平面向量与三角函数、解三角形的综合习题
专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。
高考一轮复习阶段性检测(函数、导数、三角函数、平面向量、解三角形)

一、选择题1.(2016·福建“四地六校”联考)已知集合A ={x |x 2-2x -3≤0},B ={x |log 2(x 2-x )>1},则A ∩B 等于( )A .(2,3]B .(2,3)C .(-3,-2)D .[-3,-2)2.(2016·北京)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.(2016·福州质检)已知命题p :“∃x ∈R ,e x -x -1≤0”,则綈p 为( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<04.(2016·山东)已知函数f (x )的定义域为R .当x <0时,f (x )=x 3-1;当-1≤x ≤1时,f (-x )=-f (x );当x >12时,f ⎝⎛⎭⎫x +12=f ⎝⎛⎭⎫x -12,则f (6)等于( ) A .-2B .-1C .0D .25.设a ≠0,函数f (x )=⎩⎪⎨⎪⎧4log 2(-x ),x <0,|x 2+ax |,x ≥0.若f [f (-2)]=4,则f (a )等于( ) A .8B .4C .2D .16.已知a >0,且a ≠1,函数y =log a x ,y =a x ,y =x +a 在同一坐标系中的图象可能是( )7.(2017·福州质检)已知函数f (x )=32,2,(1),2,x x x x ⎧≥⎪⎨⎪-<⎩若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是( )A .(-1,1)B .(0,1)C .(0,1]D .(-1,0)8.如图,将45°直角三角板和30°直角三角板拼在一起,其中45°直角三角板的斜边与30°直角三角板的30°角所对的直角边重合.若DB →=x ·DC →+y ·DA →,x >0,y >0,则x ,y 的值分别为( )A.3,1B .1+3, 3C .2, 3 D.3,1+ 39.已知sin(x -2 017π)=13,x ∈⎝⎛⎭⎫π,3π2,则tan 2x 等于( ) A.24 B .-24C.427 D .4 210.已知△ABC 三边a ,b ,c 上的高分别为12,22,1,则cos A 等于( ) A.32B .-22C .-24 D.-3411.(2015·课标全国Ⅰ)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1 B.⎣⎡⎭⎫-32e ,34 C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1 12.已知O 是锐角△ABC 的外心,tan A =22,若cos B sin C AB →+cos C sin B AC →=2mAO →,则m 等于( ) A.33 B.32C .3 D.53 二、填空题13.若f (x )=x +2⎠⎛01f (t )d t ,则f (1)=________. 14.若tan α=3,则sin 2α+3cos 2αsin 2α+2sin αcos α-5=________. 15.如图,梯形ABCD 中,AB ∥CD ,AB =6,AD =DC =2,若AC →·BD →=-14,则AD →·BC →=________.16.关于函数f (x )=cos 2x -23sin x cos x ,有下列命题:①对任意x 1,x 2∈R ,当x 1-x 2=π时,f (x 1)=f (x 2)成立;②f (x )在区间⎣⎡⎦⎤-π6,π3上单调递增; ③函数f (x )的图象关于点(π12,0)对称; ④将函数f (x )的图象向左平移5π12个单位长度后所得到的图象与函数y =2sin 2x 的图象重合. 其中正确的命题是________.(注:把你认为正确的序号都填上)三、解答题17.已知函数f (x )=⎩⎪⎨⎪⎧ -x -1,x <-2,x +3,-2≤x ≤12,5x +1,x >12. (1)求函数f (x)的最小值;。
三角函数、平面向量、解三角形大题

三角函数、平面向量、解三角形大题:第一方面:向量大题例1:已知三点3(3,0),(0,3),(cos ,sin ),(,).22A B C ππααα∈(1)若AC BC =u u u r u u u r ,求角α;(2)若1AC BC ⋅=-u u u r u u u r ,求22sin sin 21tan ααα++的值.解:(1)因为()()cos 3,sin ,cos ,sin 3AC BC αααα=-=-u u u r u u u r由AC BC =u u u r u u u r 得()()2222cos 3sin cos sin 3αααα-+=+- 整理得sin cos αα= ,所以tan 1α=因为3,22ππα⎛⎫∈⎪⎝⎭ ,所以54πα= (2)因为1,AC BC •=-u u u r u u u r 所以()()cos cos 3sin sin 31αααα-+-=- 即2sin cos 3αα+= ,所以()24sin cos 9αα+= ,得52sin cos 9αα=- ,所以()()22sin sin cos 2sin sin 252sin cos sin cos 1tan 9cos ααααααααααα++===-++.第二方面:三角函数大题例2.1:已知53)4cos(=+πx ,且471217ππ<<x ,求:① x x sin cos + 的值;②x xx tan 1sin 22sin 2-+的值。
解:(1)Θ471217ππ<<x ,πππ2435<+<∴x由53)4cos(=+πx 得54)4sin(-=+πx 所以524)4sin(2sin cos -=+=+πx x x(2)由524sin cos -=+x x 得2532)524()sin (cos 22=-=+x x 即2572sin ,25322sin 1=∴=+x x )4cos()4sin(2sin sin cos )sin (cos cos sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 22ππ++⋅=-+=-+=-+x x x x x x x x x xx x x x x x x 由(1)知54)4sin(-=+πx ,53)4cos(=+πx 所以x xx tan 1sin 22sin 2-+=)4cos()4sin(2sin ππ++⋅x x x =752853)54(257-=-⨯ 小结:本试题主要是考查了两角和差公式的运用,和二倍角公式的综合运用。
平面向量 三角函数 解三角形

平面向量 三角函数 解三角形【热点强化训练】1.(2013届山东省德州市乐陵一中高三10月月考)已知ABC ∆中,c b a 、、分别是角C B A 、、的对边, 60,3,2===B b a ,则A =A.135 B.45 C.135或45 D.90 2.(20l3届山东省烟台市莱州一中高三第二次质量检测)已知cos 21,054x x π=⎛⎫+ ⎪⎝⎭<x <π,则tan x 为 A.43-B.34-C.2D.2-3.(2013届云南省玉溪一中高三第四次月考)要得到)32sin(π-=x y 的图象,只要将x y 2sin =的图象( )A.向左平移3π个单位 B.向右平移3π个单位 C.向右平移6π个单位 D.向左平移6π个单位 4.(2013届山东省兖州市高三9月入学诊断检测)函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之和为( )A.2 B .0 C .-1 D.1-5.(2013届山东省济南外国语学校高三上学期期中考试)已知向量a =(2,1),b =(-1,k ),a ·(2a -b )=0,则k=( )A. -12B. -6C. 6D. 126.(2013届山东省青岛市高三上学期期中考试)已知非零向量a 、b ,满足a b ⊥,则函数2()()f x ax b =+(R)x ∈是A. 既是奇函数又是偶函数B. 非奇非偶函数C. 奇函数D. 偶函数7.向量a 、b 满足(a -b )(2a +b )=-4=2=4,则a ,b 夹角等于 。
8已知81cos sin =⋅θθ,且24πθπ<<,则θθsin cos -的值为 。
9.已知2)4tan(=+πx ,则xx2tan tan 的值为 。
10.(2013届天津市天津一中高三上学期一月考)已知a b c ,,为ABC △的三个内角A B C ,,的对边,向量(31)=-,m ,(cos sin )A A =,n .若⊥m n ,且c o s c o ss a B b A c C +=,则角B = .11.(2012年高考山东卷)已知向量(sin ,1),cos ,cos 2)(0)2A x x x A ==>m n ,函数()f x =⋅m n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数()y f x =的图像向左平移π12个单位,再将所得图像上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图像,求()g x 在5[0,]24π 上的值域.12.在ABC ∆中,a,b,c 分别是角A,B,C 的对边,),cos ,(cos ),2,(C B c a b =-=且//。
三角函数向量解三角形数列综合测试含答案

三角函数、向量、解三角形、数列综合测试含答案大冶一中 孙雷一、选择题每题只有一个正确选项,共60分1.若向量===BAC CB AB ∠),0,1-(),23,21(则 A.30° B.60° C. 120° D. 150°2.已知34,4,8===AC BC AB ABC Rt 中,△,则对于ABC △所在平面内的一点P ,)(PC PB PA +•的最小值是A.-8B. -14C.-26D.-303.已知在正方形ABCD 中,点E 为CD 的中点,点F 为CB 上靠近点B 的三等分点,O 为AC 与BD 的交点,则=DB A.OF AE 51858-+ B.OF AE 74718-+ C.OF AE 58518-+ D. OF AE 71874-+ 4.已知)2π-απ-(523-αsin -αcos <<=,则=+αααtan -1)tan 1(2sin A.7528- B.7528 C.7556- D. 7556 5.若函数m x x x f -2cos 2-sin 4)(=在R 上的最小值是3,则实数=mA.6-B.5-C.3-D.2-6.已知α为锐角,且2)8π-α(tan =,则=α2sin A.102 B.1023 C.1027 D. 4237.已知向量)sin 41-(α,=a ,)4πα0)(1-α(cos <<=,b ,且b a //,则=)4π-αcos( A.21- B.21 C.23- D.23 8.在ABC △中,3:2:1::=A B C ,则=a b c ::A.1:2:3B.3:2:1C.1:3:2D. 2: 3:19.在ABC △中,c b a ,,分别为内角C B A ,,的对边,若B A C sin sin sin 3+=,53cos =C ,且4=ABC S △,则=c A.364 B.4 C.362 D.5 10.在ABC △中,°=60C ,322==AC BC ,点D 在边BC 上,且772sin =∠BAD ,则CD =A. 334B.43 C.33 D.332 11.我国古代数学巨著九章算术中,有如下问题:“今有女善织,日自倍,五日织五尺,问日织几何”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少”根据上述问题的已知条件,若该女子共织布3135尺,则这位女子织布的天数是 A.2 B.3 C.4 D.112.数列}{n a 中,01=a ,且)2(2-1-1-≥+=+n a a n a a n n n n ,则数列})1-(1{2n a 前2019项和为A.20194036B.10102019C.20194037D.20204039 二、填空题共20分13.已知等差数列}{n a 的前n 项和n S 有最大值,且1-20192020<a a ,则当0<n S 时n 的最小值为_____________. 14.已知数列}{n a 满足2321)2(+=n a a a a n ,则该数列的通项公式为______________.15.已知数列}{n a 满足),2(1)13()1-(*1-1N n n a a n n n ∈≥++=+,且121==a a ,则数列}{n a 的前2020项的和为_______________.16.ABC △中,Ab B a B Ac C B A cos cos sin sin sin -sin sin 222+=+,若1=+b a ,则c 的取值范围是___________.三、解答题共70分17.已知n S 为等差数列}{n a 的前n 项和,81=a ,10-10=S1求n a ,n S ;2设||||||21n n a a a T +++= ,求n T .18.在ABC △中,c b a ,,分别为内角C B A ,,的对边,且552sin =B ,6=•BC BA 1求ABC △的面积;2若8=+c a ,求b 的值.19.已知函数)(|2||-|)(R a x a x x f ∈++=1当1=a 时,求不等式5≥)(x f 的解集;2当]1,0[∈x 时,不等式|4|≤)(+x x f 恒成立,求实数a 的取值范围.20.已知函数)0(23-sin 3cos sin )(2>+=ωωωωx x x x f 的最小正周期为π,将函数)(x f 的图象向左平移6π个单位长度,再向下平移21个单位长度,得到函数=y )(x g 的图象 1求函数)(x f 的单调递减区间;2在锐角ABC △中,角C B A ,,的对边为c b a ,,,若2,0)2(==a A g ,求ABC △面积的最大值.21.已知关于x 的函数1-2-2π3cos(cos 2)(2)x x x f += 1求不等式0)(>x f 的解集;2若关于x 的不等式x a x x f sin ≥|2sin )(|+在区间]4π3,3π[上有解,求实数a 的取值范围.22.已知数列}{n a 的前n 项和为n S ,且31-34n n a S =,等差数列}{n b 各项均为正数,223b a =,4246b b a += 1求数列}{n a ,}{n b 的通项公式;2设数列}{n c 的前n 项和为n T ,对一切*N n ∈有n n n b na c a c a c =++ 22112成立,求n T .。
平面向量三角函数、解三角形综合训练题(2)老师专用.docx

平面向量三角函数、解三角形综合训练题(2 )1・(湖北卷)设函数/(%) = a (6 + c),其屮向量a = (sin x,-cosx), h = (sin x,-3cosx), c = (一cosx,sinx), XG R □(I )、求函数/(x)的最大值和最小正周期;(II )、将函数/(X )的图像按向量2平移,使平移后得到的图像关于坐标原点成中心对称, 求氏度最小的2。
解:(I )由题意得,f(x) =a (b+c)=(sinx, —cosx) (sinx —cosx.sinx —3cosx)=sin 2x —2sinxcosx+3cos 2x =2+cos2x ~sin2x =2+ V2 sin(2x+ ).4所以,f(x)的最大值为2+屈最小正周期是乎(II)心0+亍=0心+才%,即2 8因为力为整数,耍使同最小,则只有k=\,此时〃=(—彳,-2)即为所求.2.(湖北卷)设向量 a= G/ms cosx), b= (cosx, cosx), xWR,函f(x)=a'(a+b). (I )求函数妙的最人值与最小正周期;3(II )求使不等式f(x)^-成立的X 的取值集。
/(X ) = G (a + b) = a Q + Q h = sin 2 x +cos 2 x + sinxcosx + cos 2 xM :( I )・・・ — i 3迈. 兀—1H —sin 2x H —(cos 2x +1) =—l ------ sin(2x H —)2 2 2 2 4k7l 3兀于是宀(亍一亍_2), |d(-l,V^)・(cos/,sin/) = 1即希sin/-cos / = 1(II )由(I )知—<=>—+ sin(2x + —)> — <=> sin(2x + —) >0八丿2 2 2 4 2 4兀 兀 3/T<=> 2k 兀 S 2xH — 5 2k/r + 71 <=> k7i -------------- 5 x W k 兀H 、k w Z4 8 8即/(兀)n|成立的工的取值集合是xiG 辛“訴+务心.3.(全国 II)已知向量a=(sin0, 1), 〃=(1, cos0),—号<&<§•(I )若〃丄〃,求0;(II )求丨a+b I 的最大值.—* —♦~J]解(1). Q 丄 b, nob = 0=> sin &+cos& = 0 n & = ------------4(2). G +耳= |(sin& + l,cos0 + l)| = J(sin& + 1)2 +(cos&+l)2=Jsin? &+2sin&+l+cos? &+2cos&+l = J2(sin &+cos &)+3 =(2逅 sin(& + f) + 3本题主要考察以下知识点1•向量垂直转化为数量积为0 2.特姝角的三角函数值3.三角函数的 基本关系以及三角两数的有界性4.已知向量的坐标表示求模难度中等,计算量不大4.(四川卷)已知4,B,C 是三角形\ABC 三内角,向lm = (-l,V3),^ = (cos^,sin^),(I )求角血30解:本小题主要考察三角函数概念、同角三角函数的关系、两角和为差的三角函数的公式以及倍角公式,考察应用.分析和计算能力。
三角函数解三角形综合

1.已知函数fx=sinωx﹣2sin2+mω>0的最小正周期为3π,当x∈0,π时,函数fx 的最小值为0.1求函数fx的表达式;2在△ABC中,若fC=1,且2sin2B=cosB+cosA﹣C,求sinA的值.解:Ⅰ.依题意:函数.所以.,所以fx的最小值为m.依题意,m=0..Ⅱ∵,∴..在Rt△ABC中,∵,∴.∵0<sinA<1,∴.2.已知函数其中ω>0,若fx的一条对称轴离最近的对称中心的距离为.I求y=fx的单调递增区间;Ⅱ在△ABC中角A、B、C的对边分别是a,b,c满足2b﹣acosC=c•cosA,则fB恰是fx的最大值,试判断△ABC的形状.解答解:Ⅰ∵,=,∵fx的对称轴离最近的对称中心的距离为,∴T=π,∴,∴ω=1,∴.∵得:,∴函数fx单调增区间为;Ⅱ∵2b﹣acosC=c•cosA,由正弦定理,得2sinB﹣sinAcosC=sinC•cosA2sinBcosC=sinAcosC+sinCcosA=sinA+C,∵sinA+C=sinπ﹣B=sinB>0,2sinBcosC=sinB,∴sinB2cosC﹣1=0,∴,∵0<C<π,∴,∴,∴.∴,根据正弦函数的图象可以看出,fB无最小值,有最大值y max=1,此时,即,∴,∴△ABC为等边三角形.3.已知函数fx=sinωx+cosωx++cosωx﹣﹣1ω>0,x∈R,且函数的最小正周期为π:1求函数fx的解析式;2在△ABC中,角A、B、C所对的边分别是a、b、c,若fB=0,•=,且a+c=4,试求b的值.解答解:1fx=sinωx+cosωx++cosωx﹣﹣1==.∵T=,∴ω=2.则fx=2sin2x﹣1;2由fB==0,得.∴或,k∈Z.∵B是三角形内角,∴B=.而=ac•cosB=,∴ac=3.又a+c=4,∴a2+c2=a+c2﹣2ac=16﹣2×3=10.∴b2=a2+c2﹣2ac•cosB=7.则b=.4.已知函数.1求fx单调递增区间;2△ABC中,角A,B,C的对边a,b,c满足,求fA的取值范围.解答解:1fx=﹣+sin2x=sin2x﹣cos2x=sin2x﹣,令2kπ﹣≤2x﹣≤2kπ+,k∈Z,得到﹣+kπ≤x≤+kπ,k∈Z, 则fx的增区间为﹣+kπ, +kπk∈Z;2由余弦定理得:cosA=,即b2+c2﹣a2=2bccosA,代入已知不等式得:2bccosA>bc,即cosA>,∵A为△ABC内角,∴0<A<,∵fA=sin2A﹣,且﹣<2A﹣<,∴﹣<fA<,则fA的范围为﹣,.5.在△ABC中,内角A,B,C的对边分别是a,b,c,已知A为锐角,且bsinAcosC+csinAcosB=a.1求角A的大小;2设函数fx=tanAsinωxcosωx﹣cos2ωxω>0,其图象上相邻两条对称轴间的距离为,将函数y=fx的图象向左平移个单位,得到函数y=gx图象,求函数gx在区间﹣,上值域.解:1∵bsinAcosC+csinAcosB=a,∴由正弦定理可得:sinBsinAcosC+sinCsinAcosB=sinA,∵A为锐角,sinA≠0,∴sinBcosC+sinCcosB=,可得:sinB+C=sinA=,∴A=.2∵A=,可得:tanA=,∴fx=sinωxcosωx﹣cos2ωx=sin2ωx﹣cos2ωx=sin2ωx﹣,∵其图象上相邻两条对称轴间的距离为,可得:T=2×=,解得:ω=1,∴fx=sin2x﹣,∴将函数y=fx的图象向左平移个单位,得到图象对应的函数解析式为y=gx=sin2x+﹣=sin2x+,∵x∈﹣,,可得:2x+∈,,∴gx=sin2x+∈,1.6.已知向量,向量,函数.Ⅰ求fx单调递减区间;Ⅱ已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,,c=4,且fA恰是fx 在上的最大值,求A,b,和△ABC的面积S.解:Ⅰ∵=+1+sin2x+=sin2x﹣cos2x+2=sin2x﹣+2,…∴, 所以:fx的单调递减区间为:.…Ⅱ 由1知:,∵时,,由正弦函数图象可知,当时fx 取得最大值3,…7分∴,…8分由余弦定理,a 2=b 2+c 2﹣2bccosA,得:,∴b=2,…10分∴.…12分7.已知函数.Ⅰ作出在一个周期内的图象;Ⅱ分别是中角的对边,若,求的面积.()cos sin 6f x x x π⎛⎫=++ ⎪⎝⎭()f x a b c ,,ABC △ A B C ,,() 1a f A b ===,,ABC △利用“五点法”列表如下:……………………………………………………4分 画出在上的图象,如图所示:Ⅱ由Ⅰ,在中,,所以.由正弦定理可知,,所以,………………9分又,∴,∴,∴. 因此.…………………………12分 ()f x 5 33ππ⎡⎤-⎢⎥⎣⎦,()sin 3f A A π⎛⎫=+ ⎪⎝⎭ABC △0A π<<3A π=sin sin a b A B =1sin sin 3B =1sin 2B =203B π<<6B π=2C π=11122S ab ==ABC △8.已知函数fx=m+2cos2x•cos2x+θ为奇函数,且f=0,其中m∈R,θ∈0,πⅠ求函数fx的图象的对称中心和单调递增区间Ⅱ在△ABC中,角A,B,C的对边分别是a,b,c,且f+=﹣,c=1,ab=2,求△ABC的周长.解答解:Ⅰf=﹣m+1sinθ=0,∵θ∈0,π.∴sinθ≠0,∴m+1=0,即m=﹣1,∵fx为奇函数,∴f0=m+2cosθ=0,∴cosθ=0,θ=.故fx=﹣1+2cos2xcos2x+=cos2x•﹣sin2x=﹣sin4x,由4x=kπ,k∈Z得:x=kπ,k∈Z,故函数fx的图象的对称中心坐标为:kπ,0,k∈Z,由4x∈+2kπ, +2kπ,k∈Z得:x∈+kπ, +kπ,k ∈Z,即函数fx的单调递增区间为+kπ, +kπ,k∈Z,Ⅱ∵f+=﹣sin2C+﹣,C为三角形内角,故C=,∴c2=a2+b2﹣2abcosC==,∵c=1,ab=2,∴a+b=2+,∴a+b+c=3+,即△ABC的周长为3+.9.已知向量=sin,1,=cos,cos2,记fx=•.Ⅰ若fx=1,求cosx+的值;Ⅱ在锐角△ABC中,角A,B,C的对边分别是a,b,c,且满足2a﹣ccosB=bcosC,求f2A的取值范围.解答解:Ⅰ向量=sin,1,=cos,cos2,记fx=•=sincos+cos2=sin+cos+=sin+,因为fx=1,所以sin=,所以cosx+=1﹣2sin2=,Ⅱ因为2a﹣ccosB=bcosC,由正弦定理得2sinA﹣sinCcosB=sinBcosC所以2sinAcosB﹣sinCcosB=sinBcosC所以2sinAcosB=sinB+C=sinA,sinA≠0,所以cosB=,又0<B<,所以B=,则A+C=,即A=﹣C,又0<C<,则<A<,得<A+<,所以<sinA+≤1,又f2A=sinA+,所以f2A的取值范围.10.已知向量,函数fx=.1求函数fx的最小正周期及在上的值域;2在△ABC中,若fA=4,b=4,△ABC的面积为,求a的值.解答解:1向量,函数fx==2+sin2x+2cos2x=3+sin2x+cos2x=3+2sin2x+,可得函数fx的最小正周期为=π,x∈,即有2x+∈﹣,,可得sin2x+∈﹣,1,则在上的值域为2,5;2在△ABC中,若fA=4,b=4,△ABC的面积为,可得3+2sin2A+=4,即sin2A+=,由0<A<π,可得<2A+<,可得2A+=,即A=,由=bcsinA=•4c•sin=c,解得c=1,则a2=b2+c2﹣2bccosA=16+1﹣8×=13,即a=.11.已知函数fx=2sinx+•cosx.1若0≤x≤,求函数fx的值域;2设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且fA=,b=2,c=3,求cosA﹣B的值.解答解:1fx=2sinx+•cosx=sinx+cosx•cosx=sinxcosx+cos2x=sin2x+cos2x+=sin2x++;…由得,,∴,…∴,即函数fx的值域为;…2由,得,又由,∴,∴,解得;…在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,解得;…由正弦定理,得,…∵b<a,∴B<A,∴,∴cosA﹣B=cosAcosB+sinAsinB=.…12..已知向量x ∈R,设函数fx=﹣1.1求函数fx 的单调增区间;2已知锐角△ABC 的三个内角分别为A,B,C,若fA=2,B=,边AB=3,求边BC .解答解:由已知得到函数fx=﹣1=2cos 2x+2sinxcosx ﹣1=cos2x+sin2x=2cos2x ﹣;所以1函数fx 的单调增区间是2x ﹣∈2kπ﹣π,2kπ,即x ∈kπ﹣,kπ+,k ∈Z ;已升级到最新版2已知锐角△ABC 的三个内角分别为A,B,C,fA=2,则2cos2A ﹣=2,所以A=,又B=,边AB=3,所以由正弦定理得,即,解得BC=.13.. 1求函数的单调递减区间;2在中,角的对边分别为,若,的面积为,求a 的最小值.2()sin 2f x x x =+()f x ABC ∆,,A B C ,,a b c ()12A f =ABC∆试题解析:1, 令,解得,,∴的单调递减区间为. 14.已知fx=•,其中=2cosx,﹣sin2x,=cosx,1,x ∈R .1求fx 的单调递减区间;2在△ABC 中,角A,B,C 所对的边分别为a,b,c,fA=﹣1,a=,且向量=解答解:1由题意知.3分∵y=cosx 在a 2上单调递减,∴令,得∴fx 的单调递减区间,6分2∵,∴,又,∴,即,8分∵,由余弦定理得a 2=b 2+c 2﹣2bccosA=b+c 2﹣3bc=7.10分因为向量与共线,所以2sinB=3sinC,由正弦定理得2b=3c .∴b=3,c=2.12 分.111()cos 22sin(2)2262f x x x x π=-=-+3222262k x k πππππ+≤-≤+536k x k ππππ+≤≤+k Z ∈()f x 5[,]36k k ππππ++k Z ∈15.已知函数fx=2sinx+•cosx.1若0≤x≤,求函数fx的值域;2设△ABC的三个内角A,B,C所对的边分别为a,b,c,若A为锐角且fA=,b=2,c=3,求cosA ﹣B的值.解答解:1fx=2sinx+•cosx=sinx+cosx•cosx=sinxcosx+cos2x=sin2x+cos2x+=sin2x++;…由得,,∴,…∴,即函数fx的值域为;…2由,得,又由,∴,∴,解得;…在△ABC中,由余弦定理a2=b2+c2﹣2bccosA=7,解得;…由正弦定理,得,…∵b<a,∴B<A,∴,∴cosA﹣B=cosAcosB+sinAsinB=.…16.在△ABC中,角A,B,C所对的边分别为a,b,c,fx=2sinx﹣Acosx+sinB+Cx∈R,函数fx的图象关于点,0对称.Ⅰ当x∈0,时,求fx的值域;Ⅱ若a=7且sinB+sinC=,求△ABC的面积.解答解:Ⅰfx=2sinx﹣Acosx+sinB+C=2sinxcosA﹣cosxsinAcosx+sinA=2sinxcosxcosA﹣2cos2xsinA+sinA=sin2xcosA﹣cos2xsinA=sin2x﹣A,由于函数fx的图象关于点,0对称,则f=0,即有sin﹣A=0,由0<A<π,则A=,则fx=sin2x﹣,由于x∈0,,则2x﹣∈﹣,,即有﹣<sin2x﹣≤1.则值域为﹣,1;Ⅱ由正弦定理可得===, 则sinB=b,sinC=c,sinB+sinC=b+c=,即b+c=13,由余弦定理可得a2=b2+c2﹣2bccosA,即49=b2+c2﹣bc=b+c2﹣3bc,即有bc=40,则△ABC的面积为S=bcsinA=×40×=10.17.已知函数fx=2sinxcosx﹣3sin2x﹣cos2x+3.1当x∈0,时,求fx的值域;2若△ABC的内角A,B,C的对边分别为a,b,c,且满足=,=2+2cosA+C,求fB的值.解答解:1∵fx=2sinxcosx﹣3sin2x﹣cos2x+3=sin2x﹣3﹣+3=sin2x﹣cos2x+1=2sin2x++1,∵x∈0,,∴2x+∈,,∴sin2x+∈,1,∴fx=2sin2x++1∈0,3;2∵=2+2cosA+C,∴sin2A+C=2sinA+2sinAcosA+C,∴sinAcosA+C+cosAsinA+C=2sinA+2sinAcosA+C,∴﹣sinAcosA+C+cosAsinA+C=2sinA,即sinC=2sinA,由正弦定理可得c=2a,又由=可得b=a,由余弦定理可得cosA=== ,∴A=30°,由正弦定理可得sinC=2sinA=1,C=90°,由三角形的内角和可得B=60°,∴fB=f60°=218.设函数fx=cos2x﹣+2cos2x.1求fx的最大值,并写出使fx取得最大值时x的集合;2求fx的单调递增区间;3已知△ABC中,角A,B,C的对边分别为a,b,c,若fB+C=,b+c=2,求a的最小值.解答解:1由三角函数公式化简可得fx=cos2x﹣+2cos2x=cos2xcos+sin2xsin+2cos2x=﹣cos2x﹣sin2x+1+cos2x=cos2x﹣sin2x+1=cos2x++1,当2x+=2kπ即x=kπ﹣k∈Z时,fx取得最大值2,此时x的集合为{x|x=kπ﹣,k∈Z};2由2kπ+π≤2x+≤2kπ+2π可解得kπ+≤x≤kπ+,∴fx的单调递增区间为得kπ+,kπ+,k∈Z;3由2可得fB+C=cos2B+2C++1=,∴cos2B+2C+=,由角的范围可得2B+2C+=,变形可得B+C=,A=, 由余弦定理可得a2=b2+c2﹣2bccosA=b2+c2﹣bc=b+c2﹣3bc=4﹣3bc≥4﹣32=1当且仅当b=c=1时取等号,故a的最小值为119.已知函数,x∈R.1求函数fx的最大值和最小正周期;2设△ABC 的内角A,B,C 的对边分别a,b,c,且c=3,fC=0,若sinA+C=2sinA,求a,b 的值.解答解:1 (3)∵,∴,∴fx 的最大值为0,最小正周期是…6分2由,可得∵0<C <π,∴0<2C <2π,∴∴,∴∵sinA+C=2sinA,∴由正弦定理得①…9分由余弦定理得∵c=3∴9=a 2+b 2﹣ab②由①②解得,…12分20..已知向量,设函数.1求在上的最值;2在中,分别是角的对边,若,,求的值.()()3sin 22,cos ,1,2cos m x x n x =+=()f x m n =⋅()f x 0,4π⎡⎤⎢⎥⎣⎦ABC ∆,,a b c ,,A B C ()4,1f A b ==ABC ∆a;2.21.已知函数fx=sin 2x+sin2x .1求函数fx 的单调递减区间;2在△ABC 中,角A,B,C 的对边分别为a,b,c,若f =,△ABC 的面积为3,求a 的最小值.解答解:1∵fx=sin 2x+sin2x=+sin2x=sin2x ﹣+,∴2kπ+≤2x ﹣≤2kπ+,k ∈Z,解得:kπ+≤x ≤kπ+,k ∈Z,∴函数fx 的单调递减区间为:kπ+,kπ+,k ∈Z .()()min max 4,5f x f x ∴==()12sin 234,sin 2662f A A A ππ⎛⎫⎛⎫=++=∴+= ⎪ ⎪⎝⎭⎝⎭1352,2666663AA A ππππππ⎛⎫+∈∴+=∴= ⎪⎝⎭1sin 2ABC S bc A ∆==2c ∴=2222cos 3a b c bc A a ∴=+-=∴=2∵f=,即: sin2×﹣+=,化简可得:sinA﹣=,又∵A∈0,π,可得:A﹣∈﹣,,∴A﹣=,解得:A=,∵S△ABC=bcsinA=bc=3,解得:bc=12,∴a==≥=2.当且仅当b=c时等号成立.故a的最小值为2.22.已知函数fx=2sinxcosx+2,x∈R.1求函数fx的最小正周期和单调递增区间;2在锐角三角形ABC中,若fA=1,,求△ABC的面积.解答解:1fx=2sinxcosx+=sin2x+=2sin2x+,∴函数fx的最小正周期为π,由2kπ﹣≤2x+≤2kπ+,k∈Z,得,∴函数fx的单调增区间是k,k k∈Z,2由已知,fA=2sin2A+=1,∴sin2A+=,∵0<A<,∴,∴2A+=,从而A=,又∵=,∴,∴△ABC的面积S===.23.已知向量=sinx,﹣1,向量=cosx,﹣,函数fx=+•.1求fx的最小正周期T;2已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,a=2,c=4,且fA恰是fx在0,上的最大值,求A和b.解答解:1∵向量=sinx,﹣1,向量=cosx,﹣,∴fx=+•=sin2x+1+sinxcosx+=+1+sin2x+= sin2x﹣cos2x+2=sin2x﹣+2,∵ω=2,∴函数fx的最小正周期T==π;2由1知:fx=sin2x﹣+2,∵x∈0,,∴﹣≤2x﹣≤,∴当2x﹣=时,fx取得最大值3,此时x=,∴由fA=3得:A=, 由余弦定理,得a2=b2+c2﹣2bccosA,∴12=b2+16﹣4b,即b﹣22=0,∴b=2.24.在中,分别是角的对边,且满足. 1求角的大小;2设函数,求函数在区间上的值域.25.已知函数在处取最小值.ABC ∆c b a ,,C B A ,,CBc b a cos cos 2=-C 23sin sin 2cos cos sin 2)(2-+=C x C x x x f )(x f ]2,0[π2()2sin coscos sin sin (0)2f x x x x ϕϕϕπ=+-<<x π=1求的值;2在中,分别为内角的对边,已知求角.试题分析:1利用三角恒等变换公式化简函数解析式得,由在处取最小值及查求得;2由可得,再由正弦定理求出,从而求出角的值,即可求角.2因为,所以,因为角为的内角,所以. 又因为所以由正弦定理,得, 也就是, 因为,所以或. 当时,; 当时,. 26.已知函数的最小正周期为.ϕABC∆,,a b c ,,A B C 1,()a b f A ===C ()sin()f x x ϕ=+x π=0ϕπ<<2πϕ=()f A =6A π=sin B B C ()2f A =cos 2A =A ABC ∆6A π=1,a b ==sin sin a bA B=sin 1sin 22b A B a ===b a >4B π=34B π=4B π=76412C ππππ=--=34B π=36412C ππππ=--=2()2sin(0)2xf x x ωωω=->3π1求函数在区间上的最大值和最小值; 2已知分别为锐角三角形中角的对边,且满足,,求的面积.答案及解析:26.1,;2.试题分析:1利用三角恒等变换相关公式化简函数解析式得,由周期为,可求的值,由三角函数性质可求函数的最值.2及正弦定理可求得,从而是求出解的值,由可求出角及角,由正弦定理求出边,即可求三角形面积.27.已知函数.Ⅰ求函数fx 的单调递增区间;Ⅱ在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c .已知,a=2,,求△ABC 的面积.解答解:Ⅰ =sin2xcos+cos2xsin+cos2x=sin2x+cos2x=sin2x+cos2x=sin2x+.令 2kπ﹣≤2x+≤2kπ+,k ∈z,求得 kπ﹣≤x ≤kπ+,()f x 3[,]4ππ-,,a b c ABC ,,A B C 2,()1b f A ==2sin b A =ABC ∆min ()1f x =max ()1f x =33+()2sin()16f x x πω=+-3πω2sin b A =sin B =B ()1f A =4A π=51246C πππ==+a函数fx的单调递增区间为kπ﹣,kπ+,k∈z.Ⅱ由已知,可得 sin2A+=,因为A为△ABC内角,由题意知0<A<π,所以<2A+<,因此,2A+=,解得A=.由正弦定理,得b=,…由A=,由B=,可得 sinC=,…∴S=ab•sinC==.28.已知函数fx=Asinωx+φA>0,ω>0,|φ|<,x∈R,且函数fx的最大值为2,最小正周期为,并且函数fx的图象过点,0.1求函数fx解析式;2设△ABC的角A,B,C的对边分别为a,b,c,且f=2,c=,求a+2b的取值范围.解答解:1根据题意得:A=2,ω=4,即fx=2sin4x+φ,把,0代入得:2sin+φ=0,即sin+φ=0,∴+φ=0,即φ=﹣,则fx=2sin4x﹣;2由f=2sinC﹣=2,即sinC﹣=1,∴C﹣=,即C=,由正弦定理得: ==2R,即=2R=1,∴a+2b=2RsinA+4RsinB=sinA+2sinB=sinA+2sin﹣A=sinA+2sin cosA﹣2cossinA=sinA+cosA﹣sinA=cosA,∵<cosA<1,即<cosA<,∴a+2b的范围为,.29.已知函数fx=2cos2x+cos2x+.1若fα=+1,0<a<,求sin2α的值;2在锐角△ABC中,a,b,c分别是角A,B,C的对边;若fA=﹣,c=3,△ABC的面积S△ABC=3,求a的值.解答解:1化简可得fx=2cos2x+cos2x+=1+cos2x+cos2x﹣sin2x=cos2x﹣sin2x+1=cos2x++1,∴fα=cos2α++1=+1,∴cos2α+=,∵0<α<,∴0<2α+<,∴sin2α+==,∴2∵fx=cos2x++1,∴fA=cos2A++1=﹣,∴cos2A+=﹣,又∵A∈0,,∴2A+∈,,∴2A+=,解得A=又∵c=3,S △ABC =bcsinA=3,∴b=4由余弦定理得a 2=b 2+c 2﹣2bccosA=13, ∴a=30.已知函数13cos 3cos sin 3)(-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++=πωπωωx x x x f 0>ω,R ∈x ,且函数)(x f 的最小正周期为π.1求函数)(x f 的解析式;2在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若0)(=B f ,23=⋅BC BA ,且4=+c a ,求b 的值.参考答案1, ……………3分 又,所以,, ………………………………………………5分所以,. …………………………………………………6分π()cos 12sin 16f x x x x ωωω⎛⎫=+-=+- ⎪⎝⎭πT =2=ωπ()2sin 216f x x ⎛⎫=+- ⎪⎝⎭2,故, 所以,或, 因为是三角形内角,所以.……9分 而,所以,, …………………………11分 又,所以,,所以,,所以,. …………………………………14分31.已知函数2()sin(2)2cos 1()6f x x x x π=--∈+R .Ⅰ求()f x 的单调递增区间;Ⅱ在△ABC 中,三个内角,,A B C 的对边分别为,,a b c ,已知()12f A =,且△ABC 外求a 的值. 试题解析:Ⅰ∵x x x x x x f 2cos 2cos 212sin 231cos 2)62sin()(2+-=-+-=π ………………2分x x 2cos 212sin 23+==)62sin(π+x ………………3分 由∈+≤+≤+-k k x k (226222πππππZ 得,∈+≤≤+-k k x k (63ππππZ 5分π()2sin 2106f B B ⎛⎫=+-= ⎪⎝⎭π1sin 262B ⎛⎫+= ⎪⎝⎭ππ22π66B k +=+π5π22π66B k +=+Z ∈k B π3B =3cos 2BA BC ac B ⋅=⋅=3=ac 4=+c a 1022=+c a 7cos 2222=-+=B ac c a b 7=a∴)(x f 的单调递增区间是∈++-k k k ](6,3[ππππZ (7)Ⅱ∵21)62sin()(=+=πA A f ,π<<A 0,62626ππππ+<+<A于是6562ππ=+A ∴ 3π=A ∵ABC ∆外接圆的半径为由正弦定理2sin a R A =,得2sin 3a R A ===,32.在中,分别是角A,B,C 的对边,已知,且1求的大小;2设且的最小正周期为,求在的最大值;试题解析:1∵ ∴∴ 又∵0<x < ∴A=2.==++=+== sin x+∵ = ∴=2 ∴=sin2x+∵ ∴2x+, ∴时.33.已知函数fx=sinxcosx++1.1求函数fx 的单调递减区间;2在△ABC中,a,b,c分别是角A、B、C的对边fC=,b=4,•=12,求c.解答解:1fx=sinx cosx﹣sinx+1=sin2x﹣+1=sin2x++.令≤2x+≤,解得≤x≤.∴函数fx的单调递减区间是,,k∈Z.2∵fC=sin2C++=,∴sin2C+=1,∴C=.∵•=abcosA=2a=12,∴a=2.由余弦定理得c2=a2+b2﹣2abcosC=12+16﹣24=4.∴c=2.34.在△ABC中,角A,B,C的对边分别为a,b,c,已知a2+c2﹣b2=ac,且b=c.1求角A的大小;2设函数fx=1+cos2x+B﹣cos2x,求函数fx的单调递增区间.解答解:1在△ABC中,因为,所以.…在△ABC中,因为,由正弦定理可得,所以,,,故…2由1得===…,得即函数fx 的单调递增区间为…35.ABC 的三个内角A,B,C 所对的边分别为a,b,c,已知46cos ,a .55A == 1当3B π=时,求b 的值;2设B x =02x π⎛⎫<< ⎪⎝⎭,求函数()22x f x b =+的值域.36.已知函数fx=sinxsinx+cosx .1求fx 的最小正周期和最大值;2在锐角三角形ABC 中,角A,B,C 的对边分别为a,b,c,若f =1,a=2,求三角形ABC面积的最大值. 解答解:1fx=sin 2x+sinxcosx=﹣cos2x+sin2x=sin2x ﹣.∴fx的最小正周期T==π,fx的最大值是.2∵f=sinA﹣+=1,∴sinA﹣=,∴A=.∵a2=b2+c2﹣2bccosA,∴12=b2+c2﹣bc,∴b2+c2=12+bc≥2bc,∴bc≤12.∴S==bc≤3.∴三角形ABC面积的最大值是3.37.已知向量=cos2x, sinx﹣,=1,,设函数fx=.Ⅰ求函数fx取得最大值时x取值的集合;Ⅱ设A,B,C为锐角三角形ABC的三个内角,若cosB=,fC=﹣,求sinA的值.解答解:Ⅰ∵向量=cos2x, sinx﹣,=1,,∴函数fx==cos2x+sinx﹣2=cos2x+sin2x+cos2x﹣sinxcosx=cos2x﹣sin2x+=cos2x++故当cos2x+=1时,函数fx取得最大值,此时2x+=2kπ,解得x=kπ﹣,k∈Z,故x取值的集合为{x|x=kπ﹣,k∈Z};Ⅱ∵A,B,C为锐角三角形ABC的三个内角,且cosB=,∴sinB==,又fC=cos2C++=﹣,∴cos2C+=﹣,∴2C+=,解得C=,∴sinA=sin﹣B=cosB+sinB==38..已知向量=sin2x+2,cosx,=1,2cosx,设函数fx=1求fx的最小正周期与单调递增区间;2在△ABC中,a,b,c分别是角A,B,C所对应的边,若fA=4,b=1,得面积为,求a的值.解答解:1∵向量=sin2x+2,cosx,=1,2cosx,∴函数fx=•=sin2x+2+2cos2x=sin2x+cos2x+3=2sin2x++3,∵ω=2,∴T=π,令2kπ﹣≤2x+≤2kπ+,k∈Z,得到kπ﹣≤x≤kπ+,k∈Z,则fx的最小正周期为π;单调递增区间为kπ﹣,kπ+,k∈Z;2由fA=4,得到2sin2A++3=4,即sin2A+=,∴2A+=或2A+=,解得:A=0舍去或A=,∵b=1,面积为,∴bcsinA=,即c=2,由余弦定理得:a2=b2+c2﹣2bccosA=1+4﹣2=3,则a=.39..设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足S=.Ⅰ求B;Ⅱ若b=,设A=x,,求函数y=fx的解析式和最大值.解答解:Ⅰ∵S=acsinB,cosB=,S=a2+c2﹣b2,∴acsinB=•2accosB,∴tanB=,又B∈0,π,∴B=;Ⅱ由Ⅰ知B=,△ABC的内角和A+B+C=π,又A>0,C>0,得0<A<,由正弦定理,知a===2sinx,c==2sin﹣x,∴y=﹣1a+2c=2﹣1sinx+4sin﹣x=2sinx+2cosx=2sinx+0<x<,当x+=,即x=时,y取得最大值2.40.在△ABC中,a,b,c分别是内角A,B,C的对边,且2a﹣ccosB﹣bcosC=0.1求∠B;2设函数fx=﹣2cos2x+B,将fx的图象向左平移后得到函数gx的图象,求函数gx的单调递增区间.解答解:1由2a﹣ccosB﹣bcosC=0及正弦定理得,2sinA﹣sinCcosB﹣sinBcosC=0,即2sinAcosB﹣sinB+C=0,因为A+B+C=π,所以sinB+C=sinA,因为sinA≠0,所以cosB=,由B是三角形内角得,B=,2由1得,B=,则fx=﹣2cos2x+B=﹣2cos2x+,所以gx=﹣2cos2x++,=﹣2cos2x+=2sin2x,由得,故函数gx的单调递增区间是:.41..已知函数 fx=sin2x﹣cos2x﹣,x∈R.1求函数fx的最小正周期和单调递减区间;2设△ABC的内角A,B,C的对边分别为a,b,c且c=,fC=0.若sinB=2sinA,求a,b的值.解答解:1∵fx=sin2x﹣cos2x﹣,x∈R.=sin2x﹣﹣=sin2x﹣﹣1∴T==π∴由2kπ+≤2x﹣≤2kπ+,k∈Z可解得:x∈kπ,kπ+ ,k∈Z∴fx单调递减区间是:kπ,kπ+,k∈Z2fC=sin2C﹣﹣1=0,则sin2C﹣=1∵0<C<π,∴C=∵sinB=2sinA,∴由正弦定理可得b=2a①∵c=,∴由余弦定理可得c2=a2+b2﹣ab=3②由①②可得a=1,b=2.42..在锐角△ABC中,角A,B,C的对边分别为a,b,c,且,1求角B的值;2设A=θ,求函数的取值范围.解:1∵由正弦定理得a=2RsinA,b=2RsinB,c=2RsinC,sinB+C=sinAcosB,∴cosB= ,∴B=.…2锐角△ABC中,A+B=,∴θ∈,,…=1﹣cos+2θ﹣cos2θ=1+sin2θ﹣cos2θ=sin2θ﹣cos2θ+1=2sin2θ﹣+1.…9分∵θ∈,,∴2θ﹣∈,,∴2<2sin2θ﹣+1≤3.所以:函数fθ的取值范围是2,3.…12分。
三角函数平面向量及解三角形的综合运用

三角函数平面向量及解三角形的综合运用运用三角函数、平面向量和解三角形的综合运用时,常涉及到问题的空间几何解析、力学问题、电磁场问题等等。
本文将从求解平面三角形、力学问题和电磁场问题三个方面进行综合运用的详细说明。
1.求解平面三角形在平面三角形的解析中,我们经常会使用到三角函数的性质。
例如,已知三角形的两边和一个角,可以通过余弦定理求解出第三边的长。
另外,已知三个角或三个边中的一对和对应的一个角,我们可以利用正弦定理求解出其他的边和角。
举例说明:假设有一个平面三角形ABC,其中已知AB=3,AC=4,∠BAC=60°。
求解BC的长度和∠ABC、∠ACB的大小。
首先,我们可以利用余弦定理计算出BC的长度:BC² = AB² + AC² - 2·AB·AC·cos(∠BAC)BC² = 3² + 4² - 2·3·4·cos(60°)BC²=9+16-24·0.5BC²=25-12=13BC=√13接下来,利用正弦定理求解∠ABC和∠ACB的大小:sin(∠ABC) / AB = sin(∠BAC) / BCsin(∠ABC) / 3= sin(60°) / √13sin(∠ABC) = 3·sin(60°) / √13∠ABC = arcsin(3·sin(60°) / √13)sin(∠ACB) / AC = sin(∠BAC) / BCsin(∠ACB) / 4 = sin(60°) / √13sin(∠ABC) = 4·sin(60°) / √13∠ACB= arcsin(4·sin(60°) / √13)通过以上计算,我们可以得出BC≈3.605,∠ABC≈39.23°,∠ACB≈80.77°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数与平面向量、解三角形综合题
题型一:三角函数与平面向量平行(共线)的综合
【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.
(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B
2的最大值.
题型二. 三角函数与平面向量垂直的综合 【例2】
已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π
2
,2π),且→a ⊥→b .
(Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π
3)的值.
题型三. 三角函数与平面向量的模的综合
【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=2
5 5.(Ⅰ)求cos(α-β)的值;(Ⅱ)
若-π2<β<0<α<π
2,且sinβ=-513,求sinα的值.
题型四 三角函数与平面向量数量积的综合 【例3】
设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.
题型五:结合三角形中的向量知识考查三角形的边长或角的运算
【例5】(山东卷)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,tan 37C =.
(1)求cos C ;(2)若5
2
CB CA ⋅=u u u r u u u r ,且9a b +=,求c .
题型六:结合三角函数的有界性,考查三角函数的最值与向量运算
【例6】()f x a b =⋅r r ,其中向量(,cos 2)a m x =r
,(1sin 2,1)b x =+r ,x R ∈,
且函数()y f x =的图象经过点(
,2)4
π
.
(Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。
题型七:结合向量的坐标运算,考查与三角不等式相关的问题
【例7】设向量(sin ,cos ),
(cos ,cos ),a x x b x x x R ==∈r r
,函数()()f x a a b =⋅+r r r .
(Ⅰ)求函数()f x 的最大值与最小正周期;(Ⅱ)求使不等式3
()2
f x ≥成立的x 的取值集.
题型八:三角函数平移与向量平移的综合
【例8】把函数y =sin2x 的图象按向量→a =(-π
6,-3)平移后,得到函数y =Asin(ωx +ϕ)(A
>0,ω>0,|ϕ|=π
2
)的图象,则ϕ和B 的值依次为
( )
A .π
12,-3
B .π3
,3
C .π
3
,-3
D .-π12
,3
题型九:结合向量的数量积,考查三角函数的化简或求值
【例9】已知04
πα<<
,β为()cos(2)8
f x x π
=+
的最小正周期,
(tan(),1),(cos ,2),4
a b a b m βαα=+-=⋅=r r
r r ,求
22cos sin 2()cos sin ααβαα++-的值.
题型十:结合向量的夹角公式,考查三角函数中的求角问题 【例10】如图,函数2sin(),y x x R πϕ=+∈(其中02
π
ϕ≤≤)的图像与y 轴交于点(0,
1)。
(Ⅰ)求ϕ的值;
(Ⅱ)设P 是图像上的最高点,M 、N 是图像与x 轴的交点,求PM u u u u r 与PN u u u
r 的夹角。