(637)多项式乘多项式专项练习30题选择解答(有答案有过程)ok
多项式乘多项式专项练习30题选择解答(有答案)ok

多项式乘多项式专项练习30题选择解答(有答案)ok1.若 $(x-1)(x+3)=x+mx+n$,则 $m$,$n$ 的值分别为()。
A。
$m=1$,$n=3$ B。
$m=4$,$n=5$ C。
$m=2$,$n=-3$ D。
$m=-2$,$n=3$2.下列各式中,计算结果是 $x+7x-18$ 的是()。
A。
$(x-1)(x+18)$ B。
$(x+2)(x+9)$ C。
$(x-3)(x+6)$ D。
$(x-2)(x+9)$3.若 $(x-a)(x+2)$ 的展开项中不含 $x$ 的一次项,则$a$ 的值为()。
A。
$a=-2$ B。
$a=2$ C。
无法确定4.如果 $(x-3)(2x+4)=2x-mx+n$,那么 $m$,$n$ 的值分别是()。
A。
$m=2$,$n=12$ B。
$m=-2$,$n=12$ C。
$m=2$,$n=-12$ D。
$m=-2$,$n=-12$5.已知$m+n=2$,$mn=-2$,则$(1-m)(1-n)$ 的值为()。
A。
$1-3$ B。
$-1$ C。
$5$6.先化简,再求值:$5(3xy-xy)-4(-xy+3xy)$,其中$x=-2$,$y=3$。
7.计算:1)$3-2+(-3)-(\frac{3}{2})$2)$(-2ab)+(-a)\cdot(2b)$3)$x(2x+1)(1-2x)-4x(x-1)(1-x)$4)$(2a-b+3)(2a+b-3)$5)$\frac{x^2-1}{2}(2x+1)$8.计算:1)$(-7x-8y)\cdot(-x+3y)$2)$(3x-2y)(y-3x)-(2x-y)(3x+y)$9.计算:$a(a+2)(a-3)$10.计算:$(a+b)(a-ab+b)$11.计算:$(2x-3y)(x+4y)$12.计算:1)$(2x+3y)(3y-4x)$2)$(-4x-3y)(3y-4x)$13.计算:$(2x+5y)(3x-2y)-2x(x-3y)$14.$5x-(x-2)(3x+1)-2(x+1)(x-5)$15.已知多项式$6x-7xy-3y+14x+y+a=(2x-3y+b)(3x+y+c)$,试确定 $a$,$b$,$c$ 的值。
多项式乘以多项式练习题

多项式与多项式相乘一、选择题1.计算(2a-3b)(2a+3b)的正确结果是()A.4a2+9b2B.4a2-9b2C.4a2+12ab+9b2D.4a2-12ab+9b22.若(x+a)(x+b)=x2-kx+ab,则k的值为()A.a+b B.-a-b C.a-b D.b-a3.计算(2x-3y)(4x2+6xy+9y2)的正确结果是()A.(2x-3y)2B.(2x+3y)2C.8x3-27y3D.8x3+27y34.(x2-px+3)(x-q)的乘积中不含x2项,则()A.p=q B.p=±q C.p=-q D.无法确定5.若0<x<1,那么代数式(1-x)(2+x)的值是()A.一定为正B.一定为负C.一定为非负数D.不能确定6.计算(a2+2)(a4-2a2+4)+(a2-2)(a4+2a2+4)的正确结果是()A.2(a2+2)B.2(a2-2)C.2a3D.2a67.方程(x+4)(x-5)=x2-20的解是()A.x=0 B.x=-4 C.x=5 D.x=408.若2x2+5x+1=a(x+1)2+b(x+1)+c,那么a,b,c应为()A.a=2,b=-2,c=-1 B.a=2,b=2,c=-1C.a=2,b=1,c=-2 D.a=2,b=-1,c=29.若6x2-19x+15=(ax+b)(cx+b),则ac+bd等于()A.36 B.15 C.19 D.2110.(x+1)(x-1)与(x4+x2+1)的积是()A.x6+1 B.x6+2x3+1 C.x6-1 D.x6-2x3+1二、填空题1.(3x-1)(4x+5)=__________.2.(-4x-y)(-5x+2y)=__________.3.(x+3)(x+4)-(x-1)(x-2)=__________.4.(y-1)(y-2)(y-3)=__________.5.(x3+3x2+4x-1)(x2-2x+3)的展开式中,x4的系数是__________.6.若(x+a)(x+2)=x2-5x+b,则a=__________,b=__________.7.若a2+a+1=2,则(5-a)(6+a)=__________.8.当k=__________时,多项式x-1与2-kx的乘积不含一次项.9.若(x2+ax+8)(x2-3x+b)的乘积中不含x2和x3项,则a=_______,b=_______.10.如果三角形的底边为(3a+2b),高为(9a2-6ab+4b2),则面积=__________.三、解答题1、计算下列各式(1)(2x+3y)(3x-2y) (2)(x+2)(x+3)-(x+6)(x-1)(3)(3x2+2x+1)(2x2+3x-1) (4)(3x+2y)(2x+3y)-(x-3y)(3x+4y) 2、求(a+b)2-(a-b)2-4ab的值,其中a=2002,b=2001.3、2(2x-1)(2x+1)-5x(-x+3y)+4x(-4x2-52y),其中x=-1,y=2.四、探究创新乐园1、若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b.2、根据(x+a)(x+b)=x2+(a+b)x+ab,直接计算下列题(1)(x-4)(x-9) (2)(xy-8a)(xy+2a)五、数学生活实践一块长a m,宽b m的玻璃,长、宽各裁掉c m后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?六、思考题:请你来计算:若1+x+x2+x3=0,求x+x2+x3+…+x2000的值.平方差公式练习题一、选择题1、下列多项式乘法,能用平方差公式进行计算的是( )A.(x+y)(-x -y)B.(2x+3y)(2x -3z)C.(-a -b)(a -b)D.(m -n)(n -m)2、下列运算中,正确的是( )A. 224)2)(2(b a b a b a -=+--B. 222)2)(2(b a b a b a --=-+-C. 222)2)(2(b a b a b a --=-+D. 224)2)(2(b a b a b a -=+---3、下列多项式乘法,不能用平方差公式计算的是( )A.(-a -b)(-b+a)B.(xy+z)(xy -z)C.(-2a -b)(2a+b)D.(0.5x -y)(-y -0.5x)4、在下列各式中,运算结果是2236y x -的是( )A. )6)(6(x y x y --+-B. )6)(6(x y x y -+-C. )9)(4(y x y x -+D. )6)(6(x y x y ---5、(4x 2-5y)需乘以下列哪个式子,才能使用平方差公式进行计算( )A.-4x 2-5yB.-4x 2+5yC.(4x 2-5y)2D.(4x+5y)26、有下列运算:①2229)3(a a = ②2251)51)(15(m m m -=++-③532)1()1()1(--=--a a a④626442++=⨯⨯n m n m ,其中正确的是( ) A. ①② B. ②③ C.③④ D. ②④7、a 4+(1-a)(1+a)(1+a 2)的计算结果是( )A.-1B.1C.2a 4-1D.1-2a 48、若m ,n 是整数,那么22)()(n m n m --+值一定是( )A. 正数B. 负数C. 非负数D. 4的倍数9、对于任意的正整数n ,能整除代数式(3n+1)(3n-1)-(3-n )(3+n )的整数是( )A .3B .6C .10D .910、若(x-5)2=x 2+kx+25,则k=( )A .5B .-5C .10D .-1011、如果x 2+4x+k 2恰好是另一个整式的平方,那么常数k 的值为( )A .4B .2C .-2D .±212、若a-b=2,a-c=1,则(2a-b-c )2+(c-b )2的值为( )A .10B .9C .2D .1二、填空题1、 9.8×10.2=________; )(23(b a + 2294)a b -=;(12x+3)2 -(12x-3)2=______.)(37(22y x - -=449)x ; (x-y+z )(x+y+z )=________2、已知622=-y x ,3=+y x ,则=-y x3、)(2)(2(a x a x -+ 4416)a x -=4、若a 2+2a=1,则(a+1)2=_________.5、--+)2)(2(y x y x xy y 242--=三、计算题1、运用平方差公式计算(1) )52)(52(22--+-x x (2) )4)(4(-+ab ab(3))49)(23)(23(22b a b a b a ++- (4) )1)(1)(1)(1(42a a a a +++-(5) ))((c b a c b a --++ (6) ))()()((b a b a b a b a --++--(7) 9982-4 (8) 20.1×19.9 (9) 2003×2001-200222、解方程: )17)(17()2)(2(3)12)(12(+-=-+++-x x x x x x3、计算:)12()12)(12)(12(42++++n 2481511111(1)(1)(1)(1)22222+++++4、化简求值:(x+5)2-(x-5)2-5(2x+1)(2x-1)+x ·(2x)2,其中x=-1.四、解答题1、已知2422=-y x ,6-=+y x ,求代数式y x 35+的值2、已知9621-可以被在60至70之间的两个整数整除,则这两个整数是多少?。
八年级英语多项式乘以多项式练习题

八年级英语多项式乘以多项式练习题
本练题旨在帮助八年级学生练多项式乘以多项式的计算。
以下是一些题,每个题均包含多个步骤,请按照步骤完成计算。
题一
计算以下两个多项式的乘积:
多项式 A: (3x^2 + 2x - 1)
多项式 B: (4x - 5)
步骤:
1. 将多项式 A 中的每一项与多项式 B 中的每一项进行乘法运算。
2. 将得到的乘积项进行合并,并按照指数降序排列。
3. 将合并后的项组合成一个新的多项式,并化简。
题二
计算以下两个多项式的乘积:
多项式 A: (5x^3 + 2x^2 - 3x + 1)
多项式 B: (2x^2 - 4x + 6)
步骤:
1. 将多项式 A 中的每一项与多项式 B 中的每一项进行乘法运算。
2. 将得到的乘积项进行合并,并按照指数降序排列。
3. 将合并后的项组合成一个新的多项式,并化简。
题三
计算以下两个多项式的乘积:
多项式 A: (2x^4 + 3x^3 - x^2 + 4x - 2)
多项式 B: (x^2 - 2x + 1)
步骤:
1. 将多项式 A 中的每一项与多项式 B 中的每一项进行乘法运算。
2. 将得到的乘积项进行合并,并按照指数降序排列。
3. 将合并后的项组合成一个新的多项式,并化简。
以上是针对八年级英语多项式乘以多项式的练题。
希望能够帮助学生加深对多项式乘法的理解和运用能力。
---
以上习题的结果和解答已经过确认,供参考。
(637)多项式乘多项式专项练习30题选择解答(有答案有过程)ok

多项式乘多项式专项练习30题(有答案)1.若(x﹣1)(x+3)=x2+mx+n,那么m,n的值分别是()A .m=1,n=3 B.m=4,n=5 C.m=2,n=﹣3 D.m=﹣2,n=32.下列各式中,计算结果是x2+7x﹣18的是()A .(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)3.若(x﹣a)(x+2)的展开项中不含x的一次项,则a的值为()A .a=﹣2 B.a=2 C.a=±2 D.无法确定4.如果(x﹣3)(2x+4)=2x2﹣mx+n,那么m、n的值分别是()A .2,12 B.﹣2,12 C.2,﹣12 D.﹣2,﹣125.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A .﹣3 B.﹣1 C.1 D.56.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.7.计算:(1)30﹣2﹣3+(﹣3)2﹣()﹣1 (2)(﹣2a2b3)4+(﹣a)8•(2b4)3 (3)x(2x+1)(1﹣2x)﹣4x(x﹣1)(1﹣x)(4)(2a﹣b+3)(2a+b﹣3)(5)(x﹣1)(x2+x+1)8.计算:(1)(﹣7x2﹣8y2)•(﹣x2+3y2)=_________;(2)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y)=_________.9.计算:a(a+2)(a﹣3)10.计算:(a+b)(a2﹣ab+b2)11.计算:(2x﹣3y)(x+4y)12.计算:(1)(2)(﹣4x﹣3y2)(3y2﹣4x)13.计算:(2x+5y)(3x﹣2y)﹣2x(x﹣3y)14.5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)15.已知6x2﹣7xy﹣3y2+14x+y+a=(2x﹣3y+b)(3x+y+c),试确定a、b、c的值.16.已知多项式(x2+mx+n)(x2﹣3x+4)展开后不含x3和x2项,试求m,n的值.17.计算(x+2)(x2﹣2x+4)=_________.18.一个二次三项式x2+2x+3,将它与一个二次项ax+b相乘,积中不出现一次项,且二次项系数为1,求a,b的值?20.(m2﹣2m+3)(5m﹣1)21.计算:(﹣3x﹣2y)(4x+2y)22.先阅读,再填空解题:(x+5)(x+6)=x2+11x+30;(x﹣5)(x﹣6)=x2﹣11x+30;(x﹣5)(x+6)=x2+x﹣30;(x+5)(x﹣6)=x2﹣x﹣30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:_________.(2)根据以上的规律,用公式表示出来:_________.(3)根据规律,直接写出下列各式的结果:(a+99)(a﹣100)=_________;(y﹣80)(y﹣81)=_________.23.填空(x﹣y)(x2+xy+y2)=_________;(x﹣y)(x3+x2y+xy2+y3)=_________根据以上等式进行猜想,当n是偶数时,可得:(x﹣y)(x n+x n﹣1y+y n﹣2y2+…+x2y n﹣2+xy n﹣1+y n)=_________.24.如果(x﹣3)(x+5)=x2+Ax+B,求3A﹣B的值.25.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)](2)(a+b)(a2﹣ab+b2)26.(a﹣b+c﹣d)(c﹣a﹣d﹣b)27.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.28..29.小明在计算一个多项式乘以x+y﹣4的题目时,误以为是加法运算,结果得到2x+2y.你能计算出这个多项式乘以x+y﹣4的正确结果吗?30.化简:(x+y)(x2﹣xy+y2)多项式乘多项式30题参考答案:1.∵(x﹣1)(x+3)=x2+2x﹣3=x2+mx+n,∴m=2,n=﹣3.故选C.2.A、原式=x2+17x﹣18;B、原式=x2+11x+18;C、原式=x2+3x﹣18;D、原式=x2+7x﹣18.故选D3.∵(x﹣a)(x+2)=x2+(2﹣a)﹣2a.又∵结果中不含x的项,∴2﹣a=0,解得a=2.故选B4.原方程可化为:2x2﹣2x﹣12=2x2﹣mx+n,∴﹣2=﹣m,n=﹣12,解得m=2,n=﹣12.故选C5.∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n)=1﹣(m+n)+mn=1﹣2﹣2=﹣3.故选A6.原式=15x2y﹣5xy2+4xy2﹣12x2y=3x2y﹣xy2,当x=﹣2,y=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=547.(1)原式=1﹣+9﹣4=(2)原式=16a8b12+8a8b12=24a8b12(3)x﹣4x3+4x3﹣8x2+4x=﹣8x2+5x(4)原式=(2a)2﹣(b﹣3)2=4a2﹣(b2﹣6b+9)=4a2﹣b2+6b﹣9(5)原式=x(x2+x+1)﹣(x2+x+1)=x3﹣18.(1)(﹣7x2﹣8y2)•(﹣x2+3y2)=7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4;(2)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y)=3xy﹣9x2﹣2y2+6xy﹣(6x2+2xy﹣3xy﹣y2)=﹣9x2﹣2y2+9xy﹣6x2+xy+y2 =﹣15x2﹣y2+10xy.9.原式=(a2+2a)(a﹣3)=a3﹣3a2+2a2﹣6a=a3﹣a2﹣6a10.原式=a3+a2b﹣a2b﹣ab2+ab2+b3=a3+b3.11.(2x﹣3y)(x+4y)=2x2﹣3xy+8xy﹣12y2=2x2+5xy﹣12y2.12.(1)原式=(2x2﹣4xy+7y2)=;(2)原式=(﹣4x﹣3y2)(﹣4x+3y2)=(﹣4x)2﹣(3y2)2=16x2﹣9y413.原式=6x2+11xy﹣10y2﹣2x2+6xy=4x2+17xy﹣10y2.14.原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5)=5x2﹣3x2+5x+2﹣2x2+8x+10=13x+1215.∵(2x﹣3y+b)(3x+y+c)=6x2﹣7xy﹣3y2+(2c+3b)x+(b﹣3c)y+bc∴6x2﹣7xy﹣3y2+(2c+3b)x+(b﹣3c)y+bc=6x2﹣7xy﹣3y2+14x+y+a∴2c+3b=14,b﹣3c=1,a=bc联立以上三式可得:a=4,b=4,c=1故a=4,b=4,c=116.原式=x4﹣3x3+4x2+mx3﹣3mx2+4mx+nx2﹣3nx+4n=x4+(m﹣3)x3+(4﹣3m+n)x2+(4m﹣3n)x+4n.由题意得m﹣3=0,4﹣3m+n=0,解得m=3,n=517.(x+2)(x2﹣2x+4)=x3﹣2x2+4x+2x2﹣4x+8=x3+8.故答案为:x3+8.18.(x2+2x+3)×(ax+b)=ax3+bx2+2ax2+2xb+3ax+3b=ax3+(bx2+2ax2)+(2xb+3ax)+3b,∵积中不出现一次项,且二次项系数为1,∴2a+b=1,2b+3a=0,∴b=﹣3,a=219.(1)﹣2a(2a2+3a+1)=﹣4a3﹣6a2﹣2a;(2)(x+2y)(3x﹣4y)=3x2﹣4xy+6xy﹣8y2=3x2+2xy﹣8y220.(m2﹣2m+3)(5m﹣1)=5m3﹣m2﹣10m2+2m+15m﹣3=5m3﹣11m2+17m﹣321.原式=﹣3x•4x﹣3x•2y﹣2y•4x﹣2y•2y=﹣12x2﹣6xy﹣8xy﹣4y2=﹣12x2﹣14xy﹣4y222.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系是:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b)(a+c)=a2+(b+c)a+bc;(3)根据(2)中得出的公式得:(a+99)(a﹣100)=a2﹣a﹣9900;(y﹣80)(y﹣81)=y2﹣161y+6480.故填:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;23.原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3;故答案为:x3﹣y3;原式=x4+x3y+x2y2+xy3﹣x3y﹣x2y2﹣xy3﹣y4=x4﹣y4;故答案为:x4﹣y4;原式=x n+1+x n y+xy n﹣2+x2y n﹣1+xy n﹣x n y﹣x n﹣1y2﹣y n﹣1y2﹣…﹣x2y n﹣1﹣xy n﹣y n+1=x n+1﹣y n+1,故答案为:x n+1﹣y n+124.∵(x﹣3)(x+5)=x2+5x﹣3x﹣15=x2+2x﹣15,∴A=2,B=﹣15,∴3A﹣B=21.故3A﹣B的值为21 25.(1)原式=﹣2a+b+[a﹣3a﹣4b]=﹣2a+b+a﹣3a﹣4b=﹣4a﹣3b;(2)原式=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b326.原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a227.:原方程变形为:x2﹣3x+2=x2﹣x﹣12+20整理得:﹣2x﹣6=0,解得:x=﹣328.原式=﹣6x3+13x2﹣429.根据题意列得:[(2x+2y)﹣(x+y﹣4)](x+y﹣4)=(2x+2y﹣x﹣y+4)(x+y﹣4)=(x+y+4)(x+y﹣4)=(x+y)2﹣16=x2+2xy+y2﹣1630.(x+y)(x2﹣xy+y2)=x3﹣x2y+xy2+x2y﹣xy2+y3=x3+y3.故答案为:x3+y3.。
多项式乘多项式基础题30道填空题附详细问题详解

9.3 多项式乘多项式基础题汇编(2)一.填空题(共30小题)1.(2014•润州区校级模拟)计算:(a+2)(2a﹣3)= .2.(2014秋•花垣县期末)计算:(2x﹣1)2= ;(2x﹣2)(3x+2)= .3.(2014秋•花垣县期末)计算:(x﹣2)(x+3)= ;(﹣2x﹣3)(﹣2x+3)= .4.(2014春•富宁县校级期末)已知(x+a)(x+b)=x2+5x+ab,则a+b= .5.(2014秋•蓟县期末)若(x+2)(x﹣m)=x2﹣3x﹣n,则m= ,n= .6.(2013秋•东城区期末)计算:(m+2)(m﹣2)﹣(m﹣1)(m+5)= .7.(2013秋•孟津县期末)要使(x2+ax+1)(3x2+3x+1)的展开式中不含x3项,则a= .8.(2014春•北仑区校级期中)已知m+n=2,mn=﹣2,则(1+m)(1+n)的值为.9.(2014春•东营区校级期中)已知:(x+3)(x+p)=x2+mx+36,则p= ,m= .10.(2014春•贺兰县校级期中)若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为.11.(2014春•雁塔区校级期中)如图:有足够的长方形和正方形卡片,如果拼成的长方形(不重叠无缝隙)的长和宽分别是2a+b和a+b,若应选取1号卡片x张、2号卡片y张、3号卡片z 张,则x+y+z= .12.(2014秋•宜宾校级期中)如果(x+m)与(x+)的乘积中不含关于x的一次项,则m= .13.(2014秋•如皋市校级期中)若多项式x2+ax+b是(x+1)与(x﹣2)乘积的结果,则a+b 的值为.14.(2014春•崇州市校级期中)若(x2+kx+5)(x3+2x+3)的展开式中不含x2的项,则k的值为.15.(2014春•阜宁县期中)(x2+mx﹣1)与(x﹣2)的积中不含x2项,则m的值是.16.(2014秋•启东市校级月考)已知(x﹣4)(x+9)=x2+mx+n,则m+n= .17.(2014秋•常州校级月考)①用甲图所示的大小正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片张,B类卡片张,C类卡片张.②现有长为a+3b,宽为a+b的长方形(如乙图),你能用上属三类卡片拼出这个长方形吗?试试看!18.(2013春•桐乡市期末)观察下列各式的计算结果与相乘的两个多项式之间的关系:(x+1)(x2﹣x+1)=x3+1;(x+2)(x2﹣2x+4)=x3+8;(x+3)(x2﹣3x+9)=x3+27.请根据以上规律填空:(x+y)(x2﹣xy+y2)= .19.(2012秋•越秀区校级期末)若(x﹣2)(x+m)=x2+nx﹣6,则m= n= .20.(2013秋•万州区校级期中)(x+a)与5(x+2)的乘积中不含x的一次项,则a= .21.(2013秋•东安县校级期中)在(ax2+bx﹣3)(x2﹣x+8)的结果中不含x3和x项,则a= ,b= .22.(2013秋•川汇区校级月考)若(x2﹣mx+1)(x+2)的积中x的二次项系数为零,则m的值为.23.(2013春•西湖区校级月考)若(x+m)(x﹣3)=x2+nx﹣15,则m= ,n= .24.(2012•润州区校级模拟)计算:﹣3x2y3•x2y2= ,(x+1)(x﹣3)= .25.(2012•思明区校级模拟)已知a﹣b=2,(a﹣1)(b+2)<ab,则a的取值范围是.26.(2012秋•南陵县期末)若(x+2)(x﹣2)=x2﹣mx﹣n,则m= ,n= .27.(2012春•姜堰市期末)若干张如图所示的A类,B类正方形卡片和C类长方形卡片,如果要拼成一个长为(2a+b)宽为(a+b)的大长方形,则需要C类卡片张.28.(2012春•金阊区校级期中)计算的结果不含关于字母x的一次项,那么m等于.29.(2012秋•简阳市校级期中)若多项式x2+ax﹣b=(x﹣2)(x+1),则a b= .30.(2012春•江阴市校级期中)计算:(﹣p)2•(﹣p)3= ;= ;2xy•()=﹣6x2yz;(5﹣a)(6+a)= .9.3 多项式乘多项式基础题汇编(2)参考答案与试题解析一.填空题(共30小题)1.(2014•润州区校级模拟)计算:(a+2)(2a﹣3)= 2a2+a﹣6 .2.(2014秋•花垣县期末)计算:(2x﹣1)2= 4x2﹣4x+1 ;(2x﹣2)(3x+2)= 6x2﹣2x ﹣4 .3.(2014秋•花垣县期末)计算:(x﹣2)(x+3)= x2+x﹣6 ;(﹣2x﹣3)(﹣2x+3)= 4x2﹣9 .4.(2014春•富宁县校级期末)已知(x+a)(x+b)=x2+5x+ab,则a+b= 5 .5.(2014秋•蓟县期末)若(x+2)(x﹣m)=x2﹣3x﹣n,则m= 5 ,n= 10 .6.(2013秋•东城区期末)计算:(m+2)(m﹣2)﹣(m﹣1)(m+5)= 1﹣4m .7.(2013秋•孟津县期末)要使(x2+ax+1)(3x2+3x+1)的展开式中不含x3项,则a= ﹣1 .8.(2014春•北仑区校级期中)已知m+n=2,mn=﹣2,则(1+m)(1+n)的值为 1 .9.(2014春•东营区校级期中)已知:(x+3)(x+p)=x2+mx+36,则p= 12 ,m= 15 .10.(2014春•贺兰县校级期中)若(y+3)(y﹣2)=y2+my+n,则m、n的值分别为1、6 .11.(2014春•雁塔区校级期中)如图:有足够的长方形和正方形卡片,如果拼成的长方形(不重叠无缝隙)的长和宽分别是2a+b和a+b,若应选取1号卡片x张、2号卡片y张、3号卡片z 张,则x+y+z= 6 .12.(2014秋•宜宾校级期中)如果(x+m)与(x+)的乘积中不含关于x的一次项,则m= ﹣.m+)x+m+=0,13.(2014秋•如皋市校级期中)若多项式x2+ax+b是(x+1)与(x﹣2)乘积的结果,则a+b 的值为﹣3 .14.(2014春•崇州市校级期中)若(x2+kx+5)(x3+2x+3)的展开式中不含x2的项,则k的值为﹣1.5 .15.(2014春•阜宁县期中)(x2+mx﹣1)与(x﹣2)的积中不含x2项,则m的值是 2 .16.(2014秋•启东市校级月考)已知(x﹣4)(x+9)=x2+mx+n,则m+n= ﹣31 .17.(2014秋•常州校级月考)①用甲图所示的大小正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片 2 张,B类卡片 3 张,C类卡片 1 张.②现有长为a+3b,宽为a+b的长方形(如乙图),你能用上属三类卡片拼出这个长方形吗?试试看!18.(2013春•桐乡市期末)观察下列各式的计算结果与相乘的两个多项式之间的关系:(x+1)(x2﹣x+1)=x3+1;(x+2)(x2﹣2x+4)=x3+8;(x+3)(x2﹣3x+9)=x3+27.请根据以上规律填空:(x+y)(x2﹣xy+y2)= x3+y3.19.(2012秋•越秀区校级期末)若(x﹣2)(x+m)=x2+nx﹣6,则m= 3 n= 1 .20.(2013秋•万州区校级期中)(x+a)与5(x+2)的乘积中不含x的一次项,则a= ﹣2 .21.(2013秋•东安县校级期中)在(ax2+bx﹣3)(x2﹣x+8)的结果中不含x3和x项,则a= ﹣,b= ﹣.x+8x+8ax﹣+(﹣b8b+∴﹣a+b=08b+,﹣,﹣22.(2013秋•川汇区校级月考)若(x2﹣mx+1)(x+2)的积中x的二次项系数为零,则m的值为 2 .23.(2013春•西湖区校级月考)若(x+m)(x﹣3)=x2+nx﹣15,则m= 5 ,n= 2 .24.(2012•润州区校级模拟)计算:﹣3x2y3•x2y2= ﹣3x4y5,(x+1)(x﹣3)= x2﹣2x ﹣3 .25.(2012•思明区校级模拟)已知a﹣b=2,(a﹣1)(b+2)<ab,则a的取值范围是a<0 .26.(2012秋•南陵县期末)若(x+2)(x﹣2)=x2﹣mx﹣n,则m= 0 ,n= 4 .27.(2012春•姜堰市期末)若干张如图所示的A类,B类正方形卡片和C类长方形卡片,如果要拼成一个长为(2a+b)宽为(a+b)的大长方形,则需要C类卡片 3 张.28.(2012春•金阊区校级期中)计算的结果不含关于字母x的一次项,那么m等于.x+)x+mm+=0x+))∴m+=0.故答案为﹣.29.(2012秋•简阳市校级期中)若多项式x2+ax﹣b=(x﹣2)(x+1),则a b= 1 .30.(2012春•江阴市校级期中)计算:(﹣p)2•(﹣p)3= ﹣p5;= ﹣a6b3;2xy•(﹣3xz )=﹣6x2yz;(5﹣a)(6+a)= ﹣a2﹣a+30 .(﹣a(﹣)aa。
多项式乘以多项式练习题-多项式乘多项式计算题及答案

3•多项式与多项式相乘、选择题1. 计算(2a — 3b)( 2a + 3b)的正确结果是()2 2 2 2 2 2 A . 4a + 9b B . 4a — 9b C . 4a + 12ab + 9b2. 若(x + a)( x + b) = x 2— kx + ab ,则 k 的值为()A . a + bB . — a — bC . a — bD . b — a3. 计算(2x — 3y)( 4x 2 + 6xy + 9y 2)的正确结果是()2 23 3 3 3A . (2x — 3y)2B . (2x + 3y) 2C . 8x 3— 27y 3D . 8x 3 + 27y 34. (x 2— px + 3)( x — q)的乘积中不含x 2项,则()A . p = qB . p =± qC . p = — qD .无法确定5. 若O v x v 1,那么代数式(1— x)( 2 + x)的值是()A . 一定为正B . 一定为负C . 一定为非负数D .不能确定6. 计算(a 2+ 2)( a 4— 2a 2 + 4) + (a 2— 2)( a 4 + 2a 2 + 4)的正确结果是()A . 2( a 2 + 2)B . 2( a2 — 2)C . 2a 3D . 2a 67. 方程(x + 4)( x — 5) = x 2— 20 的解是()A . x = 0B . x = — 4C . x = 5D . x = 408. 若 2x 2 + 5x + 1 — a(x + 1)2+ b(x + 1) + c ,那么 a , b , c 应为()A . a — 2, b — — 2, c —— 1B . a — 2, b — 2, c —— 1C . a — 2, b — 1, c — — 2D . a — 2, b —— 1, c — 29. 若 6x 2— 19x + 15— (ax + b)( cx + b),贝U ac + bd 等于()A . 36B . 15C . 19D . 214 2 10. (x + 1)( x — 1)与(x + x + 1)的积是()A . x 6+ 1B . x 6 + 2x 3 + 1C . x 6— 1D . x 6— 2x 3 + 1、填空题1. (3x — 1)( 4x + 5) — _________ .2. ( — 4x — y)( — 5x + 2y) — _______ .3. (x + 3)( x + 4) — (x — 1)( x — 2) — _______ . 2 2D . 4a 2— 12ab +4. (y—1)( y —2)( y—3) —_________ .5. (x + 3x + 4x—1)( x —2x+ 3)的展开式中,x的系数是___________ .6. 若(x+ a)( x+ 2) = x —5x+ b,贝U a = ________ , b= __________ .7. 若a2+ a+ 1 = 2,则(5—a)( 6+ a) = __________ .8. 当k= __________ 寸,多项式x—1与2 —kx的乘积不含一次项.9. 若(x2+ ax+ 8)( x2—3x+ b)的乘积中不含x2和x3项,贝U a= _____ , b = ______10. 如果三角形的底边为(3a+ 2b),高为(9a2—6ab+ 4b2),则面积二___________ .三、解答题1、计算下列各式(1)( 2x+ 3y)( 3x—2y) ( 2)( x+ 2)( x+ 3) —(x+ 6)( x—1)(3)( 3x2+ 2x+ 1)( 2x2+ 3x—1) ( 4)( 3x+ 2y)( 2x+ 3y) —(x —3y)( 3x+ 4y) 2、求(a+ b)2—(a—b)2—4ab 的值,其中a = 2002,b=2001.23、2(2x—1)( 2x+ 1) —5x( —x+ 3y) + 4x( —4x —4、解方程组(x—1)(2y+ 1)= 2(x+ 1)(y—1) x(2 + y) —6= y(x —4)四、探究创新乐园1、若(x2+ ax—b)(2x2—3x+ 1)的积中,x3的系数为5, x2的系数为一6,求a, b.2、根据(x+ a)( x+ b) = x2+ (a+ b)x+ ab,直接计算下列题(1)( x —4)( x—9) ( 2)( xy—8a)( xy+ 2a)五、数学生活实践一块长am,宽bm的玻璃,长、宽各裁掉cm后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?六、思考题:请你来计算:若1 + x+ x2+ x3= 0,求x + x2+ x3+…+ x2000的值.。
多项式乘多项式 苏科版数学七年级下册练习试题(含答案)

9.3多项式乘多项式练习试题(限时60分钟满分120分)一、选择(本题共计6小题,每题5分,共计30分)1.计算(x−6)(x+1)的结果为()A.x2+5x−6B.x2−5x−6C.x2−5x+6D.x2+5x+62.若x+n与x+2的乘积中不含x的一次项,则n的值为()A.﹣2B.2C.0D.13.计算(x2﹣3x+n)(x2+mx+8)的结果中不含x2和x3的项,则m,n的值为()A.m=3,n=1 B.m=0,n=0C.m=﹣3,n=﹣9D.m=﹣3,n=84.使(x2+px+8)(x2﹣3x+q)的乘积不含x3和x2,则p、q的值为()A.p=0,q=0B.p=﹣3,q=﹣1C.p=3,q=1D.p=﹣3,q=15.若(x+a)(x2﹣x﹣b)的乘积中不含x的二次项和一次项,则常数a、b的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣16.设A=(x﹣3)(x﹣7),B=(x﹣2)(x﹣8),则A、B的大小关系为()A.A>B B.A<B C.A=B D.无法确定二、填空(本题共计7小题,每空5分,共计35分)2mx+n)(x2−3x+2)的展开式不含有x2和x3的项,那么2mn=.7.已知(x+8.(x+1)(kx−2)的展开式中不含x的一次项,k的值是.9.要使(3x+k)(x+2)的运算结果中不含x的一次方的项,则k的值应为.10.若(2x+m)(x﹣1)的展开式中不含x的一次项,则m的值是.11.已知多项式(x-a)与(x2+2x-1)的乘积中不含x2项,则常数a的值是.12.已知(x+5)(x+n)=x2+mx﹣5,则m+n=.13.a+b=5,ab=2,则(a﹣2)(3b﹣6)=.三、解答(本题共计6小题,共55分)14.(7分)已知二次三项式ax2+bx+1与2x2−3x+1的积不含x3项,也不含x项,求系数a、b的值.15.(8分)若(x2+nx)(x2-3x+m)的乘积中不含x2和x3项,求m和n的值.16.(10分)将多项式(x﹣2)(x2+ax﹣b)展开后不含x2项和x项.试求:2a2﹣b的值.17.(10分)如图,正方形卡片A类、B类和长方形卡片C类各有若干张,如果要拼一个长为(a+2b),宽为(a+b)的大长方形,求需要A、B、C类卡片各多少张?并请用这些卡片拼出符合条件的长方形(画出示意图,并标明卡片类型即可)18.(10分)如图①,在边长为3a+2b的大正方形纸片中,剪掉边长2a+b的小正方形,得到图②,把图②阴影部分剪下,按照图③拼成一个长方形纸片.(1)求出拼成的长方形纸片的长和宽;(2)把这个拼成的长方形纸片的面积加上10a+6b 后,就和另一个长方形的面积相等.已知另一长方形的长为5a+3b ,求它的宽.19.(10分)将4个数a 、b 、c 、d 排成2行2列,两边各加一条竖直线记成 |a b cd | ,定义 |a b c d | =ad ﹣bc ,上述记号就叫做2阶行列式.若 |6x +56x −16x −16x −5| =﹣20,求x 的值.答案部分1.B2.A3.A4.C5.A6.A7.428.29.﹣610.211.212.313.-1214.根据题意列得:(ax 2+bx+1)(2x 2-3x+1)=2ax 4+(2b -3a )x 3+(a+2-3b )x 2+(b -3)x+1, ∵不含x 3的项,也不含x 的项,∴2b -3a=0,b -3=0,解得a=2,b=3.15.解: (x 2+nx)(x 2−3x +m)= x 4−3x 3+mx 2+nx 3−3nx 2+mnx= x 4−(3−n)x 3+(m −3n)x 2+mnx ;∵乘积中不含x 2和x 3项,∴{−(3−n)=0m −3n =0, 解得: {m =9n =3; ∴m =9 , n =316.解:原式=x 3+ax 2﹣bx ﹣2x 2﹣2ax+2b=x 3+(a ﹣2)x 2﹣(2a+b )x+2b令a ﹣2=0,﹣(2a+b )=0,∴a=2,b=﹣4∴2a 2﹣b=2×22+4=1217.解:(a+2b ) (a+b )=a 2+3ab+2b 2(3分),分别需要A 、B 、C 类卡片各1张、3张和2张.18.解:(1)长方形的长为:3a+2b+2a+b=5a+3b .长方形的宽为:(3a+2b )﹣(2a+b )=3a+2b ﹣2a ﹣b=a+b .(2)另一个长方形的宽:[(5a+3b )(a+b )+10a+6b]÷(5a+3b )=a+b+2.19.解: |6x +56x −16x −16x −5| =﹣20, (6x ﹣5)2﹣(6x ﹣1)2=﹣20(6x ﹣5+6x ﹣1)(6x ﹣5﹣6x+1)=﹣20(12x ﹣6)×(﹣4)=﹣20﹣48x+24=﹣20﹣48x=﹣44x= 1112。
多项式乘以多项式的题

多项式乘以多项式的题一、多项式乘以多项式的题目1. 题目示例(2x + 3)(3x - 4)(x^2+2x + 1)(x - 5)(3x^2 - 2x)(4x^2+3x - 1)2. 解题思路多项式乘以多项式呢,就像是搭积木一样。
我们要把一个多项式里的每一项都和另一个多项式里的每一项相乘,然后再把这些乘积加起来。
比如说对于(2x + 3)(3x - 4),我们先拿2x乘以3x得到6x^2,然后2x乘以 - 4得到 - 8x,接着3乘以3x得到9x,最后3乘以 - 4得到 - 12。
再把这些结果加起来就是6x^2 -8x+9x - 12 = 6x^2+x - 12。
对于有高次项的多项式相乘,像(x^2+2x + 1)(x - 5),也是一样的做法。
x^2乘以x得到x^3,x^2乘以 - 5得到 - 5x^2,2x乘以x得到2x^2,2x乘以 - 5得到 - 10x,1乘以x得到x,1乘以 - 5得到 - 5。
加起来就是x^3 - 5x^2+2x^2 - 10x+x - 5=x^3 - 3x^2 - 9x - 5。
3. 小技巧要小心符号哦,正乘正得正,正乘负得负,负乘正得负,负乘负得正。
这个就像是交朋友一样,两个好朋友(正正)在一起就很开心(正),一个好朋友和一个坏朋友(正负)在一起就有点不开心(负),两个坏朋友(负负)在一起反而又好了(正)。
可以把每一项相乘的结果先写出来,然后再整理同类项,这样就不容易乱啦。
4. 试卷一、选择题(每题5分,共30分)1. (x + 1)(x - 2)的结果是()A. x^2 - x - 2B. x^2+x - 2C. x^2 - 2D. x^2 - 3x - 22. (2x - 3)(3x + 4)展开式中x的系数是()A. - 1B. 1C. - 2D. 2二、填空题(每题5分,共30分)1. (x + 2)(x - 3)=______2. (3x^2+1)(2x - 1)展开式中x^2的系数是______三、解答题(每题20分,共40分)1. 计算(2x^2+3x - 1)(x^2 - 2x + 3),并化简结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多项式乘多项式专项练习30题(有答案)1.若(x﹣1)(x+3)=x2+mx+n,那么m,n的值分别是()A .m=1,n=3 B.m=4,n=5 C.m=2,n=﹣3 D.m=﹣2,n=32.下列各式中,计算结果是x2+7x﹣18的是()A .(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)3.若(x﹣a)(x+2)的展开项中不含x的一次项,则a的值为()A .a=﹣2 B.a=2 C.a=±2 D.无法确定4.如果(x﹣3)(2x+4)=2x2﹣mx+n,那么m、n的值分别是()A .2,12 B.﹣2,12 C.2,﹣12 D.﹣2,﹣125.已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)的值为()A .﹣3 B.﹣1 C.1 D.56.先化简,再求值:5(3x2y﹣xy2)﹣4(﹣xy2+3x2y),其中x=﹣2,y=3.7.计算:(1)30﹣2﹣3+(﹣3)2﹣()﹣1 (2)(﹣2a2b3)4+(﹣a)8•(2b4)3 (3)x(2x+1)(1﹣2x)﹣4x(x﹣1)(1﹣x)(4)(2a﹣b+3)(2a+b﹣3)(5)(x﹣1)(x2+x+1)8.计算:(1)(﹣7x2﹣8y2)•(﹣x2+3y2)=_________;(2)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y)=_________.9.计算:a(a+2)(a﹣3)10.计算:(a+b)(a2﹣ab+b2)11.计算:(2x﹣3y)(x+4y)12.计算:(1)(2)(﹣4x﹣3y2)(3y2﹣4x)13.计算:(2x+5y)(3x﹣2y)﹣2x(x﹣3y)14.5x2﹣(x﹣2)(3x+1)﹣2(x+1)(x﹣5)15.已知6x2﹣7xy﹣3y2+14x+y+a=(2x﹣3y+b)(3x+y+c),试确定a、b、c的值.16.已知多项式(x2+mx+n)(x2﹣3x+4)展开后不含x3和x2项,试求m,n的值.17.计算(x+2)(x2﹣2x+4)=_________.18.一个二次三项式x2+2x+3,将它与一个二次项ax+b相乘,积中不出现一次项,且二次项系数为1,求a,b的值?20.(m2﹣2m+3)(5m﹣1)21.计算:(﹣3x﹣2y)(4x+2y)22.先阅读,再填空解题:(x+5)(x+6)=x2+11x+30;(x﹣5)(x﹣6)=x2﹣11x+30;(x﹣5)(x+6)=x2+x﹣30;(x+5)(x﹣6)=x2﹣x﹣30.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系?答:_________.(2)根据以上的规律,用公式表示出来:_________.(3)根据规律,直接写出下列各式的结果:(a+99)(a﹣100)=_________;(y﹣80)(y﹣81)=_________.23.填空(x﹣y)(x2+xy+y2)=_________;(x﹣y)(x3+x2y+xy2+y3)=_________根据以上等式进行猜想,当n是偶数时,可得:(x﹣y)(x n+x n﹣1y+y n﹣2y2+…+x2y n﹣2+xy n﹣1+y n)=_________.24.如果(x﹣3)(x+5)=x2+Ax+B,求3A﹣B的值.25.计算:(1)﹣(2a﹣b)+[a﹣(3a+4b)](2)(a+b)(a2﹣ab+b2)26.(a﹣b+c﹣d)(c﹣a﹣d﹣b)27.(x﹣1)(x﹣2)=(x+3)(x﹣4)+20.28..29.小明在计算一个多项式乘以x+y﹣4的题目时,误以为是加法运算,结果得到2x+2y.你能计算出这个多项式乘以x+y﹣4的正确结果吗?30.化简:(x+y)(x2﹣xy+y2)多项式乘多项式30题参考答案:1.∵(x﹣1)(x+3)=x2+2x﹣3=x2+mx+n,∴m=2,n=﹣3.故选C.2.A、原式=x2+17x﹣18;B、原式=x2+11x+18;C、原式=x2+3x﹣18;D、原式=x2+7x﹣18.故选D3.∵(x﹣a)(x+2)=x2+(2﹣a)﹣2a.又∵结果中不含x的项,∴2﹣a=0,解得a=2.故选B4.原方程可化为:2x2﹣2x﹣12=2x2﹣mx+n,∴﹣2=﹣m,n=﹣12,解得m=2,n=﹣12.故选C5.∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n)=1﹣(m+n)+mn=1﹣2﹣2=﹣3.故选A6.原式=15x2y﹣5xy2+4xy2﹣12x2y=3x2y﹣xy2,当x=﹣2,y=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=547.(1)原式=1﹣+9﹣4=(2)原式=16a8b12+8a8b12=24a8b12(3)x﹣4x3+4x3﹣8x2+4x=﹣8x2+5x(4)原式=(2a)2﹣(b﹣3)2=4a2﹣(b2﹣6b+9)=4a2﹣b2+6b﹣9(5)原式=x(x2+x+1)﹣(x2+x+1)=x3﹣18.(1)(﹣7x2﹣8y2)•(﹣x2+3y2)=7x4﹣21x2y2+8x2y2﹣24y4=7x4﹣13x2y2﹣24y4;(2)(3x﹣2y)(y﹣3x)﹣(2x﹣y)(3x+y)=3xy﹣9x2﹣2y2+6xy﹣(6x2+2xy﹣3xy﹣y2)=﹣9x2﹣2y2+9xy﹣6x2+xy+y2 =﹣15x2﹣y2+10xy.9.原式=(a2+2a)(a﹣3)=a3﹣3a2+2a2﹣6a=a3﹣a2﹣6a10.原式=a3+a2b﹣a2b﹣ab2+ab2+b3=a3+b3.11.(2x﹣3y)(x+4y)=2x2﹣3xy+8xy﹣12y2=2x2+5xy﹣12y2.12.(1)原式=(2x2﹣4xy+7y2)=;(2)原式=(﹣4x﹣3y2)(﹣4x+3y2)=(﹣4x)2﹣(3y2)2=16x2﹣9y413.原式=6x2+11xy﹣10y2﹣2x2+6xy=4x2+17xy﹣10y2.14.原式=5x2﹣(3x2﹣5x﹣2)﹣2(x2﹣4x﹣5)=5x2﹣3x2+5x+2﹣2x2+8x+10=13x+1215.∵(2x﹣3y+b)(3x+y+c)=6x2﹣7xy﹣3y2+(2c+3b)x+(b﹣3c)y+bc∴6x2﹣7xy﹣3y2+(2c+3b)x+(b﹣3c)y+bc=6x2﹣7xy﹣3y2+14x+y+a∴2c+3b=14,b﹣3c=1,a=bc联立以上三式可得:a=4,b=4,c=1故a=4,b=4,c=116.原式=x4﹣3x3+4x2+mx3﹣3mx2+4mx+nx2﹣3nx+4n=x4+(m﹣3)x3+(4﹣3m+n)x2+(4m﹣3n)x+4n.由题意得m﹣3=0,4﹣3m+n=0,解得m=3,n=517.(x+2)(x2﹣2x+4)=x3﹣2x2+4x+2x2﹣4x+8=x3+8.故答案为:x3+8.18.(x2+2x+3)×(ax+b)=ax3+bx2+2ax2+2xb+3ax+3b=ax3+(bx2+2ax2)+(2xb+3ax)+3b,∵积中不出现一次项,且二次项系数为1,∴2a+b=1,2b+3a=0,∴b=﹣3,a=219.(1)﹣2a(2a2+3a+1)=﹣4a3﹣6a2﹣2a;(2)(x+2y)(3x﹣4y)=3x2﹣4xy+6xy﹣8y2=3x2+2xy﹣8y220.(m2﹣2m+3)(5m﹣1)=5m3﹣m2﹣10m2+2m+15m﹣3=5m3﹣11m2+17m﹣321.原式=﹣3x•4x﹣3x•2y﹣2y•4x﹣2y•2y=﹣12x2﹣6xy﹣8xy﹣4y2=﹣12x2﹣14xy﹣4y222.(1)观察积中的一次项系数、常数项与两因式中的常数项有何关系是:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;(2)根据以上的规律,用公式表示出来:(a+b)(a+c)=a2+(b+c)a+bc;(3)根据(2)中得出的公式得:(a+99)(a﹣100)=a2﹣a﹣9900;(y﹣80)(y﹣81)=y2﹣161y+6480.故填:一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;23.原式=x3+x2y+xy2﹣x2y﹣xy2﹣y3=x3﹣y3;故答案为:x3﹣y3;原式=x4+x3y+x2y2+xy3﹣x3y﹣x2y2﹣xy3﹣y4=x4﹣y4;故答案为:x4﹣y4;原式=x n+1+x n y+xy n﹣2+x2y n﹣1+xy n﹣x n y﹣x n﹣1y2﹣y n﹣1y2﹣…﹣x2y n﹣1﹣xy n﹣y n+1=x n+1﹣y n+1,故答案为:x n+1﹣y n+124.∵(x﹣3)(x+5)=x2+5x﹣3x﹣15=x2+2x﹣15,∴A=2,B=﹣15,∴3A﹣B=21.故3A﹣B的值为21 25.(1)原式=﹣2a+b+[a﹣3a﹣4b]=﹣2a+b+a﹣3a﹣4b=﹣4a﹣3b;(2)原式=a3﹣a2b+ab2+a2b﹣ab2+b3=a3+b326.原式=[(c﹣b﹣d)+a][(c﹣b﹣d)﹣a]=(c﹣b﹣d)2﹣a2=(c﹣b)2﹣2(c﹣b)d+d2﹣a2=c2﹣2cb+b2﹣2cd+2bd+d2﹣a227.:原方程变形为:x2﹣3x+2=x2﹣x﹣12+20整理得:﹣2x﹣6=0,解得:x=﹣328.原式=﹣6x3+13x2﹣429.根据题意列得:[(2x+2y)﹣(x+y﹣4)](x+y﹣4)=(2x+2y﹣x﹣y+4)(x+y﹣4)=(x+y+4)(x+y﹣4)=(x+y)2﹣16=x2+2xy+y2﹣1630.(x+y)(x2﹣xy+y2)=x3﹣x2y+xy2+x2y﹣xy2+y3=x3+y3.故答案为:x3+y3.。