《列方程解决两个未知数的实际问题》方程
人教版五年级数学《列方程解含有两个未知数的问题》优秀教案设计

人教版五年级数学《列方程解含有两个未知数的问题》优秀教案设计教材分析:人教实验版五年级上册70页的例3是《简易方程》单元最后一个知识点。
这部分的内容是在学习了方程的意义和用方程解决简单数学问题的基础上进行教学的,属于较复杂的方程问题之一,主要是引导学生掌握根据两个未知数的和差与倍数所形成的数量关系进行列方程解决的方法。
这类问题的学习以四年级所学的乘法分配律、用字母表示和差关系、倍数关系等知识为基础,而且有前面学习的例1和例2两种用方程解决稍复杂问题的经验,学生在理解数量关系的形成上并不难;但是学生在面对两个未知数的情况下不知怎么入手,因此其难点有两个:一是如何只用X表示出两个未知数,二是理解为何设一倍量为X来解决这类问题较为方便。
教学目标:1、学会根据和差与倍数关系列出正确的方程解决含有两个未知数的数学问题;理解和掌握设一倍量为X解决这类问题的方法,能检验结果是否正确。
2、经历自主思考、交流合作探究用方程解决含有两个未知数问题的过程,进一步体验列方程解决问题的思路和步骤,提高用方程解决问题的能力。
3、体验数学思考的严谨性和条理性,培养有条理思考和检验结果的习惯,提高应用数学方法解决生活数学问题的兴趣和信心,获得解决问题的成就感。
教学重点:理解和掌握设一倍量为X列方程解决含有两个未知数数学问题的方法教学难点:学会用X表示出两个相关联的未知数,理解为何设一倍量为X教学过程:一、旧知复习,铺垫思路1、交流生活中的有关年龄之间的关系师:同学们,你知道你和家人岁数之间的关系吗?2、出示复习题:小明今年X岁,爸爸的年龄是他的4倍,爸爸的年龄可以表示为小花今年X岁,哥哥今年岁,哥哥比欢欢大的岁数可以表示为岁欢欢今年X岁,妈妈的年龄是她的3倍,妈妈今年岁,欢欢和妈妈一共岁。
(注意这题要引出两个答案X+3X和X ) 学生自主说出答案,并引导其说出是怎样想的?二、探索新知,理清思路1、顺势出示例题,引导学生自主探究妈妈的年龄是欢欢年龄的3倍,两人今年一共48岁。
五年级数学上册《列方程解答含有两个未知数的应用问题》教案、教学设计

6.评价与反馈:
-采用多元化的评价方式,如课堂提问、课后作业、小组讨论等,全面评估学生的学习情况。
-及时给予学生反馈,鼓励学生优点,指出不足,引导学生不断进步。
四、教学内与过程
(一)导入新课
1.引入情境:以一个学生熟悉的生活场景为例,如“小明和小华去书店买书,小明买了3本故事书和4本科技书,共花费了63元;小华买了2本故事书和5本科技书,共花费了50元。请问:故事书和科技书各多少钱一本?”
-给予学生个性化的指导,关注学生的学习过程,及时解答学生的疑问。
4.突破重难点,提高解题能力:
-通过讲解、示范等方式,让学生掌握列出方程组的方法,理解方程组的求解过程。
-运用直观教具、多媒体等手段,帮助学生形象地理解消元法、代入法等求解方法,降低学习难度。
5.巩固练习,拓展思维:
-设计具有代表性的练习题,让学生在练习中巩固所学知识,提高解题能力。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法,培养解决问题的能力:
1.通过小组合作、讨论的方式,发现并提出问题,培养发现问题的能力。
2.通过实际操作、演示等手段,让学生感受方程的建立与求解过程,培养解决问题的能力。
3.引导学生运用消元法、代入法等方法,培养学生逻辑思维能力和运算能力。
4.通过对实际问题的探究,让学生体验数学知识在实际生活中的应用,提高学生运用数学知识解决实际问题的能力。
1.注重激发学生的兴趣,引导学生主动参与学习,提高学生的学习积极性。
2.着重培养学生的逻辑思维能力和运算能力,帮助学生掌握解决含有两个未知数应用问题的方法。
3.加强课堂互动,鼓励学生提问、发表见解,培养学生的问题意识和表达能力。
新冀教版五年级数学上册《 方程 列方程解决问题 列方程解答含有两个未知数的应用问题》优质课教案_3

《实际问题与方程》教学设计一、教学目标:1、结合具体情境使学生掌握“根据两积之和的数量关系列方程,把小括号内的式子看作一个整体来求解”的思路和方法。
2、使学生通过学习两积之和的数量关系,加深对数量关系的理解,初步学会列方程解稍微复杂的应用题,培养比较、分析和类比学习的能力。
3、让学生经历算法多样化的过程,学会利用迁移类推的方法,在解决问题的过程中体会数学和现实生活的密切联系。
教学重点、难点教学重点:正确设未知数,找等量关系。
教学难点:正确列方程和解方程。
二、教学过程:活动1:复习导入:1、妈妈买了2千克西红柿,每千克a元,一共()。
2、张阿姨买了2千克苹果,3千克梨,苹果每千克 b 元,梨每千克 c元,张阿姨共花()元。
这节课我们继续学习《实际问题与方程》,教师板书课题,学生齐读课题。
活动2:探究新知:以课件出示主题图。
提问:观察主题图,你能获得哪些信息?在解决问题的过程中,培养学生收集信息,整理信息的能力。
引导学生分析数量关系,找出等量关系,在练习本上写一写。
并将自己写的等量关系及想法跟同桌交流。
接着在全班交流的基础上,对比“苹果的总价+梨的总价=总价钱”“两种水果的单价总和× 2=总价钱”为什么这道题可以写出第二种数量关系?学生在观察中发现是因为梨和苹果的数量相等。
教师提问:还可以写出其他的等量关系吗?学生交流还有“总价钱- 苹果的总价=梨的总价”,“总价钱-梨的总价=苹果的总价”,“总价钱÷2-梨的单价=苹果的单价”,“总价钱÷2-苹果的单价=梨的单价”几种数量关系。
在肯定的同时,引导学生对比找出列方程时相对简便的等量关系。
教师:选择你最喜欢的等量关系,列出方程并解答,进行口头检验。
学生独立解答并进行全班交流。
活动三:练习巩固:基础练习:1、4张门票共花了11元。
两个大人两个小孩,成人票每张4元,儿童票每张多少钱?学生独立列方程解答,在集体订正。
2、找出下列各题的等量关系。
小学数学公开课《列方程解含有两个未知项的应用题》优秀教学设计和反思

小学数学公开课《列方程解含有两个未知项的应用题》优秀教学设计和反思列方程解应用题是在学习列出含有未知数的等式解答一步计算应用题目的基础上进行教学的。
这里是列方程解含有两个未知数的应用题。
学情分析这在算术中称为“和倍”和“差倍”问题,由于逆向思考,解法特殊,不易掌握,现用方程解答,不仅思路简单,而且这两类问题思路统一,解法一致,既可以减轻学生负担,又能提高解答应用题的能力。
是今后学习分数应用题、代数应用题等问题的基础,必须重视教好这部分的内容,让学生学好并掌握好这部分知识。
1、使学生初步学会列方程解含有两个未知项的应用题。
2、使学生能正确地用列方程的方法解题。
3、培养学生认真审题的良好习惯。
教学重点和难点找出数量间的相等关系设计意图一、导入口答1、少年宫合唱队有男生30人,女生的人数是男生的3倍。
女生有多少人?少年宫合唱队有多少人?女生比男生多多少人? 二、教学实施教学例2三、课堂作业设计四、思维训练1、出示题目2、出示例23、出示相应的题目1、学生先独立看题思考,然后集体交流,教师指名回答。
2、学生读题、画线段图、解答、集体订正。
1、列举生活中的例子,能使学生在解决实际问题的过程中,学会列方程解决两步计算的实际问题。
2、强调根据题意找出数量间的相等关系,让学生养成根据等量关系列方程的习惯。
3、画线段图的方法可以引导学生很清楚地找出数量间的关系。
板书设计(需要一直留在黑板上主板书)列方程解含有两个未知项的应用题陆地面积+水面面积=颐和园的占地面积解:设颐和园的陆地大约有ⅹ公顷,水面大约有3ⅹ公顷.ⅹ+3ⅹ=2904ⅹ=290ⅹ=72.5学生学习活动评价设计设计评价方案,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。
另外,也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价。
1、学生已经学会列方程解含有一个未知项的应用题。
2、部分学生不会用把两个未知数的值代入已知条件看是否符合的方法进行验算。
人教版五年级数学《列方程解含有两个未知数的问题》优秀教案设计

人教版五年级数学《列方程解含有两个未知数的问题》优秀教案设计教材分析:人教实验版五年级上册70页的例3是《简易方程》单元最后一个知识点。
这部分的内容是在学习了方程的意义和用方程解决简单数学问题的基础上进行教学的,属于较复杂的方程问题之一,主要是引导学生掌握根据两个未知数的和差与倍数所形成的数量关系进行列方程解决的方法。
这类问题的学习以四年级所学的乘法分配律、用字母表示和差关系、倍数关系等知识为基础,而且有前面学习的例1和例2两种用方程解决稍复杂问题的经验,学生在理解数量关系的形成上并不难;但是学生在面对两个未知数的情况下不知怎么入手,因此其难点有两个:一是如何只用X表示出两个未知数,二是理解为何设一倍量为X来解决这类问题较为方便。
教学目标:1、学会根据和差与倍数关系列出正确的方程解决含有两个未知数的数学问题;理解和掌握设一倍量为X 解决这类问题的方法,能检验结果是否正确。
2、经历自主思考、交流合作探究用方程解决含有两个未知数问题的过程,进一步体验列方程解决问题的思路和步骤,提高用方程解决问题的能力。
3、体验数学思考的严谨性和条理性,培养有条理思考和检验结果的习惯,提高应用数学方法解决生活数学问题的兴趣和信心,获得解决问题的成就感。
教学重点:理解和掌握设一倍量为X列方程解决含有两个未知数数学问题的方法教学难点:学会用X表示出两个相关联的未知数,理解为何设一倍量为X教学过程:一、旧知复习,铺垫思路1、交流生活中的有关年龄之间的关系师:同学们,你知道你和家人岁数之间的关系吗?2、出示复习题:(1)小明今年X岁,爸爸的年龄是他的4倍,爸爸的年龄可以表示为()(2)小花今年X岁,哥哥今年1.4X岁,哥哥比欢欢大的岁数可以表示为()岁(3)欢欢今年X岁,妈妈的年龄是她的3倍,妈妈今年()岁,欢欢和妈妈一共()岁。
(注意这题要引出两个答案X+3X和(1+3)X )学生自主说出答案,并引导其说出是怎样想的?二、探索新知,理清思路1、顺势出示例题,引导学生自主探究妈妈的年龄是欢欢年龄的3倍,两人今年一共48岁。
列方程解决含有两个未知数的问题

《列方程解决含有两个未知数的问题》案例设计市桥陈涌小学梁潮汉一、教材分析:简易方程是小学阶段正式教学代数初步知识的单元,从算术到代数是人们对现实世界的数量关系认识过程中的一个飞跃,在数学方法上也是一次突破。
简易方程这一单元共分为四部分:用字母表示数、解简易方程、解稍复杂的方程和列方程解决实际问题。
本节课是第四部分用方程解决含有两个未知数的实际问题。
像这样含有两个未知数的问题,在算术中称为“和差”、“和倍”、“差倍”问题。
若用算术方法解答,思路特殊,求它们的逆思考问题。
用方程解,都可以归结为解形如ax+/-bx=c的方程,思路统一,解法一致,思维难度有所降低,在教学中也是贯穿着这样的想法进行设计的。
二、设计理念:在小学阶段让学生学习一些代数初步知识,学习用代数的方法解决问题,不仅有助于学生巩固和加深理解所学的算术知识,提高他们用数学解决问题的能力,同时可以促进抽象逻辑思维能力的发展,提高他们的数学素养。
同时,也为今后进一步学习代数知识,用代数知识解决实际问题打下良好的基础,可以说,简易方程的学习在今后的学习中起到至关重要的作用。
三、学情分析:像这样含有两个未知数的问题,在本单元之前学生没有接触过。
但它与学生以前过的不少内容有关。
比如,已知两数,可以求出它们的和、差及倍数关系,这是小学低年级的学习内容。
现在,从两数的和、差及倍数关系中选取取两项已知条件,反过来求两数各是多少,这就是本节课讨论的问题。
本课例3,首先碰到的第一个问题是设未知数。
学生已有的经验是“求什么设什么”。
现在面临一道题中要求两个未知数各是多少,究竟设哪个为X,另一个数又怎样表示?这是必须突破的一个难点。
事实上设任何一个为X都可以,但各种解法对比中发现根据两个量的倍数关系这个条件进行设,再利用两个量的和差关系进行列方程,这种解法是最简便的。
本课第一次出现ax+/-bx=c的方程。
考虑到学生的知识水平和接受能力,教材中没有出现“合并同类项”等术语,而是启发学生运用乘法分配律,将原方程转化为学生已会解的形式(a+/-b)x=c。
冀教版五年级数学上册第八单元方程第7课时 列方程解决含两个未知量的问题

(2)五(1)班参加音乐小组的人数是参加舞蹈小组的3 倍,参加音乐小组的人数比舞蹈小组的多6人,参 加音乐小组和舞蹈小组的各有多少人?
解:设参加舞蹈小组的有x人,则参加音乐小组的有3x人。 3x-x=6 x=3
音乐小组:3x=3×3=9 答:参加舞蹈小组的有3人,则参加音乐小组的有9人。
归纳总结:
易错辨析
5.下面的解法对吗?若不对,请改正。 一本故事书共有180页,小明已看的页数是未看页数的3
倍,小明看了多少页? 解:设未看的页数是x页。 3x=180 x= 180÷3x= 60
解: 不对 改正: 解:设未看的页数是x页,则已看的页数是3x页。 x+3x=180 x=45 45×3=135(页)
1.解两边都有未知数的方程时,先根据等式的 性质转化为ax±bx=c的形式,然后借助学 过的方程求解。
2.列方程解应用题时,一定要先找出题中的等 量关系式,再根据等量关系式列方程。
(讲解源于《典中点》)
夯实基础(选题源于教材P92练一练)
1. 四、五年级学生共植树108棵,五年级学生比四年 级学生多植树22棵。 四、五年级学生各植树多少棵?
x=17
小汽车:3x=3×17=51(辆)或68-17=51
(辆)
答:销售小汽车51辆,面包车17辆。
小试牛刀(选题源于《典中点》)
1.填一填。 (1)小明的身高为x米,哥哥的身高是小明的1.2倍,那么1.2x表示
( 哥哥的身高 ),1.2x-x表示(哥哥与小明的身高之差 )。 (2)红花朵数是蓝花的3.6倍,设( 蓝花 )有x朵,那么( 红花 )有3.6x朵。 (3)学校科技组的男同学人数是女同学人数的2.5倍,设女同学有x人,则
解:设四年级学生植树x棵,那么 五年级学生植树(22+x)棵。
列方程解含有两个未知数的应用题

大城中心小学
孙细文
猜年龄
• 孙老师和他儿子的年龄和是40岁,并且孙 老师的年龄是他儿子的4倍,你们知道孙老 师的年龄是多少吗?
陆地面积:
海洋面积:
地球表面积
+
海洋面积 陆地面积 地=球表面积
2.4X + X = 5.1
X
+ X÷2.4 = 5.1
解:设陆地面积为x亿平方千米,海洋面积有2.4x亿平方 千米。
解:设陆地面积为x亿平方千米,海洋面积有2.4x亿平方 千米。 2.4x- x=2.1
1.4x=2.1 X=1.5
2.1+1.5=3.6(亿平方千米)
或者2.4X=2.4×1.5=3.6 (亿平方千米) 答:地球上海洋面积是3.6亿平方千米,陆地面积是1.5 亿平方千米。
巩固:选择正确解法
1、明明家鸡的只数是鸭的3倍,鸡和鸭一共56只,鸡和鸭 各是多少只? ①、解:设鸡和鸭各有x只, X+3X=56 ②、解:设鸡有x只,鸭有3x只, X+3X=56
√ ③、解:设鸭有x只,鸡有3x只, X+3X=56
2、商店里苹果的重量是梨的3.6倍,苹果比梨多26千克,苹果 和梨各是多少千克?
√ ①、解:设梨有X千克,苹果有3.6X千克,3.6X-X=26
②、解:设梨有X千克,苹果有3.6千克,3.6X+X=26
小结:解答含有两个未知数的应用题 时,如果两个数量有倍数关系,就可以把
1倍的数看作是X,几倍的数就是几X;把
两部分相加就是它们的和。两部分相减就 是它们的差,我们可以根据数量间相等的 关系,列方程解答。
2.4x+ x=5.1
3.4x=5.1……(应用了乘法分配律)