0A B x x -<.A ∴,B 两点都在抛物线的对称轴1x =的左侧,且A B x x <,抛物线212y x x =-+开口向下,∴在抛物线的对称轴1x =的左侧,y 随x 的增大而增大.12y y ∴<;②若点A 在对称轴直线1x =的左侧,点B 在对称轴直线1x =的右侧时, 由题意可得3412111(34)(21)1n n n n +<⎧⎪->⎨⎪-+<--⎩,∴不等式组无解,若点B 在对称轴直线1x =的左侧,点A 在对称轴直线1x =的右侧时, 由题意可得:3412111(21)341n n n n +>⎧⎪-<⎨⎪-->+-⎩,115n ∴-<<-,综上所述:115n -<<-.24.【解答】解:(1)90C ∠=︒,3BC =,30ABC ∠=︒, tan301AC BC ∴=⋅︒=, 22AB AC ∴==, BA BA =',AC AC '='', 30ABC A BC ∴∠'=∠''=︒,ABA ∴∆'是等边三角形,60α∴=︒,2AA AB '==.故答案为:60,2.(2)①补全图形如图所示:结论:AD A D '=.理由:如图2,过点A 作A C ''的平行线,交CC '于点E ,记1β∠=. 将Rt ABC ∆绕点B 顺时针旋转α得到Rt △A BC '', 90A C B ACB ''∴∠=∠=︒,A C AC ''=,BC BC '=.21β∴∠=∠=.3190ACB β∴∠=∠-∠=︒-,290A C D A C B β''''∠=∠+∠=︒+. //AE A C ''90AED A C D β''∴∠=∠=︒+.4180180(90)90AED ββ∴∠=︒-∠=︒-︒+=︒-. 34∴∠=∠. AE AC ∴=. AE A C ''∴=.在ADE ∆和△A DC ''中, ADE A DC AED A C D AE A C ∠=∠''⎧⎪∠=∠''⎨⎪=''⎩, ADE ∴∆≅△()A DC AAS '',AD A D '∴=.②如图1中,当60α=︒时,BD 的值最大,最大值为3. 当120α=︒时,BD 的值最小,最小值1sin30212BD AB =⋅︒=⨯=, 13BD ∴.25.【解答】解:(1)点(6,0)A ,(0B ,23),(3,0)R ,(2,0)S ,(1,3)T , 3AR ∴=,21BR =,4AS =,4BS =,27AT =,2BT =, AS BS ∴=,∴点A 和点B 的等距点是(2,0)S ,故答案为:(2,0)S ;(2)①设等距点的坐标为(,0)x , 2|6|x ∴=-, 4x ∴=或8,∴等距点的坐标为(4,0)或(8,0),故答案为:(4,0)或(8,0);②如图1,设直线y a =上的点Q 为点A 相直线2y =-的等距点,连接QA ,过点Q 作直线2y =-的垂线,垂足为点C ,点Q 为点A 和直线2y =-的等距点, QA QC ∴=,22QA QC ∴=点Q 在直线y a =上,∴可设点Q 的坐标为(,)Q x a222(6)[(2)]x a a ∴-+=--. 整理得2123240x x a -+-=,由题意得关于x 的方程2123240x x a -+-=有实数根.∴△2(12)41(324)16(1)0a a =--⨯⨯-=+.解得1a -; (3)如图2,直线1l 和直线2l 的等距点在直线33:3l y = 直线1l 和y 轴的等距点在直线4:323l y x =-+或53:23l y =+ 由题意得3r 或3r .。

学生数学期末考试总结与反思

学生数学期末考试总结与反思

学生数学期末考试总结与反思学生数学期末考试总结与反思「篇一」【第一篇】期末考试很重要,有时还意义非凡。

考好了,心里甜滋滋的,随之而来的是老师的赞扬、同学们的羡慕和父母的喜悦;考得不号,老师会失望,父母会生气,还可能会面对同学轻视得眼光和讥讽的话语。

以我微薄之见,考好则已,考不好也别灰心,如果上要考虑长辈的夸奖,下要考虑同学的冷嘲热讽,则必败无疑。

考好不骄,考不好不气馁,以平平和和的心态应考,反而能考好。

但是,说到容易,做到却难。

就拿这次期中考试来说吧。

我是抱着考双百分的信心来应考的。

从早到晚,考试以后,都十分疲惫和担心,时间仿佛静止了,度日如年,考好和考不好这两个词在心里打架,晚上一觉酣睡才觉得好些。

第二天是数学考试。

考完,我便四处问讯数学答案,以便与自己的答案相对,跟着就是几声“耶!”的欢呼,因为那时我已经感觉到我是100分了。

现在就看语文了。

我紧张得就像心里有几只小兔子,能清晰地感觉到自己的心跳的节奏。

就在这时,同学熊梦飞跑过来,把他凉凉的小手搭在我的肩上,说:“别不高兴,”一听这话,我的心里“咯噔”一下,他继续说:“你语文九十五点五分。

”啊!怎么会这样!顿时,我眼前浮现出这样几幅景象:我和爷爷坐在客厅里,爷爷问我是不是100分,我说有99.9999%的把握得100分;我和妈妈拉构:双百分就奖励一小时电脑游戏。

现在倒好,不仅辜负了爷爷得期望,而且一个小时得游戏也成了泡影!唉!为什么是这样!我在心里祈祷:但愿数学能给我一个满意得结果吧!我希望自己以平和的心态对待考试,但做起来真难啊!【第二篇】这个星期的星期四、星期五,我们学校举行了为期两天的期中测试,今天是最后一天。

考得怎么样呢?有哪道题出错了呢?错在哪里呢?这两天期中考试下来,如果不出差错的话,应该不错!但最让人头疼的就是那堆七年级的同学,由于我们是拆班考的,所以未免遇到有像“机关枪嘴,这样的学生,而老师也是爱理不理的样子,视而不见,这还不算可恶,可恶的是老师提前催同学们交卷,我也看到也很多的'同学没有写好,而时间还剩半个钟,这半个钟头要是还给我们的话,或许我们还能再多几分,老师你可倒好啊!当然这只是个别的老师,还是有一些些是好的。

2020-2021学年天津市河东区九年级上学期期末考试数学试卷及答案解析

2020-2021学年天津市河东区九年级上学期期末考试数学试卷及答案解析

2020-2021学年天津市河东区九年级上学期期末考试数学试卷一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.(3分)在一个不透明的袋子中共装有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有3个红球,5个黄球,若随机摸出一个红球的概率为14,则这个袋子中蓝球的个数是( )A .3个B .4个C .5个D .12个3.(3分)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是( )A .①③B .②③C .①④D .②④4.(3分)如图,利用标杆BE 测量建筑物的高度,如果标杆BE =1.2m .测得AB =1.6m .BC=18.4m .则建筑物的高CD =( )A .13.8mB .15mC .18.4mD .20m5.(3分)不论m 取何值时,抛物线y =x 2﹣mx ﹣1与x 轴的交点有( )A .0个B .1个C .2个D .3个6.(3分)下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .斜边与一条直角边对应成比例的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似7.(3分)在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点B 的对应点B ′的坐标是( ) A .(﹣3,﹣2)B .(﹣12,﹣8)C .(﹣3,﹣2)或(3,2)D .(﹣12,﹣8)或(12,8)8.(3分)如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为( )A .90°B .95°C .100°D .105°9.(3分)如图,正方形ABCD 中,E 为CD 的中点,EF ⊥AE ,交BC 于点F ,则∠1与∠2的大小关系为( )A .∠1>∠2B .∠1<∠2C .∠1=∠2D .无法确定10.(3分)如图,隧道的截面由抛物线和长方形OABC 构成,长方形的长OA 是12m ,宽OC 是4m .按照图中所示的平面直角坐标系,抛物线可以用y =−16x 2+bx +c 表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m .那么两排灯的水平距离最小是( )A .2mB .4mC .4√2 mD .4√3m11.(3分)二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx=﹣m有实数根,则m最大值为()A.3B.﹣3C.﹣6D.912.(3分)如图,一次函数y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,一次函数y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随x的增大而增大;③AB的长度可以等于5;④当﹣3<x<2时,ax2+kx<b.其中正确的结论是()A.①②③B.①②④C.①③④D.①②③④二.填空题(共6小题,满分18分,每小题3分)13.(3分)正六边形的外接圆的半径与内切圆的半径之比为.14.(3分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是.15.(3分)已知,AB是⊙O的直径,C、D是⊙O上的两点,且AC=CD.连接BC,BD.如图,若∠CBD=20°,则∠A的大小为(度).16.(3分)一个扇形的弧长是65πcm ,半径是6cm ,则此扇形的圆心角是 度. 17.(3分)二次函数y =ax 2+bx +c (a ≠0)中的自变量x 与函数值y 的部分对应值如下表:x… −32 ﹣1 −12 0 12 1 32 … y … −54 ﹣2 −94 ﹣2 −54 0 74 … 则ax 2+bx +c =0的解为 .18.(3分)如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、B 、C 均在格点上.(1)边AC 的长等于 .(2)以点C 为旋转中心,把△ABC 顺时针旋转,得到△A 'B 'C ',使点B 的对应点B '恰好落在边AC 上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明作图的方法(不要求证明).三.解答题(共7小题,满分66分)19.(8分)已知关于x 的一元二次方程:x 2+ax ﹣5=0的一个根是1,求a 的值及该方程的另一根.20.(8分)已知AB 是⊙O 的直径,点C ,D 是半圆O 的三等分点.连接AC ,DO .(Ⅰ)如图①,求∠BOD 及∠A 的大小;(Ⅱ)如图②,过点C 作CF ⊥AB 于点F ,交⊙O 于点H ,若⊙O 的半径为2.求CH 的长.21.(10分)如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT=√3,求⊙O的直径AB和弦BC的长.22.(10分)小明妈妈在春节期间以160元/件的价格购进了一批商品,如果按标价200元/件出售,那么每天可以销售20件.为了尽快减少库存,小明妈妈决定采取降价促销措施,经试销发现,每件商品每降价1元,平均每天可多售出2件,若平均每天要盈利1200元,每件商品应降价多少元?为了满足降价要求,小明妈妈应打几折出售?23.(10分)如图有一座抛物线形拱桥,桥下面在正常水位是AB宽20m,水位上升3m就达到警戒线CD,这是水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?24.(10分)如图1.在Rt△ABC中,∠A=90°,AB=AC,点D、E分别在边AB、AC上,AD=AE.连接DC,点M、P、N分别为DE、DC、BC的中点.(1)图1中,线段PM与PN的数量关系是,位置关系是;(2)把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,判断△PMN的形状,并说明理由;(3)把△ADE绕点A在平面内自由旋转,若DE=2,BC=6,请直接写出△PMN面积的最大值.25.(10分)如图,抛物线y=ax2+bx+c经过点B(4,0),C(0,﹣2),对称轴为直线x=1,与x轴的另一个交点为点A.(1)求抛物线的解析式;(2)点M从点A出发,沿AC向点C运动,速度为1个单位长度/秒,同时点N从点B 出发,沿BA向点A运动,速度为2个单位长度/秒,当点M、N有一点到达终点时,运动停止,连接MN,设运动时间为t秒,当t为何值时,AMN的面积S最大,并求出S 的最大值;(3)点P在x轴上,点Q在抛物线上,是否存在点P、Q,使得以点P、Q、B、C为顶点的四边形是平行四边形,若存在,直接写出所有符合条件的点P坐标,若不存在,请说明理由.2020-2021学年天津市河东区九年级上学期期末考试数学试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,又是中心对称图形,故此选项正确;B 、不是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、不是轴对称图形,是中心对称图形,故此选项错误;故选:A .2.(3分)在一个不透明的袋子中共装有红、黄、蓝三种颜色的小球,这些球除颜色外都相同,其中有3个红球,5个黄球,若随机摸出一个红球的概率为14,则这个袋子中蓝球的个数是( )A .3个B .4个C .5个D .12个【解答】解:设袋子中蓝球有x 个,根据题意,得:33+5+x =14, 解得:x =4,即袋中蓝球有4个,故选:B .3.(3分)关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是( )A .①③B .②③C .①④D .②④ 【解答】解:垂直于弦的直径平分弦,所以①正确;平分弦(非直径)的直径垂直于弦,所以②错误;在同圆或等圆中,相等的弦所对的圆周角相等或互补,所以③错误;在同圆或等圆中,相等的圆周角所对的弦相等,所以④正确.故选:C .4.(3分)如图,利用标杆BE 测量建筑物的高度,如果标杆BE =1.2m .测得AB =1.6m .BC=18.4m .则建筑物的高CD =( )A .13.8mB .15mC .18.4mD .20m【解答】解:∵EB ⊥AC ,DC ⊥AC ,∴EB ∥DC ,∴△ABE ∽△ACD ,∴BE CD =AB AC ,∵BE =1.2,AB =1.6,BC =18.4,∴AC =20,∴1.2CD =1.620,∴CD =15.故选:B .5.(3分)不论m 取何值时,抛物线y =x 2﹣mx ﹣1与x 轴的交点有( )A .0个B .1个C .2个D .3个【解答】解:∵抛物线y =x 2﹣mx ﹣1,∴△=(﹣m )2﹣4×1×(﹣1)=m 2+4≥4>0,∴不论m 取何值时,抛物线y =x 2﹣mx ﹣1与x 轴的交点有2个,故选:C .6.(3分)下列判断中,不正确的有( )A .三边对应成比例的两个三角形相似B .两边对应成比例,且有一个角相等的两个三角形相似C .斜边与一条直角边对应成比例的两个直角三角形相似D .有一个角是100°的两个等腰三角形相似【解答】解:A 、三边对应成比例的两个三角形相似,故A 选项不合题意;B 、两边对应成比例,且夹角相等的两个三角形相似,故B 选项符合题意;C 、斜边与一条直角边对应成比例的两个直角三角形相似,故C 选项不合题意;D 、有一个角是100°的两个等腰三角形,则他们的底角都是40°,所以有一个角是100°的两个等腰三角形相似,故D 选项不合题意;故选:B .7.(3分)在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点B 的对应点B ′的坐标是( ) A .(﹣3,﹣2)B .(﹣12,﹣8)C .(﹣3,﹣2)或(3,2)D .(﹣12,﹣8)或(12,8)【解答】解:∵以原点O 为位似中心,相似比为12,把△ABO 缩小,点B 的坐标为(﹣6,﹣4),∴点B 的对应点B ′的坐标为(﹣6×12,﹣4×12)或(6×12,4×12),即(﹣3,﹣2)或(3,2),故选:C .8.(3分)如图,将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,DB 的延长线交EF 于点H ,则∠DHE 的大小为( )A .90°B .95°C .100°D .105°【解答】解:∵将正方形ABCD 绕点A 顺时针旋转35°,得到正方形AEFG ,∴∠BAE =35°,∠E =90°,∠ABD =45°,∴∠ABH =135°,∴∠DHE =360°﹣∠E ﹣∠BAE ﹣∠ABH =360°﹣135°﹣35°﹣90°=100°, 故选:C .9.(3分)如图,正方形ABCD 中,E 为CD 的中点,EF ⊥AE ,交BC 于点F ,则∠1与∠2的大小关系为()A.∠1>∠2B.∠1<∠2C.∠1=∠2D.无法确定【解答】解:∵∠AED+∠CEF=90°,∠DAE+∠ADE=90°,∴∠DAE=∠CEF,∵∠ADE=∠ECF=90°,∴△ADE∽△ECF,且相似比为2,∴AE=2EF,AD=2DE,又∵∠ADE=∠AEF,∴△ADE∽△AEF,∴∠1=∠2.10.(3分)如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=−16x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是()A.2m B.4m C.4√2m D.4√3m【解答】解:根据题意,得OA=12,OC=4.所以抛物线的顶点横坐标为6,即−b2a=b13=6,∴b=2,∵C(0,4),∴c=4,所以抛物线解析式为:y=−16x2+2x+4=−16(x﹣6)2+10当y=8时,8=−16(x﹣6)2+10,解得x1=6+2√3,x2=6﹣2√3.则x1﹣x2=4√3.所以两排灯的水平距离最小是4√3.故选:D.11.(3分)二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx=﹣m有实数根,则m最大值为()A.3B.﹣3C.﹣6D.9【解答】解:由图象可得,二次函数y=ax2+bx的最小值是y=﹣3,∵一元二次方程ax2+bx=﹣m有实数根,∴﹣m≥﹣3,解得,m≤3,∴m的最大值是3,故选:A.12.(3分)如图,一次函数y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,一次函数y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随x 的增大而增大;③AB 的长度可以等于5;④当﹣3<x <2时,ax 2+kx <b .其中正确的结论是( )A .①②③B .①②④C .①③④D .①②③④【解答】解:①抛物线y =ax 2,利用顶点坐标公式得:顶点坐标为(0,0),本选项正确; ②根据图象得:直线y =kx +b (k ≠0)为增函数;抛物线y =ax 2(a ≠0)当x >0时为增函数,则x >0时,直线与抛物线函数值都随着x 的增大而增大,本选项正确; ③由A 、B 横坐标分别为﹣2,3,若AB =5,可得出直线AB 与x 轴平行,即k =0, 与已知k ≠0矛盾,故AB 不可能为5,本选项错误; ④直线y =﹣kx +b 与y =kx +b 关于y 轴对称,如图所示: 可得出直线y =﹣kx +b 与抛物线交点C 、D 横坐标分别为﹣3,2, 由图象可得:当﹣3<x <2时,ax 2<﹣kx +b ,即ax 2+kx <b ,本选项正确; 则正确的结论有①②④. 故选:B .二.填空题(共6小题,满分18分,每小题3分)13.(3分)正六边形的外接圆的半径与内切圆的半径之比为 2:√3 . 【解答】解:设正六边形的半径是r , 则外接圆的半径r ,内切圆的半径是正六边形的边心距,因而是√32r , 因而正六边形的外接圆的半径与内切圆的半径之比为2:√3. 故答案为:2:√3.14.(3分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车先后经过这个十字路口,则至少有一辆汽车向左转的概率是59.【解答】解:画树状图得:∵共有9种等可能的结果,至少有一辆汽车向左转的有5种情况, ∴至少有一辆汽车向左转的概率是:59.故答案为:59.15.(3分)已知,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,且AC =CD .连接BC ,BD .如图,若∠CBD =20°,则∠A 的大小为 70 (度).【解答】解:∵AC =CD , ∴AĈ=CD ̂, ∴∠ABC =∠CBD =20°, ∵AB 是⊙O 的直径, ∴∠ACB =90°,∴∠A =90°﹣20°=70°. 故答案为70.16.(3分)一个扇形的弧长是65πcm ,半径是6cm ,则此扇形的圆心角是 36 度.【解答】解:设扇形的圆心角为n . 由题意:65π=nπ⋅6180,解得n =36°, 故答案为36.17.(3分)二次函数y =ax 2+bx +c (a ≠0)中的自变量x 与函数值y 的部分对应值如下表:x…−32﹣1−12012132…y…−54﹣2−94﹣2−54074…则ax2+bx+c=0的解为x=﹣2或1.【解答】解:∵二次函数y=ax2+bx+c(a≠0)过点(﹣1,﹣2),(0,﹣2),∴此抛物线的对称轴为:直线x=−1 2,∵此抛物线过点(1,0),∴此抛物线与x轴的另一个交点为:(﹣2,0),∴ax2+bx+c=0的解为:x=﹣2或1.故答案为:x=﹣2或1.18.(3分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均在格点上.(1)边AC的长等于5.(2)以点C为旋转中心,把△ABC顺时针旋转,得到△A'B'C',使点B的对应点B'恰好落在边AC上,请在如图所示的网格中,用无刻度的直尺,作出旋转后的图形,并简要说明作图的方法(不要求证明).【解答】解:(1)根据网格可知:AB=4,BC=3,∴AC=√AB2+BC2=5,故答案为:5;(2)取格点E,F,M,N,作直线EF,直线MN,MN与EF交于点A′,EF与AC交于点B′,连接CA′.△A'B'C即为所求.三.解答题(共7小题,满分66分)19.(8分)已知关于x的一元二次方程:x2+ax﹣5=0的一个根是1,求a的值及该方程的另一根.【解答】解:(1)∵关于x的一元二次方程x2+ax﹣5=0的一个根是1,∴12+a﹣5=0,解得a=4;(2)设方程的另一个根为x2,则x2+1=﹣4,解得:x2=﹣5.故方程的另一根为﹣5.20.(8分)已知AB是⊙O的直径,点C,D是半圆O的三等分点.连接AC,DO.(Ⅰ)如图①,求∠BOD及∠A的大小;(Ⅱ)如图②,过点C作CF⊥AB于点F,交⊙O于点H,若⊙O的半径为2.求CH 的长.【解答】解:(Ⅰ)如图①,连接OC,∵点C,D是半圆O的三等分点,∴∠AOC=∠COD=∠BOD,∵AB为直径,∴∠AOC=∠COD=∠BOD=13×180°=60°,∵OC=OA,∴△AOC为等边三角形,∴∠A=60°;即∠BOD及∠A的大小为60°,60°;(Ⅱ)如图②,连接OC,∵CF⊥AB,∴CF=HF,在Rt△OCF中,∵∠COF=60°,∴OF=12OC=1,∴CF=√3OF=√3,∴CH=2CF=2√3.21.(10分)如图,AB是⊙O的直径,直线AT切⊙O于点A,BT交⊙O于C,已知∠B=30°,AT=√3,求⊙O的直径AB和弦BC的长.【解答】解:连接AC,如图所示:∵直线AT切⊙O于点A,∴∠BAT=90°,在Rt△ABT中,∠B=30°,AT=√3,∴tan30°=ATAB,即AB=√3tan30°=3;∵AB是⊙O的直径,∴∠ACB=90°,在Rt△ABC中,∠B=30°,AB=3,∴cos30°=BC AB,则BC=AB•cos30°=3√3 2.22.(10分)小明妈妈在春节期间以160元/件的价格购进了一批商品,如果按标价200元/件出售,那么每天可以销售20件.为了尽快减少库存,小明妈妈决定采取降价促销措施,经试销发现,每件商品每降价1元,平均每天可多售出2件,若平均每天要盈利1200元,每件商品应降价多少元?为了满足降价要求,小明妈妈应打几折出售?【解答】解:设每件商品降价x元,则平均每天可以销售(20+2x)件,依题意,得:(200﹣x﹣160)(20+2x)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20,又∵尽快减少库存,∴x =20, ∴200−x 200×10=9.答:每件商品应降价20元,为了满足降价要求,小明妈妈应打9折出售.23.(10分)如图有一座抛物线形拱桥,桥下面在正常水位是AB 宽20m ,水位上升3m 就达到警戒线CD ,这是水面宽度为10m . (1)在如图的坐标系中求抛物线的解析式.(2)若洪水到来时,水位以每小时0.2m 的速度上升,从警戒线开始,再持续多少小时才能到拱桥顶?【解答】解:(1)解:设所求抛物线的解析式为:y =ax 2(a ≠0), 由CD =10m ,可设D (5,b ),由AB =20m ,水位上升3m 就达到警戒线CD , 则B (10,b ﹣3),把D 、B 的坐标分别代入y =ax 2得: {25a =b 100a =b −3, 解得{a =−125b =−1.∴y =−125x 2; (2)∵b =﹣1,∴拱桥顶O 到CD 的距离为1m , ∴10.2=5(小时).所以再持续5小时到达拱桥顶.24.(10分)如图1.在Rt △ABC 中,∠A =90°,AB =AC ,点D 、E 分别在边AB 、AC 上,AD =AE .连接DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点.(1)图1中,线段PM 与PN 的数量关系是 PM =PN ,位置关系是 PM ⊥PN ;(2)把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,判断△PMN的形状,并说明理由;(3)把△ADE绕点A在平面内自由旋转,若DE=2,BC=6,请直接写出△PMN面积的最大值.【解答】解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=12BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=12CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由:如图2,连接CE,BD,由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=12BD,PM=12CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)若DE=2,BC=6,在Rt△ABC中,AB=AC,BC=6,∴AB=√22BC=3√2,同理:AD=√2由(2)知,△PMN是等腰直角三角形,PM=PN=12BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=4√2,∴PM=2√2,∴S △PMN 最大=12PM 2=12×(2√2)2=4.25.(10分)如图,抛物线y =ax 2+bx +c 经过点B (4,0),C (0,﹣2),对称轴为直线x =1,与x 轴的另一个交点为点A .(1)求抛物线的解析式;(2)点M 从点A 出发,沿AC 向点C 运动,速度为1个单位长度/秒,同时点N 从点B 出发,沿BA 向点A 运动,速度为2个单位长度/秒,当点M 、N 有一点到达终点时,运动停止,连接MN ,设运动时间为t 秒,当t 为何值时,AMN 的面积S 最大,并求出S 的最大值;(3)点P 在x 轴上,点Q 在抛物线上,是否存在点P 、Q ,使得以点P 、Q 、B 、C 为顶点的四边形是平行四边形,若存在,直接写出所有符合条件的点P 坐标,若不存在,请说明理由.【解答】解:(1)依题意,将B (4,0),C (0,﹣2),对称轴为直线x =1,代入抛物线解析式,得{16a +4b +c =0c =−2−b 2a =1, 解得:{ a =14b =−12c =−2,∴抛物线的解析式为:y=14x2−12x−2;(2)∵对称轴为直线x=1,B(4,0).∴A(﹣2,0),则AB=6,当点N运动t秒时,BN=2t,则AN=6﹣2t,如图1,过点M作MD⊥x轴于点D.∵OA=OC=2,∴△OAC是等腰直角三角形,∴∠OAC=45°.又∵DM⊥OA,∴△DAM是等腰直角三角形,AD=DM,当点M运动t秒时,AM=t,∴MD2+AD2=AM2=t2,∴DM=√22t,∴S=(6−2t)⋅√22t⋅12=−√22(x−32)2+98√2,∴由二次函数的图象及性质可知,当t=32时,S最大值为9√28;(3)存在,理由如下:①当四边形CBQP为平行四边形时,CB与PQ平行且相等,∵B(4,0),C(0,﹣2),∴y B﹣y C=y Q﹣y P=2,x B﹣x C=x Q﹣x P=4,∵y P=0,∴y Q=2,将y=2代入y=14x2−12x−2,得x1=1+√17,x2=1−√17,∴当x Q=1+√17时,x P=﹣3+√17;当x Q=1−√17时,x P=﹣3−√17,∴P1(﹣3+√17,0),P2(﹣3−√17,0);②当四边形CQPB为平行四边形时,BP与CQ平行且相等,∵y P=y B=0,∴y Q=y C=﹣2,将y=﹣2代入y=14x2−12x−2,得x1=0(舍去),x2=2,∴x Q=2时,∴x P﹣x B=x Q﹣x C=2,∴x P=6,∴P3(6,0);③当四边形CQBP为平行四边形时,BP与CQ平行且相等,由②知,x Q=2,∴x B﹣x P=x Q﹣x C=2,∴x P=2,∴P4(2,0);综上所述,存在满足条件的点P有4个,分别是P1(﹣3+√17,0),P2(﹣3−√17,0),P3(6,0),P4(2,0).。

初三数学期末考试成绩反思

初三数学期末考试成绩反思

初三数学期末考试成绩反思第一篇:初三数学期末考试成绩反思期末考试数学成绩分析与教学反思一年一度的期末考试有一次落下了帷幕。

我怀着失落的心情,带着差强人意的成绩,进行了思考。

我认为此次考试的不如意,绝不是一日之工,“冰冻三尺,非一日之寒。

”原因出在哪里,我做出了深刻思考和反省,请领导和老师批评指正。

这次考试成绩,真的让我大吃一惊,高分稀少,平均分也差,自己也天天埋头备课,找题、改作业,怎么会这样?凡事都会有因果,经过长时间的梳理反思,原因如下:第一,讲课缺乏趣味性,学生对数学没有兴趣,上课不认真听讲,一些知识点记忆不牢固;第二,对学生学习的落实不够,虽然该讲的都讲了,该做的都做了,但成效不够。

第三,没能及时与家长联系沟通,和家长一起帮助学生。

今后教学工作的思考:第一,寻求优化课堂教学的方法与策略,提高学生学习兴趣水平。

在今后的教学中,我们将更充分发挥学生的学习积极性,在课堂上要引导学生处于积极主动的思维状态,充分让其独立思考,不一味灌输知识。

要在学生掌握方法的前提下,充分挖掘学生的潜能,点燃其创新思维的火花。

改变传统的教学方法,营造一种宽松的民主氛围,培养学生敢于质疑,勇于争辩,善于思考的创新能力。

这样学生就不至于对于开放性的试题感到十分茫然,或只求答案唯一。

第二,提高作业的实用性、趣味性。

精心设计作业,没有价值的重复性作业要少写,要努力使作业有趣味性、开放性、探究性。

同时教师的批改评价要及时,要多激励,让学生养成大胆创新,积极思考的学习习惯.第三,多沟通,每次考完试要及时跟家长进行沟通,及时把学生在校的表现告知家长,和家长一道帮助学生查找原因.经过这次考试,通过试题分析和答题分析,找出了自己工作中的不足和欠缺。

在以后的教学工作中,需要转变教学观念,扬长避短,严格要求学生,争取在下学期教学工作中通过努力提高教学质量。

第二篇:期末考试成绩反思期末教学教学工作反思土门镇茅坪学校期末考试结束后,我校通过全镇认真的批阅各年级试卷后,本次语文、数学试卷试题难易适度,既重视考查学生的基础知识的掌握情况,又重视考查学生分析问题、解决问题的能力,促进了学生语文能力的不断完善。

2024年初三数学考试总结反思

2024年初三数学考试总结反思

2024年初三数学考试总结反思2024年初三数学考试对我来说无疑是一个挑战,我意识到数学是我最需要努力提高的科目之一。

在这次考试中,我经历了一些困难和挫折,但也从中学到了宝贵的经验和教训。

下面就是我对这次考试的总结和反思。

首先,这次考试中我遇到了很多难题,特别是在解几何题和代数题上。

我发现我对于解题方法和步骤的理解还不够深入,对于应用不同的数学概念和定理来解决具体问题的能力还有待提高。

在以后的学习中,我需要更加注重基础知识的掌握,不断强化自己的解题思路和方法,培养解题的灵活性和创造力。

另外,我在考试前没有做好充分的准备。

在对知识点的复习上,我没有按照规划好的计划进行,导致对一些重要的知识点掌握不够牢固。

因此,在日常的学习中,我需要制定合理的学习计划,并严格按照计划进行,确保能够有充足的时间进行知识点的复习和强化。

此外,我还发现我对于考试过程中的时间管理有所欠缺。

在这次考试中,我花费了过多的时间在一些较难的题目上,导致其他易解题目没有时间完成。

因此,我需要学习合理分配时间的方法,通过多做一些模拟考试来提高我的解题速度和时间管理能力。

在这次考试中,我也认识到了我在解答问题时的粗心大意。

一些题目虽然概念掌握得较好,但因为疏忽而导致错误。

我应该更加仔细地审题,理解题目的要求,严谨地思考和解答问题,避免因为粗心而导致的低级错误。

此外,我还需要加强对于错题的反思和总结。

在考试后,我应该分析和思考自己在哪些方面存在不足,找出自己的问题所在,并制定相应的改进方案。

在日常的学习中,我也应该对已经掌握的知识点进行不断巩固和复习,避免遗忘。

总的来说,2024年初三数学考试对我来说是一次难得的经验。

通过这次考试,我认识到了自己存在的问题和不足之处,并且为自己制定了一些针对性的改进计划。

我相信只要我在今后的学习中不断努力,克服困难,一定可以取得更好的成绩。

数学虽然难,但只要下足功夫,我相信我能够掌握好这门学科,取得更好的成绩。

初三数学考试后的总结(2篇)

初三数学考试后的总结(2篇)

初三数学考试后的总结在刚刚结束的期中考试中,我们初三年级的数学试卷并不难,在这次考试中,原本一些不及格的学生,数学成绩却考到了____分以上,主要的原因:其一是他们自身的努力,其二是降低了试卷的难度。

从学生答题情况来看,基础知识掌握得较好,概念理解得较透彻,计算题和解方程的准确率较高,但部分学生理解能力较差,应用题审题不清,导致出现不少错误。

几何证明题分析问题的思路上不去,分析问题的方法掌握得不够好。

另外,部分学生学习习惯较差,接受能力较差,碰到思维力度较强的题目就无法解答。

在今后的教学中,要特别注重对发展不理想学生的辅导,注重对学生理解能力、分析问题解决问题能力的培养。

在今后的教学中,我要在以下几个方面多下功夫:一、树立每一位学生学习的自信心,培养学生的学习兴趣,正确的学习方法。

引导学生逐渐认识实际生活中的问题。

如结合信息科技,为学生创设熟悉的教学情境,让学生认识到生活中处处存在数学问题,数学来源于生活又应用于生活,激发学生学习数学的兴趣和认识学习数学的必要性,调动学生学习数学的主观能动性。

二、指导学生解决问题时,要留给学生思考的余地。

学生用数学不是靠教师“教会”的,而是学生“想懂”的。

古人云“授之以鱼不如授之以渔”。

在解决实际问题中充分发挥学生灵活运用数学知识解决问题的能力,使学生的思维得到充分的发展。

教学过程当中教师要注意让学生亲身感受数学的由来及关注知识的生成。

三、结合学生的基础和教学内容因材施教。

在教学中和学生经常沟通,了解学生的学习感悟,时刻调整自己的教学策略。

四、两手抓两手都要硬。

在提高课堂教学质量的同时,抓好学生的管理,特别是关注习惯差的学生。

重视反馈环节,课后注意作业完成情况,集体性批阅与个别面批相结合。

“不是锤的敲打,而是水的抚摸,才使鹅卵石这般光滑剔透。

初三数学考试后的总结(二)时间过得真快,一转眼我已经完成了初三数学的最后一次考试。

这是我初中生涯里最后一次数学考试,也是我回顾、总结初三数学学习的重要时刻。

2020初三上联合体数学期末试卷及答案解析

2020初三上联合体数学期末试卷及答案解析

0
1
2

y

5
0
-3 -4 -3

(1)求该二次函数的表达式; (2)该二次函数图像关于 x 轴对称的图像所对应的函数表达式 ▲ ;
! 4 "#$ 12 "%
22. (7 分)如图,分别以△ABC 的边 AC 和 BC 为腰向外作等腰直角△DAC 和等腰直角
△EBC,连接 DE.
(1)求证:△DAC∽△EBC;
26.(9 分)如图,AB 是⊙O 的直径,弦 CD⊥AB 于点 H,点 F 是A⌒D上一点,连接 AF 交 CD 的延长线于点 E. (1)求证:△AFC∽△ACE;
(2)若 AC=5,DC=6,当点 F 为A⌒D的中点时,求 AF 的值.
A F
O
C
E
D
H
B (第 26 题)
! 6 "#$ 12 "%
日工资(元/人) 人数(人)
操作组 260 4
管理组 280 4
研发组 300 4
A.团队平均日工资不变
B.团队日工资的方差不变
C.团队日工资的中位数不变
D.团队日工资的极差不变
6.已知二次函数 y=ax2+bx+c(a<0<b)的图像与 x 轴只有一个交点,下列结论:①x<
0 时,y 随 x 增大而增大;②a+b+c<0;③关于 x 的方程 ax2+bx+c+2=0 有两个不相
2
11.将二次函数 y=2x 的图像向上平移 3 个单位长度,再向右平移 2 个单位长度,得到的 图像所对应的函数表达式为 ▲ .
12.已知点 P 是线段 AB 的黄金分割点,PA>PB,AB=4 cm,则 PA= ▲ cm. 13.如图,四边形 ABCD 内接于⊙O,AB 是⊙O 的直径,过点 C 作⊙O 的切线交 AB 的延

2020-2021学年重庆市江北区初三数学第一学期期末试卷及解析

2020-2021学年重庆市江北区初三数学第一学期期末试卷及解析

2020-2021学年重庆市江北区初三数学第一学期期末试卷一、选择题:(本大题12个小,每小题4分,共48分) 1.2021-的相反数是( ) A .2021B .2021-C .12021D .12021-2.下面图形是用数学家名字命名的,其中是中心对称图形但不是轴对称图形的是( )A .赵爽弦图B .笛卡尔心形线C .科克曲线D .斐波那契螺旋线3.下列事件中,必然事件的是( ) A .“NBA 巨星”詹姆斯上篮100%得分B .抛掷一枚骰子,朝上的点数为6C .单项式加上单项式,和为多项式D .画一个三角形,其内角和为180︒4.将抛物线2y x =向右平移1个单位长度,再向上平移2个单位长度所得的抛物线解析式为( ) A .2(1)2y x =-+B .2(1)2y x =++C .2(1)2y x =--D .2(1)2y x =+-5.如图所示的图形都是由同样大小的实心圆点按一定的规律组成的,其中第①个图形一共有7个实心圆点,第②个图形一共有10个实心圆点,第③个图形一共有14个实心圆点,⋯,按此规律排列下去,第5个图形中实心圆点的个数为( )A .19B .20C .25D .326.如图,ABC ∆是O 的内接三角形,45A ∠=︒,8BC =,则O 的半径为( )A .4B .42C .8D .827.如图,ABC ∆与DEF ∆是位似图形,且位似中心为O ,:2:1OB BE =,若ABC ∆的面积为4,则DEF ∆的面积为( )A .2B .6C .8.D .98.定义运算:m ☆21n mn mn =--.例如:4☆22424217=⨯-⨯-=.若关于x 的方程5☆64x x =-,则代数式23210x x -+的值为( ) A .11-B .10C .11D .179.在平面直角坐标系xOy 中,对于点(,)P a b ,若0ab >.则称点P 为“同号点”,下列函数的图象上不存在“同号点”的是( ) A .23y x =-+B .22y x x =-C .5y x=-D .21y x x=+10.若关于x 的一元一次不等式组31942()2a x x x --⎧⎪⎨+--⎪⎩的解集为5x .且关于y 的分式方程3222a y y -=--有非负整数解,则符合条件的所有整数a 的和为( ) A .12B .13C .15D .1611.如图,在矩形ABCD 中,3AD =,将A ∠向内翻折,点A 落在BC 上,记为A ',折痕为DE ,若将B ∠沿EA '向内翻折,点B 恰好落在DE 上,记为B ',则点B '到BC 的距离为( )A .32B .332C .34D .33412.已知反比例函数1:(0)kC y k x=<的图象如图所示,将该曲线绕点O 顺时针旋转45︒得到曲线2C ,点N是曲线2C 上一点,点M 在直线y x =-上,连接MN 、ON ,若MN ON =,MON ∆的面积为23,则k 的值为( )A .2-B .23-C .4-D .43-二、填空题:(本大题6个小题,每小题4分,共24分) 13.将数字820000000用科学记数法表示为 . 14.计算:011( 3.14)|5|()2π--+--= .15.现有三张正面分别标有数字1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数字.前后两次抽取的数字分别记为m ,n .则点(,)m n 在函数6y x=的图象上的概率是 . 16.如图,在菱形ABCD 中,对角线AC 和BD 交于点O ,30ABD ∠=︒,4AB =,分别以点A 、点C 为圆心,以OA 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留)π17.已知二次函数2(y ax bx c a =++,b ,c 为常数,0)a ≠的部分图象如图所示,对称轴为直线1x =,且与x 轴的一个交点在点(1,0)-和(0,0)之间.下列四个结论: ①0abc <;②若点1(3,)C y -、(26D ,2)y 在此抛物线上,则12y y <; ③20a b c ++<;④对于任意实数m ,总有()a b m am b ++;⑤对于a 的每一确定值,若一元二次方程2(ax bx c p p ++=为常数,0)p >的根为整数,则p 的值只有两个.其中正确的结论是 (填写序号).18.如图,正方形ABCD 中,13AB =,点M 在边CD 上,且14DM DC =,AEM ∆与ADM ∆关于AM 所在直线对称,将ADM ∆按顺时针方向绕点A 旋转90︒得到ABF ∆,连接EF ,则线段EF 的长为 .三、解答题:(本大题7个小题,每小题10分,共70分) 19.(1)解方程:22310x x -+=;(2)化简:22213(1)211m m m m m m m --÷+--+-.20.如图,在平行四边形ABCD 中,点E 、F 分别是边AD 、BC 上一点,且AE CF =,连接BE 、DF . (1)求证:BE DF =;(2)若110C ∠=︒,35ADF ∠=︒,求ABE ∠的度数.21.“文明江北,因为有您”!我区自2017年成功创建全国文明城区以来,牢固树立“文明建设为大家、建设文明靠大家”的工作理念,全区掀起了志愿服务的热潮,区教委也号召各校学生积极参与到志愿服务当中,为了解甲、乙两所学校学生一周志愿服务情况,从这两所学校中各随机抽取40名学生,分别对他们一周的志愿服务时长(单位:分钟)进行收集、整理、描述和分析,下面给出了部分信息:a .甲校40名学生一周的志愿服务时长的扇形统计图如图(数据分成6组:.2040A x <,.4060B x <,.6080C x <,.80100D x <,.100120E x <,.120140)F x <;b .甲校40名学生一周志愿服务时长在6080x <这一组的是:60 60 62 63 65 68 70 72 73 75 75 76 80 80c .甲、乙两校各抽取的40名学生一周志愿服务时长的平均数、中位数、众数如表:学校 平均数 中位数众数 甲 75 m90 乙757685根据以上信息,回答下列问题:(1)上面图表中的m = ,扇形统计图中“C 组”所对应的圆心角的度数为 度;(2)根据上面的统计结果,你认为 校学生志愿服务工作做得好(填“甲”或“乙” ),理由是 ; (3)小江和小北两位同学都参加了观音桥街道的志愿者服务项目,该街道志愿者服务工作一共设置了三个岗位,请用列表或画树状图的方法,求小江、小北恰好被分配到同一岗位进行志愿者服务的概率.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究2101y x =+性质及其应用的部分过程,请按要求完成下列各小题. x⋯ 4-3- 2-1-0 1 2 3 4 ⋯ y⋯a125b5211017⋯(1)列表,写出表中a 、b 的值:a = ,b = ;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“⨯”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )②该函数在自变量的取值范围内,没有最大值,也没有最小值;( ) ③当0x <时,y 随x 的增大而减小;当0x >时,y 随x 的增大而增大.( ) (3)已知函数4y x =-+的图象如图所示,结合你所画的函数图象,直接写出不等式21041x x >-++的解集.23.如图,AB 为O 的直径,点C 在O 上,点D 为线段BA 的延长线上一点,连接DC ,过点O 作//OE AC 交DC 延长线于点E ,交BC 于点F ,且满足B E ∠=∠. (1)求证:DC 是O 的切线; (2)若8AB =,4AC =,求EF 的长.24.作为巴渝文化的发源地,重庆在许多领域都首屈一指,而其中最具代表性的,当然还是它的美食,在无数美食中,最具地域特色的,非重庆火锅莫属,近年来,随着重庆市成为网红城市,许多游客到重庆来打卡麻辣鲜香的火锅,同时还会购买火锅底料作为伴手礼.11月,洪崖洞附近一特产店购进A 、B 两种品牌火锅底料共450袋,其中A 品牌底料每袋售价20元,B 品牌底料每袋售价30元,11月全部售完这批火锅底料,所得总销售额不低于11500元. (1)A 品牌火锅底料最多购进多少袋?(2)为了促进销量,12月,该店开展了优惠活动,A 品牌底料的售价比11月的价格优惠%a ,B 品牌底料的售价比11月的价格优惠2%5a ,结果12月售出的A 品牌底料数量比11月总销售额最低时售出的A 品牌底料数量增加了1%2a ,售出的B 品牌底料数量比11月总销售额最低时售出的B 品牌底料数量增加了%a ,结果12月的总销售额比11月最低销售额增加了1%23a ,求a 的值. 25.如图,在平面直角坐标系中,抛物线23(0)y ax bx a =+->与x 轴交于(1,0)A -、(3,0)B 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 为直线BC 下方抛物线上的一动点,PM BC ⊥于点M ,//PN y 轴交BC 于点N .求线段PM 的最大值和此时点P 的坐标;(3)点E 为x 轴上一动点,点Q 为抛物线上一动点,是否存在以CQ 为斜边的等腰直角三角形CEQ ?若存在,请直接写出点E 的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)26.【问题背景】如图1,P 是等边三角形ABC 外一点,30APB ∠=︒,则222PA PB PC +=.小明为了证明这个结论,将PAB ∆绕点A 逆时针旋转60︒,请根据此思路完成其证明.【迁移应用】如图2,在等腰直角三角形ABC 中,BA BC =,90ABC ∠=︒,点P 在ABC ∆外部,且45BPC ∠=︒,若APC ∆的面积为5.5,求PC ;【拓展创新】如图3,在四边形ABCD 中,//AD BC ,点E 在四边形ABCD 内部,且DE EC =,90DEC ∠=︒,135AEB ∠=︒,3AD =,5BC =,直接写出AB 的长.答案与解析一、选择题:(本大题12个小,每小题4分,共48分) 1.解:2021-的相反数是2021. 故选:A .2.解:A 、是中心对称图形,但不是轴对称图形,故本选项符合题意;B 、是轴对称图形,不是中心对称图形,故本选项不合题意;C 、既是轴对称图形,也是中心对称图形,故本选项不合题意;D 、既不是轴对称图形,也不是中心对称图形,故本选项不合题意.故选:A .3.解:A 、“NBA 巨星”詹姆斯上篮100%得分,是随机事件,本选项不符合题意;B 、抛掷一枚骰子,朝上的点数为6,是随机事件,本选项不符合题意;C 、单项式加上单项式,和为多项式,是随机事件,本选项不符合题意;D 、画一个三角形,其内角和为180︒,是必然事件,本选项符合题意.故选:D .4.解:将抛物线2y x =向右平移1个单位长度,再向上平移2+个单位长度所得的抛物线解析式为2(1)2y x =-+. 故选:A .5.解:第①个图形中实心圆点的个数:7412=++, 第②个图形中实心圆点的个数:104123=+++, 第③个图形中实心圆点的个数:1441234=++++,⋅⋅⋅∴第5个图形中实心圆点的个数为412345625++++++=,故选:C .6.解:45A ∠=︒, 90COB ∴∠=︒, OC OB =,8BC =,OB ∴=故选:B .7.解::2:1OB BE =, :2:3OB OE ∴=,ABC ∆与DEF ∆是位似图形,且位似中心为O , ::2:3AB DE OB OE ∴==,ABC DEF ∆∽,∴224()2()39ABC DEF S AB S DE ∆===, 994944DEF ABC S S ∆∆∴==⨯=.故选:D .8.解:m ☆21n mn mn =--,5☆64x x =-, 255164x x x ∴--=-, 257x x ∴-=, 210214x x ∴-=, 23210x x ∴-+23(102)x x =+- 314=+ 17=,故选:D .9.解:由题意,图象经过第一和第三象限的函数都是满足条件的, 函数5y x=-的图象在二四象限,不满足条件,故选:C .10.解:关于x 的一元一次不等式组31942()2a x x x --⎧⎪⎨+--⎪⎩得:35x a x +⎧⎨⎩. 关于x 的一元一次不等式组31942()2a x x x --⎧⎪⎨+--⎪⎩的解集为5x ,35a ∴+. 2a ∴.关于y 的分式方程3222a y y -=--的解为72a-, 又解分式方程有可能产生增根2,∴722a-≠.3a ∴≠.关于y 的分式方程3222a y y -=--有非负整数解, ∴702a -. 7a ∴.综上,a 的取值范围为27a 且3a ≠.∴整数5a =或7.∴符合条件的所有整数a 的和为5712+=.故选:A .11.解:过点B '作B F BC '⊥于F ,由第一次翻折知:AED A ED '∠=∠,3A D AD '==,由第二次翻折知:A EB A EB '''∠=∠,BA E B A E '''∠=∠,1180603AED A ED A EB ''∴∠=∠=∠=⨯︒=︒, 30A DB ''∴∠=︒,60BA B ''∠=︒,32A B ''∴=, 3333sin 2B F B A B A F '''''∴=⨯∠== 故选:D .12.解:将直线y x =-和曲线2C 绕点O 逆时针旋转45︒后直线y x =-与x 轴重合,∴旋转后点N 落在曲线1C 上,点M 落在x 轴上,如图所示,设点M 和点N 的对应点分别为点M '和N ',过点N '作N P x '⊥轴于点P ,连接ON ',M N '',MN ON =,M N ON '''∴=,M P OP '=,||22||232MON M N O k S Sk ''∆∴==⨯==, 0k <, 23k ∴=-.故选:B .二、填空题:(本大题6个小题,每小题4分,共24分)13.解:88200000008.210=⨯.故答案为:88.210⨯.14.解:原式1524=+-=,故答案为:4.15.解:画树状图为:共有9种等可能的结果数,其中点(,)P m n 在在函数6y x=的图象上的有(2,3)和(3,2), 所以点(,)m n 在函数6y x =的图象上的概率是29; 故答案为29. 16.解:四边形ABCD 是菱形,30ABD ∠=︒,AC BD ∴⊥,260ABC ABD ∠=∠=︒,120BAD ∴∠=︒,114222OA AB ==⨯=, 由勾股定理得,2223OB AB OA =-=43BD ∴=∴阴影部分的面积21120244324323603ππ⨯=⨯⨯-=-, 故答案为:4433π-. 17.解:抛物线开口向下、对称轴在y 轴的右侧、与y 轴的交于正半轴,0a ∴<,0b >,0c >,0abc ∴<,故①正确;点1(3,)C y -、(26D ,2)y 在此抛物线上,且2611(3)->--,∴点C 距离对称轴较近,12y y ∴>,故②错误;对称轴为1x =,∴12b a-=,即2b a =-, 2220a b c a a c c ∴++=-+=>,故③错误;当1x =时,y a b c =++,当x m =时,2y am bm c =++,且当1x =时,y 有最大值,2a b c am bm c ∴++++,()a b m am b ∴++,故④正确;如图,0p >,方程2ax bx c p ++=的根为整数,∴根只能为0、1、2, 第一种情况:根为0和2,第二种情况:两根相等且为1p ∴的值只有两个,故⑤正确;故答案为:①④⑤.18.解:如图,连接BM .AEM ∆与ADM ∆关于AM 所在的直线对称,AE AD ∴=,MAD MAE ∠=∠.ADM ∆按照顺时针方向绕点A 旋转90︒得到ABF ∆,AF AM ∴=,FAB MAD ∠=∠.FAB MAE ∴∠=∠,FAB BAE BAE MAE ∴∠+∠=∠+∠.FAE MAB ∴∠=∠.()FAE MAB SAS ∴∆≅∆.EF BM ∴=.四边形ABCD 是正方形,13BC CD AB ∴==. 1134DM DC ==, 313CM ∴= 在Rt BCM ∆中,22223135(13)()1344BM BC CM =++= 5134EF ∴= 5134 三、解答题:(本大题7个小题,每小题10分,共70分)19.解:(1)(21)(1)0x x --=,210x -=或10x -=,解得112x =,21x =; (2)原式222213(1):[]2111m m m m m m m m ---=÷+-+-- 222(1)(1)321(1)1m m m m m m m m +--+-+=÷--1111m m m m ++=÷-- 1=.20.证明:(1)在平行四边形ABCD 中,//AD BC ,AD BC =,AE CF =,//DE BF ∴,DE BF =,∴四边形BEDF 是平行四边形,BE DF ∴=.(2)四边形ABCD 是平行四边形,18070ABC C ∴∠=︒-∠=︒,//AD BC ,35ADF DFC ∴∠=∠=︒,四边形BEDF 是平行四边形,//BE DF ∴,35EBF DFC ∴∠=∠=︒,703535ABE ABC EBF ∴∠=∠-∠=︒-︒=︒.21.解:(1)由题意得:A 的人数为:405%2⨯=(人),B 的人数为:4015%6⨯=(人),C 的人数为14人,∴甲校的中位数为7680782+=, 扇形统计图中“C 组”所对应的圆心角的度数为:1436012640︒⨯=︒, 故答案为:78,126;(2)根据上面的统计结果,甲校学生志愿服务工作做得好,理由如下:①甲、乙两校的平均数相等,甲校的中位数比乙校的中位数大;②甲校的众数比乙校的众数大;故答案为:甲,①甲、乙两校的平均数相等,甲校的中位数比乙校的中位数大;②甲校的众数比乙校的众数大;(3)街道志愿者服务工作一共设置了三个岗位,分别记为A 、B 、C ,画树状图如图:共有9个等可能的结果,小江、小北恰好被分配到同一岗位进行志愿者服务的结果有3个,∴小江、小北恰好被分配到同一岗位进行志愿者服务的概率为3193=. 22.解:(1)当4x =-时,2101010116117a x ===++. 当0x =时,210101011b x ===+, 画出函数的图象如图:故答案为1017,10; (2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴;说法正确;②该函数在自变量的取值范围内,没有最大值,也没有最小值;说法错误; ③当0x <时,y 随x 的增大而增大;当0x >时,y 随x 的增大而减小;说法错误.(3)由图象可知:不等式21041x x >-++的解集为12x -<<或3x >. 23.(1)证明:连接OC ,如图所示:AB 为O 的直径,90ACB ∴∠=︒,90CAO B ∴∠+∠=︒.B E ∠=∠,90E CAO ∴∠+∠=︒,OA OC =,CAO ACO ∴∠=∠,90E ACO ∴∠+∠=︒,//OE AC ,ACD E ∴∠=∠,90ACD ACO ∴∠+∠=︒,90DCO ∴∠=︒,OC DE ∴⊥,DC ∴是O 的切线;(2)解:AB 为O 的直径,90ACB ∴∠=︒,//OE AC ,90OFB ACB ∴∠=∠=︒,8AB =,4AC =,BC ∴=//AC OF ,OA OB =,12CF BF BC ∴=== B E ∠=∠,ACB CFE ∠=∠,ACB CFE ∴∆∆∽, ∴AC BC CF EF=,∴= 6EF ∴=.24.解:(1)设A 品牌火锅底料购进x 袋,则B 品牌火锅底料购进(450)x -袋, 依题意得:2030(450)11500x x +-,解得:200x .答:A 品牌火锅底料最多购进200袋.(2)依题意得:12120(1%)200(1%)30(1%)(450200)(1%)11500(1%)2523a a a a a -⨯++-⨯-+=+, 整理得:20.5200a a -=,解得:140a =,20a =(不合题意,舍去).答:a 的值为40.25.解:(1)将(1,0)A -,(3,0)B 代入函数23(0)y ax bx a =+->中, 得309330a b a b --=⎧⎨+-=⎩, 解得12a b =⎧⎨=-⎩, ∴解析式为223y x x =--,故抛物线解析式为223y x x =--;(2)当0x =时,3y =,(0,3)C ∴-,(3,0)B ,45OCB OBC ∴∠=∠=︒,//PN y 轴,45MNP ∴∠=︒,PM BC ⊥,∴PN =,则当PN 最大时,PM 也最大,设BC 的解析式为y mx n =+,∴330n m n -=⎧⎨+=⎩, 解得13m n =⎧⎨=-⎩, BC ∴解析式为3y x =-,设2(,23)P x x x --,(,3)N x x -,22393(23)()24PN x x x x ∴=----=--+, 当32x =时,PN 最大,则229922248PM PN ==⨯=, 3(2P ∴,15)4-, 故PM 最大值为928,P 点坐标为3(2,15)4--; (3)存在,点E 的坐标为(5,0)-,933(2-,0),(0,0),933(2+,0). CEQ 是以CQ 为斜边的等腰直角三角形, ∴设2(,23)Q x x x --,①如图,过点E 作x 轴的垂线l ,再分别过点C 和点Q 作垂线l 的垂线,分别交于点M 和点N ,90CEQ ∠=︒,90QEM CEN ∴∠+∠=︒,90QEM MQE ∠+∠=︒,EQM CEN ∴∠=∠,90CNE QME ∠=∠=︒,EC EQ =, ()EMQ CNE AAS ∴∆≅∆,223CN EM x x ∴==--,3MQ EN ==, ||Q x MQ CN ∴+=,2323x x x -+=--, 解得2x =-,3x =(舍去), 235OE CM ∴==+=,(5,0)E -,②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:()EMC QNE AAS∆≅∆,223CM EN x x==--,3NQ EM==,2233x x x∴-+--=,解得3332x-=,3332x+=(舍去),9332OE CM -∴==,933(2E-,0),③如图,点E和点O重合,点Q和点B重合,此时(0,0)E,④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:()EMC QNE AAS∆≅∆,223CM EN x x==--,3NQ EM==,2323x x x∴+=--,解得333x+=,333x-=(舍去),933OE CM +∴=933(E+,0),综上所述,点E的坐标为(5,0)-,933(-,0),(0,0),933(+,0).四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020初三数学期末考试总结与反思
期末考试其实已经过去一段时间了,但是总结还是要做一下的,作为老师,教学成绩永远是生命线,倘若带的班级考试成绩不如人家,说什么都是白搭。

期末的成绩在期中的基础上略有上升,均分排名第二,与排名第一的班级差1分不到,现在六个平行班,前三个班成绩相差不大,均分差距基本在2分以内,后三个班成绩相对较差,与前三个班均分相差在10分左右。

对于这个成绩,我并不是很满意,希望通过以下的总结与反省,能在下学期提高一点。

1.从上学期期中考试后的一些措施来看,成绩提高最主要的原因在于我提高了考试的次数。

从中可以看出,班上学生的整体整合能力有待提高,平时考试少,学生在练习的过程中对待综合题的态度并不太认真,能做就做,不能做就空着,总体整合能力不强,通过几次考试,这方面有了一定的提高,所以下学期考试的次数还得要加大,争取做到每周一次,周二考试,周三评讲,效果应该会达到最好。

2.练习的优选与精选很重要。

以前有个想法,觉得学生多做些题总没有坏处,于是对于作业题很少进行筛选,基本上是拿来就用,直接拿来做,做完讲评,当时的效果也不错,但是这届学生似乎不行,作业一多,他们的做题态度就差,随便糊弄一下,效果相比以前就差多了,期中考试之后,对作业题进行了一定的筛选,看起来很多习题没有完成,但是效果上比以前还要好一些,由此可知,训练还是要讲
究质量,一味追求训练量是不科学,我以前所谓的多做些题肯定没坏处的想法其实是给自己的懒找借口。

3.用不用多媒体真是个要仔细思考的问题。

我期中考试之后基本上没有用过电子白板。

我个人感觉,电子白板固然有很多的优点,但是缺陷也同样很明显。

对于数学学科来,利用各种工具,展现一些变化的过程是电子白板的优点,但是,对于习题教学,电子白板的呈现形式有着明显的弊端,它基本上无法呈现出思维的过程。

现在很多教师的教学基本上都是合程电子白板,我觉得时间久了,教师的教学能力肯定会退化,有些东西必须要利用黑板和粉笔,一步一步地带着学生们去探索和思考才能更有价值。

4.反馈要及时。

这个班学生数学成绩出现问题应该是初二下学期,前段时间反省出现问题的原因,觉得除了考试过少之外,另一个原因就是对学生作业和听课的反馈不是很及时,以前因为没有担任行政事务,时间多,所以对学生的反馈很及时,一发现某个学生学习状态不对,就立即干预,教学效果还是很明显的,后来行政事务一多,这方面明显就差了很多,我毕竟不是什么真的名师,反馈少了,学习效果肯定就差一点,体现在学生身上成绩肯定不像以前那么出色。

相关文档
最新文档