新人教版九年级数学上册24.1.4 圆周角同步练习

合集下载

新人教版九年级上册24.1.4圆周角同步练习

新人教版九年级上册24.1.4圆周角同步练习

新人教版九年级上册24.1.4圆周角同步练习学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50°B.60°C.80°D.100°2.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°3.如图,AB为⊙O的直径,AC=2,BC=4,CD=BD=DE,则CE=()A.3﹣B.C.D.24.如图,△ABC看,∠BAC=90°,AC=12,AB=10,D是AC上一个动点,以AD为直径的⊙O交BD于E,则线段CE的最小值是()A.5 B.6 C.7 D.85.下列命题:①圆周角等于圆心角的一半;②x=2是方程x-1=1的解;③平行四边形4。

其中真命题的个数有【】A.1 B.2 C.3 D.4二、填空题6.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.7.如图,AB是半圆的直径,∠BAC=20°,D是AC的中点,则∠DAC的度数是________.8.如图,A,B,C,D是⊙O上的四个点,AB=BC,若∠AOB=58°,则∠BDC=____度.9.如图,△ABC内接于⊙O,BD为⊙O的直径,∠A=50°,∠ABC=60°,则∠ABD=_____.10.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是线段BC上的一个动点,以AD为直径作⊙O分别交AB、AC于E、F,连结EF,则线段EF长度的最小值为_____.三、解答题11.如图,CD为⊙O直径,以C点为圆心,CO为半径作弧,交⊙O于A、B两点,求证:AD=BD=BA.12.如图,点B,C为⊙O上一动点,过点B作BE∥AC,交⊙O于点E,点D为射线BC上一动点,且AC平分∠BAD,连接CE.(1)求证:AD∥EC;(2)连接EA,若BC=6,则当CD= 时,四边形EBCA是矩形.13.已知圆O的直径AB=12,点C是圆上一点,且∠ABC=30°,点P是弦BC上一动点,过点P作PD⊥OP交圆O于点D.(1)如图1,当PD∥AB 时,求PD的长;(2)如图2,当BP平分∠OPD时,求PC的长.14.(1)如图,在⊙O中,AC∥OB,∠BAO=25°,求∠BOC的度数.(2)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.参考答案1.D【分析】首先圆上取一点A ,连接AB ,AD ,根据圆的内接四边形的性质,即可得∠BAD+∠BCD=180°,即可求得∠BAD 的度数,再根据圆周角的性质,即可求得答案.【详解】圆上取一点A ,连接AB ,AD ,∵点A 、B ,C ,D 在⊙O 上,∠BCD=130°, ∴∠BAD=50°, ∴∠BOD=100°. 故选D .【点睛】此题考查了圆周角的性质与圆的内接四边形的性质.此题比较简单,解题的关键是注意数形结合思想的应用,注意辅助线的作法.2.D【解析】【分析】由图可知,OA=10,OD=5.根据特殊角的三角函数值求出∠AOB 的度数,再根据圆周定理求出∠C 的度数,再根据圆内接四边形的性质求出∠E 的度数即可.【详解】由图可知,OA=10,OD=5,在Rt △OAD 中,∵OA=10,OD=5,,∴tan ∠1=AD OD=∴∠1=60°, 同理可得∠2=60°, ∴∠AOB=∠1+∠2=60°+60°=120°, ∴∠C=60°,∴∠E=180°-60°=120°,即弦AB所对的圆周角的度数是60°或120°,故选D.【点睛】本题考查了圆周角定理、圆内接四边形的对角互补、解直角三角形的应用等,正确画出图形,熟练应用相关知识是解题的关键.3.D【分析】先根据勾股定理计算直径作垂线DP和DQ,根据角平分线的性质得:DP=DQ,由全等可得AP=AQ,设未知数列等式,可得PC和BQ的长,再根据等腰三角形的性质得:∠DEC=∠DCE,根据外角性质得:∠ACE=∠ECB,则∠ACE=∠ECB=45°,作辅助线后可得:△EFC是等腰直角三角形,设EF=FC=a,则a,AF=2-a,根据△AFE∽△APD,列比例式可得a的值,求CE的长.【详解】∵AB是⊙O的直径,∴∠ACB=90°,∵AC=2,BC=4,∴,∵CD=BD,∴CD BD=,∴∠CAD=∠BAD,过D作DP⊥AC于P,DQ⊥AB于Q,连接OD,∴PD=DQ,∴Rt△DPC≌Rt△DQB(HL),∴CP=BQ,易得△APD≌△AQD,∴AP=AQ,设PC=x,则AP=2+x,-x,∴,,∴,OQ=1,Rt△ODQ中,,∵DE=DC,∴∠DEC=∠DCE,∵∠DEC=∠CAD+∠ACE,∠DCE=∠ECB+∠ACE,∴∠CAD+∠ACE=∠ECB+∠DCB,∵DC BC=,∴∠CAD=∠DCB,∴∠ACE=∠ECB,∵∠ACB=90°,∴∠ACE=∠ECB=45°,过E作EF⊥AP于F,∴△EFC是等腰直角三角形,设EF=FC=a,则a,AF=2-a,∵EF∥PD,∴△AFE ∽△APD , ∴EF AF PD AP=, ∴2a=,∴∴(.故选D .【点评】本题是有关圆的计算问题,题意虽然简单,但有难度,考查了圆周角定理、勾股定理、三角形相似的判定和性质,作辅助线构建等腰直角△EFC 是关键.4.D【分析】连接AE ,可得∠AED=∠BEA=90°,从而知点E 在以AB 为直径的⊙Q 上,继而知点Q 、E 、C 三点共线时CE 最小,根据勾股定理求得QC 的长,即可得线段CE 的最小值.【详解】如图,连接AE ,则∠AED=∠BEA=90°,∴点E 在以AB 为直径的⊙Q 上,∵AB=10,∴QA=QB=5,当点Q 、E 、C 三点共线时,QE+CE=CQ (最短),而QE 长度不变,故此时CE 最小,∵AC=12,∴,∴CE=QC-QE=13-5=8.故选D.【点睛】本题考查了圆周角定理和勾股定理的综合应用,解决本题的关键是确定E点运动的轨迹,从而把问题转化为圆外一点到圆上一点的最短距离问题.5.A。

人教版数学九年级上册24-1-4圆周角同步练习题(最新)

人教版数学九年级上册24-1-4圆周角同步练习题(最新)

24.1.4圆周角同步练习题一、单选题 1.如图.AB 为⊙O 的直径,C,D 为⊙O 上两点,CD ⌢=AD ⌢+BC ⌢,连AC,BD 相交于E 点.如若AB =2CE .则DE:BE 的值为( )A .√3−13B .√2−1C .√3−12D .√2−122.如图,已知⊙O 的弦AB 、DC 的延长线相交于点E ,∠AOD =128°,∠E =40°,则∠BDC 的度数是( )A .16°B .20°C .24°D .35°3.如图,BC 是圆O 的直径,点A 在圆上,连接AO ,AC ,∠ACB =30°,则∠AOB =( )A .60°B .30°C .45°D .90°4.如图,四边形ABCD 是⊙O 的内接四边形,BE 是⊙O 的直径,连接AE ,若∠BCD =2∠BAD ,若连接OD ,则∠DOE 的度数是( )A .30°B .35°C .45°D .60°5.有下列四个命题:(1)三点确定一个圆;(2)相等的弧所对的圆周角相等;(3)相等的圆心角所对的弧相等;(4)正五边形是轴对称图形.其中正确的有( )A .4个B .3个C .2个D .1个6.下列事件中,是随机事件的是( )A .任意画两个直角三角形,这两个三角形相似B .相似三角形的对应角相等C .⊙O 的半径为5,OP =3,点P 在⊙O 外D .直径所对的圆周角为直角7.如图,有一个弓形的暗礁区,弓形所含的圆周角∠C=50°,船在航行时,为保证不进入暗礁区,则船到两个灯塔A ,B 的张角∠ASB 应满足的条件是( )A .∠ASB >25°B .∠ASB >50°C .∠ASB <55°D .∠ASB <50°8.如图,在⊙O 中,AB ⌢=AC ⌢,∠ACB =70°,则∠BOC 的度数是( ).A .80°B .70°C .60°D .50°9.如图,已知:⊙O 中,AB 、CB 为弦,OC 交AB 于D ,则∠AOC =( )A.∠BOC B.∠ABC C.2∠BOC D.2∠ABC 10.如图,AB是⊙O的直径,C,D两点在⊙O上,若∠ABD=50°,则∠C的度数为()A.25°B.30°C.40°D.50°二、填空题11.在△ABC中,AB = AC,以AB为直径的圆O交BC边于点D.要使得圆O与AC边的交点E关于直线AD的对称点在线段OA上(不与端点重合),需满足的条件可以是.(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD >1 2AB;④12AB < DE < √22AB.12.四边形ABCD是⊙O的内接四边形,∠A=40°,则∠C的度数为.13.如图,A、B、C、D均在⊙O上,E为BC延长线上一点,若∠A=102°,则∠DCE=.14.如图,⊙O的直径CD垂直于弦AB,∠ACD=22.5°.若CD=4cm,则AB的长为cm.15.如图,在等腰Rt△ABC中,∠ACB=90°,AB=4,点E为AB的中点.以AE为边作等边△ADE(点D与点C分别在AB的异侧),连接CD.则△ACD的面积为.三、解答题16.如图,△APB内接于⊙O.(1)作∠APB的平分线PC,交⊙O于点C(尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,若∠APB=120º,连接AC,BC,求证:△ABC是等边三角形.17.已知在Rt△ABC中,∠B=30°,点M平分BC,AD平分∠BAC,过点A,M,D的⊙O分别交AB,AC于点E,F.(1)求∠MAD的度数;(2)连接DF,求证:△CDF是等边三角形;(3)若AC=4,则⊙O的半径r=______________.18.如图,四边形ABDC内接于⊙O,∠BAC=60°,AD平分∠BAC交⊙O于点D,连接OB,OC,BD,CD.(1)求证:四边形OBDC是菱形;(2)若∠ABO=15°,OB=2,求弦AC长.19.已知AB是⊙O的直径,点C,D是半圆O的三等分点.连接AC,DO.(1)如图①,求∠BOD及∠A的大小;(2)如图②,过点C作CF⊥AB于点F,交⊙O于点H,若⊙O的半径为2.求CH的长.20.问题发现:(1)如图①,正方形ABCD的边长为2,对角线AC、BD相交于点O,E是AB上一点(点E不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=20,C为BQ上一点,在BQ上方作四边形ABCD,使∠ABC=任务:(1)将探索小组的解题过程补充完整;⌢所对的一个圆内角,延长AP交⊙O于点C,(2)如图3,当点P在⊙O内时,∠APB AB⌢所对的圆心角为n°,则∠APB的度数为延长BP交⊙O于点D,若设∠AOB=m°,CD______.。

人教版九年级数学上册《24.1.4圆周角》同步测试题带答案

人教版九年级数学上册《24.1.4圆周角》同步测试题带答案

人教版九年级数学上册《24.1.4圆周角》同步测试题带答案一、单选题1.如图,四边形ABCD 内接于O ,若70A ∠=︒,则C ∠的度数是( )A .70︒B .90︒C .110︒D .140︒2.以原点O 为圆心的圆交x 轴于A 、B 两点,交y 轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若⊙DAB =25°,则⊙OCD =( ).A .50°B .40°C .70°D .30°3.已知有一个长为8,宽为6的矩形,能够把这个矩形完全盖住的最小圆形纸片的半径是( ) A .3B .4C .5D .64.如图,⊙O 的半径为4,点A 、B 、C 在⊙O 上,且⊙ACB =45°,则弦AB 的长是( )A .43B .4C .43D .35.如图,AB 是O 的直径,BC 是O 的弦,先将BC 沿BC 翻折交AB 于点D .再将BD 沿AB 翻折交BC 于点E .若BE DE =,设ABC α∠=,则α所在的范围是( )A .21.922.3α︒<<︒B .22.322.7α︒<<︒C .22.723.1α︒<<︒D .23.123.5α︒<<︒6.如图,AB 是O 的直径,CD 是O 的弦,连结AC 、AD 、BD ,若35CAB ∠=,则ADC ∠的度数为( )A .35B .55C .65D .70二、填空题7.如图,在O 中,点D 为弧BC 的中点 40COD ∠=︒,则BAD ∠= .8.如图,⊙ABC 是⊙O 的内接三角形,AB 为⊙O 的直径,点D 为⊙O 上一点,若⊙CAB=55°,则⊙ADC 的大小为 (度).9.如图,AB 为⊙O 直径,CD 为⊙O 的弦,⊙ACD=25°,⊙BAD 的度数为 .10.如图,CD 是O 的弦,O 是圆心,把O 的劣弧沿着CD 对折,A 是对折后劣弧上的一点,若100CAD ∠=︒,那么BCA BDA ∠+∠= .11.如图,等边ABC 中,AB=4,P 为AB 上一动点 ,PD BC PE AC ⊥⊥,则线段DE 的最小值为 .12.如图,点A 的坐标为(-2,0),点B 的坐标为(8,0),以AB 为直径作⊙O′,交y 轴的负半轴于点C ,则点C 的坐标为 ,若二次函数2y ax bx c =++的图像经过点A ,C ,B .已知点P 是该抛物线上的动点,当⊙APB 是锐角时,点P 的横坐标x 的取值范围是 .三、解答题13.如图所示,AB是O的一条弦OD AB⊥,垂足为C,交O于点D,点E在O上.(1)若64∠=︒,求DEBAOD∠的度数;OC=,OA=10,求AB的长.(2)若6⊥,OD与AC交于14.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD AC点E.(1)若20∠的度数;CAB∠=︒,求CADAB=,AC=6,求DE的长.(2)若815.如图,ABC内接于O,60∠=︒点D是BC的中点.BC,AB边上的高AE,CFBAC相交于点H.试证明:∠=∠;(1)FAH CAO(2)四边形AHDO是菱形.16.如图,ABD △内接于半圆,O AB 是直径,点C 是BD 的中点,连接OC ,AC ,分别交BD 于点,F E .(1)求证:OC AD ∥;(2)若10,8AB AC ==,求AD 的长.17.如图,在ABCD 中,过点C 的O 与AB ,AD 分别相切于点E ,F ,交BC ,CD 交于点G ,H .连接FH ,FH=FD .(1)求证:四边形ABGF 是平行四边形; (2)若4AE =,BE=6,求O 的半径.18.已知:如图,⊙ABC 内接于⊙O ,AB 为直径,⊙CBA 的平分线交AC 于点F ,交⊙O 于点D ,DE⊙AB 于点E ,且交AC 于点P ,连结AD . (1)求证:⊙DAC=⊙DBA ;(2)连接CD ,若CD ﹦3,BD ﹦4,求⊙O 的半径和DE 的长.题号 1 2 3 4 5 6 答案 C C C C B B7.20︒8.359.65°10.20°11.312.(0,-4)0<x<613.(1)32︒(2)1614.(1)35︒(2)4716.(2)2.817.415318.(2)⊙O的半径为2.5;DE=2.4.。

九年级数学上册24-1-4圆周角同步测试(新版)新人教版

九年级数学上册24-1-4圆周角同步测试(新版)新人教版

九年级数学上册24-1-4圆周角同步测试(新版)新人教版1.如图21-1-41,在⊙O中,∠ABC=50°,则∠AOC等于( D )图21-1-41A.50°B.80°C.90°D.100°2.如图21-1-42,点A,B,C在⊙O上,∠BOC=100 °,则∠A的度数为( B )图21-1-42A.40° B.50° C.80° D.100°3.如图24-1-43,四边形ABCD为⊙O的内接四边形,E是BC延长线上的一点,已知∠BOD=100°,则∠DCE的度数为( C )A.40° B.60° C.50° D.80°【解析】根据圆周角定理,可求得∠A的度数;由于四边形ABCD是⊙O的内接四边形,根据圆内接四边形的性质,可得∠DCE=∠A=50°.图24-1-434.如图21-4-44,在⊙O中,已知∠OAB=22.5°,则∠C的度数为( D )图21-4-44A.135° B. 122.5° C. 115.5° D.112.5°【解析】∵OA=OB,∴∠OAB=∠OBC=22.5°,∴∠AOB=180°-22.5°-22.5°=135°.∴∠C=(360°-135°)=112.5°.5.[2013·苏州]如图21-4-45,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于( C )图21-4-45 第5题答图A.55° B.60° C.65° D.70°【解析】连接BD,如图,∵点D是弧AC的中点,即弧CD=弧AD,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°-25°=65°.6.[2012·湘潭]如图24-1-46,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD=( D )图24-1-46A.20° B.40° C.50° D.80°【解析】∵弦AB∥CD,∴∠ABC=∠BCD,∴∠BOD=2∠BCD=2∠ABC=2×40°=80°.7.如图24-1-47,弦AB,CD相交于点O,连接AD,BC,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是__答案不唯一,如∠A=∠C等__.图24-1-478.[2013·张家界]如图24-1-48,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=__80°__.24-1-489.如图24-1-49,若AB是⊙O的直径,AB=10 cm,∠CAB=30°,则BC=__5__cm.图24-1-4910.如图24-1-50,△ABC是⊙O的内接三角形,AB是⊙O的直径,点D为⊙O 上的一点,若∠CAB=55°,则∠ADC的大小为__35__度.【解析】∵AB为⊙O的直径,∴∠ACB=90°.∵∠CAB=55°,∴∠B=90°-∠CAB=35°,∴∠ADC=∠B=35°.图24-1-5011.如图24-1-51,在等边△ABC中,以AB为直径的⊙O与BC相交于点D,连接AD,则∠DAC的度数为__30°__.【解析】因为AB为⊙O的直径,所以∠ADB=90°.又因为△ABC是等边三角形,所以AD是∠BAC的平分线,所以∠DAC=30°.图24-1-5112.如图24-1-52,在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.解:如图,连接BD.∵AB是⊙O的直径,∴BD⊥AD.又∵CF⊥AD,∴BD∥CF,∴∠BDC =∠C.又∵∠BDC=∠BOC,∴∠C=∠BOC.∵AB⊥CD,即∠OEC=90°,∴∠C+∠BOC=90°,∴∠C=30°,∴∠ADC=90°-∠C=60°.图24-1-52第12题答图13.如图24-1-53,CD⊥AB于E,若∠B=70°,则∠A=__20°__.图24-1-53【解析】因为CD⊥AB,∠B=70°,所以∠C=20°,所以∠A=20°.14.如图24-1-54,点O为优弧ACB所在圆的圆心,∠AOC=108°,点D在AB 的延长线上,BD=BC,则∠D=__27°__.【解析】∠ABC=∠AOC=×108°=54°.因为BD=BC,所以∠D=∠ABC=×54°=27°.图24-1-54图24-1-5515.如图24-1-55,已知AB,CD是⊙O的直径,DF∥AB交⊙O于点F,BE∥DC 交⊙O于点E.(1)求证:BE=DF;(2)写出图中4组不同的且相等的劣弧(不要求证明).【解析】 (1)首先由平行线性质得到∠EBA=∠COA=∠CDF,然后根据相等的圆周角所对的弧相等即可证明=,进一步得到=,再根据等弧对等弦即可得到BE =DF;(2)根据等弦对等弧和相等的圆周角所对的弧相等即可得到4组不同的且相等的劣弧.解:(1)证明:∵DF∥AB,BE∥DC,∴∠EBA=∠COA=∠CDF,∴=,∴=,∴BE=DF.(2)图中相等的劣弧有:=,=,=,=,=等.图24-1-5616.已知:如图24-1-56,△ABC内接于⊙O,AB为直径,∠CBA的平分线交AC 于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连接AD.(1)求证:∠DAC=∠DBA;(2)求证:P是线段AF的中点.证明:(1)∵BD平分∠CBA,∴∠CBD=∠DBA.∵∠DAC与∠CBD都是弧CD所对的圆周角,∴∠DAC=∠CBD,∴∠DAC=∠DBA.(2)∵AB为⊙O的直径,∴∠ADB=90°.又∵DE⊥AB,∴∠DEB=90°,∴∠ADE+∠EDB=∠ABD +∠EDB=90°,∴∠ADE=∠ABD=∠DAP,∴PD=PA.又∵∠DFA +∠DAC=∠ADE +∠PDF=90°,∠ADE=∠DAC,∴∠PDF=∠PFD,∴PD=PF,∴PA=PF,即P是线段AF的中点.17.已知:如图24-1-57(1),在⊙O中,弦AB=2,CD=1,AD⊥BD.直线AD,BC相交于点E.(1)求∠E的度数;(2)如果点C,D在⊙O上运动,且保持弦CD的长度不变,那么,直线AD,BC相交所成锐角的大小是否改变?试就以下两种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图(2),弦AB与弦CD交于点F;②如图(3),弦AB与弦CD不相交.图24-1-57【解析】 (1)连接OC,OD,则∠COD=60°,且∠DBE=∠DOC=30°.解:(1)如图(1),连接OC,OD.∵AD⊥BD,∴AB是⊙O的直径,∴OC=OD=CD=1,∴△DOC是等边三角形,∴∠COD=60°,∴∠DBE=∠COD=30°,∴∠E=90°-∠DBE=60°.(2)①如图(2),连接OD,OC,AC.∵DO=CO=CD=1,∴△DOC为等边三角形,∴∠DOC=60°,∴∠DAC=∠DOC=30°,∴∠EBD=∠DAC=30°.∵∠ADB=90°,∴∠E=90°-∠EBD=60°.②如图(3),连接OD,OC,同理可得出∠CBD=30°,∠BED=90°-∠CBD=60°.。

人教版九年级数学上册同步练习 24.1.4 圆周角(包含答案)

人教版九年级数学上册同步练习  24.1.4 圆周角(包含答案)

九年级上册同步练习24.1.4 圆周角一.选择题(共12小题)1.如图,A,B,C是⊙O上的三点,∠ABO=25°,∠ACO=30°,则∠BOC的度数为()A.100°B.110°C.125°D.130°2.如图,一块三角尺ABC的斜边AB与量角器的直径恰好重合,点D对应的刻度是46°,则∠ACD的度数为()A.46°B.23°C.44°D.67°3.如图,AB是圆O的弦,AB=20,点C是圆O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN的最大值是()A.10B.5C.10D.204.如图,在⊙O中,弧AB=弧AC,∠A=36°,则∠C的度数为()A.44°B.54°C.62°D.72°5.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠BAC=30°,弧BC等于弧CD,则∠DAC的度数是()A.30°B.35°C.45°D.70°6.如图,⊙O中,若∠BOD=140°,∠CDA=30°,则∠AEC的度数是()A.80°B.100°C.110°D.125°7.如图,AB,BC是⊙O的弦,∠B=60°,点O在∠B内,点D为上的动点,点M,N,P分别是AD,DC,CB的中点.若⊙O的半径为2,则PN+MN的长度的最大值是()A.B.C.D.8.如图,AB是⊙O直径,若∠AOC=130°,则∠D的度数是()A.20°B.25°C.40°D.50°9.如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F,连接BF,CF,若∠EDC=135°,CF=2,则AE2+BE2的值为()A.8B.12C.16D.2010.如图,AB是⊙O的直径,C是⊙O上一点(A、B除外),∠AOD=130°,则∠C的度数是()A.50°B.60°C.25°D.30°11.如图,AB经过圆心O,四边形ABCD内接于⊙O,∠B=3∠BAC,则∠ADC的度数为()A.100°B.112.5°C.120°D.135°12.如图,四边形ABCD内接于⊙O,∠DAB=140°,连接OC,点P是半径OC上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°二.填空题(共6小题)13.如图,AB是⊙O的直径,点C、D在⊙O上,若∠ACD=25°,则∠BOD的度数为.14.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是.15.如图,AB是⊙O的直径,弦CD⊥AB于点E,(1)若CD=16,BE=4,则⊙O 的半径为;(2)点M在⊙O上,MD恰好经过圆心O,连接MB,若∠M=∠D,则∠D的度数为.16.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE=.17.如图,四边形ABCD内接于⊙O,AB是直径,OD∥BC,∠ABC=40°,则∠BCD的度数为18.利用圆周角定理,我们可以得到圆内接四边形的一个性质,请规范写出我们所学的这个性质的内容,并利用这个性质完成下题:如图,四边形ABCD内接于⊙O,若∠A=60°,则∠DCE的度数是.三.解答题(共6小题)19.如图,在圆的内接四边形ABCD中,AB=AD,BA、CD的延长线相交于点E,且AB=AE,求证:BC是该圆的直径.20.如图,AB为⊙O直径,弦CD⊥AB于E,△COD为等边三角形.(1)求∠CDB的大小.(2)若OE=3,直接写出BE的长.21.如图,在⊙O中,=,∠ACB=60°.(Ⅰ)求证:△ABC是等边三角形;(Ⅱ)求∠AOC的大小.22.已知四边形ABCD是圆内接四边形,∠1=112°,求∠CDE.23.如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=3,求⊙O的半径.24.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O 分别交AC,BM于点D,E.连结DE,使四边形DEBA为⊙O的内接四边形.(1)求证:∠A=∠ABM=∠MDE;(2)若AB=6,当AD=2DM时,求DE的长度;(3)连接OD,OE,当∠A的度数为60°时,求证:四边形ODME是菱形.参考答案与试题解析一.选择题(共12小题)1.【解答】解:过A作⊙O的直径,交⊙O于D.在△OAB中,OA=OB,则∠BOD=∠ABO+∠OAB=2×25°=50°,同理可得:∠COD=∠ACO+∠OAC=2×30°=60°,故∠BOC=∠BOD+∠COD=110°.故选:B.2.【解答】解:连接OD,∵直角三角板ABC的斜边AB与量角器的直径恰好重合,∴点A,B,C,D共圆,∵点D对应的刻度是46°,∴∠BOD=46°,∴∠BCD=∠BOD=23°,∴∠ACD=90°﹣∠BCD=67°.故选:D.3.【解答】解:连接OA、OB,如图,∴∠AOB=2∠ACB=2×45°=90°,∴△OAB为等腰直角三角形,∴OA=AB=×20=20,∵点M、N分别是AB、BC的中点,∴MN=AC,当AC为直径时,AC的值最大,∴MN的最大值为20.故选:D.4.【解答】解:∵⊙O中,,∠A=36°,∴∠B=∠C=72°,故选:D.5.【解答】解:∵∠BAC=30°∴弧BC的度数是30°,∵弧BC等于弧CD∴∠DAC=30°.故选:A.6.【解答】解:由圆周角定理得,∠C=∠BOD=70°,∴∠AEC=∠C+∠CDA=100°,故选:B.7.【解答】解:连接OC、OA、BD,作OH⊥AC于H.∵∠AOC=2∠ABC=120°,∵OA=OC,OH⊥AC,∴∠COH=∠AOH=60°,CH=AH,∴CH=AH=OC•sin60°=,∴AC=2,∵CN=DN,DM=AM,∴MN=AC=,∵CP=PB,AN=DN,∴PN=BD,当BD是直径时,PN的值最大,最大值为2,∴PM+MN的最大值为2+.故选:D.8.【解答】解:连接AD,∵AB是⊙O直径,∠AOC=130°,∴∠BDA=90°,∠CDA=65°,∴∠BDC=25°,故选:B.9.【解答】解:∵四边形BCDE内接于⊙O,且∠EDC=135°,∴∠EFC=∠ABC=180°﹣∠EDC=45°,∵∠ACB=90°,∴△ABC是等腰三角形,∴AC=BC,又∵EF是⊙O的直径,∴∠EBF=∠ECF=∠ACB=90°,∴∠BCF=∠ACE,∵四边形BECF是⊙O的内接四边形,∴∠AEC=∠BFC,∴△ACE≌△BFC(ASA),∴AE=BF,∵Rt△ECF中,CF=2、∠EFC=45°,∴EF2=16,则AE2+BE2=BF2+BE2=EF2=16,故选:C.10.【解答】解:∵∠AOD=130°,∴∠C=90°﹣,故选:C.11.【解答】解:∵AB经过圆心O,∴∠ACB=90°,∵∠B=3∠BAC,∴∠B=67.5°,∵四边形ABCD内接于⊙O,∴∠ADC=180°﹣∠B=112.5°,故选:B.12.【解答】解:连接OD、OB,∵四边形ABCD内接于⊙O,∴∠DCB=180°﹣∠DAB=40°,由圆周角定理得,∠BOD=2∠DCB=80°,∴40°≤∠BPD≤80°,∴∠BPD不可能为90°,故选:D.二.填空题(共6小题)13.【解答】解:由圆周角定理得,∠AOD=2∠ACD=50°,∴∠BOD=180°﹣50°=130°,故答案为:130°.14.【解答】解:在优弧BD上取一点A,连接AB,AD,∵点A、B,C,D在⊙O上,∠BCD=130°,∴∠BAD=50°,∴∠BOD=100°,故答案为100°.15.【解答】解:(1)设⊙O的半径为r,则OE=r﹣4,∵AB是⊙O的直径,弦CD⊥AB,∴DE=EC=CD=8,在Rt△OED中,OD2=OE2+DE2,即r2=(r﹣4)2+82,解得,r=10,故答案为:10;(2)由圆周角定理得,∠DOE=2∠M,∵∠M=∠D,∴∠DOE=2∠D,∴∠D=30°,故答案为:30°.16.【解答】解:连接OB,OD,∵∠DOB与∠A都对,∠DOB(大于平角的角)与∠BCD都对,∴∠DOB=2∠A,∠DOB(大于平角的角)=2∠BCD,∵∠DOB+∠DOB(大于平角的角)=360°,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠DCE=∠A=102°,故答案为:102°17.【解答】解:∵OD∥BC,∴∠AOD=∠ABC=40°,∵OA=OD,∴∠OAD=∠ODA=70°,∵四边形ABCD内接于⊙O,∴∠BCD=180°﹣∠OAD=110°,故答案为:110°.18.【解答】解:∵圆内接四边形的对角互补,∴∠A+∠BCD=180°,∵∠A=60°,∴∠BCD=120°,∴∠DCE=180°﹣∠BCD=60°,故答案为;圆内接四边形的对角互补,60°.三.解答题(共6小题)19.【解答】解:连接BD.∵AE=AD=AB,∴∠E=∠ADE,∠ADB=∠ABD,∵∠E+∠EDB+∠ABD=180°,∴2∠EDA+2∠ADB=180°,∴∠EDA+∠ADB=90°,∴∠BDC=∠EDB=90°,∴BC是该圆的直径.20.【解答】解:(1)∵△OCD是等边三角形∴OC=OD=CD,∠OCD=∠ODC=∠COD=60°∵OB⊥CD∴∠COB=30°∵∠COB=2∠CDB∴∠CDB=15°(2)∵sin∠OCD==∴∴OC=2∴BE=OB﹣BE=2﹣3故答案为2﹣3.21.【解答】(Ⅰ)证明:∵=,∴AB=BC,又∠ACB=60°,∴△ABC是等边三角形;(Ⅱ)∵△ABC是等边三角形,∴∠ABC=60°,∴∠AOC=2∠ABC=120°.22.【解答】解:由圆周角定理得,∠A=∠1=56°,∵四边形ABCD是圆内接四边形,∴∠CDE=∠A=56°.23.【解答】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等边三角形;(2)连接OB、OD,作OH⊥BD于H,则DH=BD=,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD==,∴⊙O的半径为.24.【解答】解:(1)证明:∵∠ABC=90°,点M是AC的中点,∴AM=CM=BM.∴∠A=∠ABM.∵四边形DEBA为⊙O的内接四边形,∴∠ADE+∠ABM=180°,又∵∠ADE+∠MDE=180°,∴∠ABM=∠MDE∴∠A=∠ABM=∠MDE.(2)解:由(1)知∠A=∠ABM=∠MDE,∴DE∥AB∴△MDE∽△MAB∴=∵AD=2DM,∴AM=3DM∴=∴DE=2.(3)证明:由(1)知∠A=∠ABM=∠MDE,∵∠A=60°,∴∠A=∠ABM=∠MDE=60°∴∠AMB=60°又∵OA=OD=OE=OB∴△AOD、△OBE都是等边三角形∴∠ADO=∠AMB=∠OEB=60°,∴OD∥BM,AM∥OE∴四边形ODME是平行四边形,又∵OD=OE∴四边形ODME是菱形。

人教版九年级上册数学 24.1.4 圆周角 同步练习(含答案)

人教版九年级上册数学  24.1.4 圆周角  同步练习(含答案)

人教版九年级上册数学24.1.4 圆周角同步练习一.填空题1.如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=54°,则∠BAC=°.2.如图,⊙O中,∠AOB=80°,点C、D是上任两点,则∠C+∠D的度数是°.3.如图,AB是⊙O的直径,∠AOD是圆心角,∠BCD是圆周角.若∠BCD=25°,则∠AOD=.4.如图,点A,D,B为⊙O上的三点,∠AOB=120°,且过A的直线交BD延长线于点C,连接AD,且AD =CD,则∠C的度数为.5.如图,ABCD是⊙O的内接四边形,AD为直径,∠C=130°,则∠ADB的度数为.6.如图,CD是⊙O的直径,弦AB⊥CD,若∠AOB=100°,则∠ABD=.7.如图,已知⊙O的半径为6,C、D在直径AB的同侧半圆上,∠AOC=96°,∠BOD=36°,动点P在直径AB上,则CP+PD的最小值是.8.如图,AB是⊙O的直径,弦CD⊥AB于点E,(1)若CD=16,BE=4,则⊙O的半径为;(2)点M在⊙O上,MD恰好经过圆心O,连接MB,若∠M=∠D,则∠D的度数为.9.如图,△ABC中,∠A=60°,以BC为直径的⊙O分别交AB、AC边于E、D,连接BD、CE交于点F.以下四个结论:①ED=BC;②∠ACE=30°;③BD平分∠ABC;④若连接AF,则AF⊥BC.其中正确的结论是(把你认为正确结论的序号都填上)10.如图,AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BOC=2∠BAD,则⊙O的直径为.二.解答题11.如图,AB为⊙O的直径,点C在⊙O上,连接BC并延长至点D,使DC=CB.连接DA并延长,交⊙O 于另一点E,连接AC,CE.(1)求证:∠E=∠D(2)若AB=4,BC﹣AC=2,求CE的长.12.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=62°,∠APD=86°.(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.13.如图,AB是半圆的直径,C、D是半圆上的两点,∠BAC=20°,∠DAC=35°.求证:AD=CD.14.如图,在平面直角坐标系中,以点M(0,)为圆心,以长为半径作⊙M交x轴于A、B两点,交y轴于C、D两点,连接AM并延长交⊙M于P点,连接PC交x轴于E.(1)求点C、P的坐标;(2)求证:BE=2OE.15.如图,在△ABC中,∠A=68°,以AB为直径的⊙O与AC、BC分别相交于点D、E,连接DE.(1)求∠CED的度数.(2)若DE=BE,求∠C的度数.16.如图,AB是⊙O的直径,点C在圆上,∠BAD是△ABC的一个外角,它的平分线交⊙O于点E.不使用圆规,请你仅用一把不带刻度的直尺作出∠BAC的平分线.并说明理由.参考答案一.填空题1.36.2.80.3.130°.4.30°.5.40°.6. 25°.7.6.8.30°.9.①②④.10. 10.二.解答题11.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,即AC⊥BC,∵DC=CB,∴AD=AB.∴∠B=∠D,∵∠E=∠B,∴∠E=∠D;(2)解:∵∠E=∠D,∴DC=CE,∵DC=CB,∴CB=CE,在Rt△ABC中,AC2+BC2=AB2,即(BC﹣2)2+BC2=42解得,BC1=1+,BC1=1﹣(舍去),∴CE=1+,即CE的长为1+.12.(1)∵∠APD=∠CAB+∠C,∴∠C=∠APD﹣∠CAB=86°﹣62°=24°,∴∠B=∠C=24°;(2)作OE⊥BD于E,如图所示:则DE=BE,∵OA=OB,∴OE是△ABD的中位线,∴OE=AD=×6=3,即圆心O到BD的距离为3.13.证明:∵AB是半圆的直径,∴∠ACB=90°,在Rt△ABC中,∠B=90°﹣∠BAC=90°﹣20°=70°,∵四边形ABCD是圆的内接四边形,∴∠D=180°﹣∠B=180°﹣70°=110°,在△ABC中,∵∠DAC=35°,∴∠DCA=180°﹣∠DAC﹣∠D=180°﹣35°﹣110°=35°,∴∠DCA=∠DAC,∵AD=CD.14.(1)解:连接PB,∵PA是圆M的直径,∴∠PBA=90°∴AO=OB=3又∵MO⊥AB,∴PB∥MO.∴PB=2OM=∴P点坐标为(3,)(2分)在直角三角形ABP中,AB=6,PB=2,根据勾股定理得:AP=4,所以圆的半径MC=2,又OM=,所以OC=MC﹣OM=,则C(0,)(1分)(2)证明:连接AC.∵AM=MC=2,AO=3,OC=,∴AM=MC=AC=2,∴△AMC为等边三角形(2分)又∵AP为圆M的直径得∠ACP=90°得∠OCE=30°(1分)∴OE=1,BE=2∴BE=2OE.(2分)15.(1)∵四边形ABED 圆内接四边形,∴∠A+∠DEB=180°,∵∠CED+∠DEB=180°,∴∠CED=∠A,∵∠A=68°,∴∠CED=68°;(2)连接AE.∵DE=BE,∴=,∴∠DAE=∠EAB=∠CAB=34°,∵AB是直径,∴∠AEB=90°,∴∠AEC=90°,∴∠C=90°﹣∠DAE=90°﹣34°=56°.16.作直径EF交⊙O于F,连接AF,则AF是∠BAC的平分线.理由是:∵EF是⊙O的直径,∴∠EAF=90°,即∠EAO+∠OAF=90°,∵AE平分∠DAC,∴∠DAE=∠EAO,∴∠CAF=∠OAF,∴AF是∠BAC的平分线.。

人教版九年级数学上册《24.1.4圆周角》同步测试题附答案

人教版九年级数学上册《24.1.4圆周角》同步测试题附答案

人教版九年级数学上册《24.1.4圆周角》同步测试题附答案一、单选题1.如图,点A,B,C在⊙O上∠BAC=52°,连结OB,OC,则∠BOC的度数为()A.26°B.70°C.104°D.128°2.用直角钢尺检查某一工件是否恰好是半圆环形,在下面四种情形中,可判断工件是半圆环形的()A.B.C.D.3.如图,⊙O的直径AB为10,弦AC=6,⊙ACB的平分线交⊙O于D点,交AB于E点,则DE的长为()A.7√2B.247√2C.257√2D.2454.如图,⊙O中,弦AB,CD相交于点P,∠A=40°,∠APD=77°,则∠B的大小是().A.33°B.37°C.43°D.47°5.如图,⊙O的半径为1,AB是⊙O的一条弦,且AB=√3,则弦AB所对圆周角的度数为()A.30°B.60°C.30°或150°D.60°或120°6.如图,已知点A、B、C、D都在⊙O上,且⊙BOD=110°,则⊙BCD为()A.110°B.115°C.120°D.125°7.如图,在半圆O中,若⊙ABC=70°,则⊙ADC的度数为()A.70°B.140°C.110°D.130°8.如图,⊙O中OC⊥AB,∠BOC=50°,则∠ADC的度数是()A.20°B.24°C.25°D.30°9.如图,△ABC是等边三角形AB=2,点P是△ABC内一点,且∠BAP−∠CBP=30°,连接CP,则CP的最小值为()A.12B.√32C.2−√3D.√3−1二、填空题10.如图,点A、B、C、D、E均在⊙O上,连接AB、BC、CD、AE,且∠A+∠C=155°,则弧DE所对圆心角的度数为.11.如图,△ABC内接于⊙O,连接OB,已知∠OBA=20°,则∠ACB=.12.如图,四边形ABCD内接于⊙O,点E在AD的延长线上∠ABC=135°,AC=4.(1)∠CDE的度数为;(2)⊙O的半径为.13.如图,点C、D在以AB为直径的半圆上∠BCD=120°,若AB=2,则弦BD的长为 .14.如图,⊙O 的半径OD ⊥弦AB 于点C ,连接AO 并延长交⊙O 于点E ,连接EC .若AB =8,OC =3则EC 的长为 .15.如图,△ABC 内接于⊙O .若⊙O 的半径为3,∠C =45°则弦AB 的长为 .16.如图,已知AB 是⊙O 的直径,C ,D 是BE ⏜上的三等分点∠AOE =60°,则∠COE 的度数是 .17.如图,四边形ABCD 的对角线AC 是⊙O 的直径AB =AD ,∠AOD =110°,则∠BCD = °.三、解答题18.如图,在⊙O中,弦AB、CD交于点E,且AB=CD.求证:DE=BE.19.如图,AB是⊙O的直径,CD是⊙O的弦∠ACD=36°,求∠BOD的度数.20.如图所示,BC是⊙O的直径AD⊥BC,垂足为D,AB=AF,BF和AD相交于E,求证:BE=AE.21.如图,A,P,B,C是⊙O上的四个点,⊙APB=⊙CPB=60°.(1)判断⊙ABC的形状,并证明你的结论.(2)证明:P A+PC=PB.22.(1)【问题情境】A是⊙O外一点,P是⊙O上一动点.若⊙O的半径为2,且OA=5,则点P到点A的最短距离为.(2)【直接运用】如图1,在Rt△ABC中∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于点D,P是弧CD上的一个动点,连接AP,则AP的最小值是.(3)【构造运用】如图2,已知正方形ABCD的边长为6,点M,N分别从点B,C同时出发,以相同的速度沿边BC,CD向终点C,D运动,连接AM和BN交于点P,求点P到点C的距离最小值.(4)【灵活运用】如图3,⊙O的半径为4,弦AB=4,C为优弧AB上一动点,AM⊥AC交直线CB于点M,则△ABM面积的最大值是.参考答案:1.C2.B3.C4.B5.D6.D7.C8.C9.D10.50°11.70°12.135°2√213.√3.14.2√1315.3√216.80°17.11018.证明:⊙AB=CD⌢=CD⌢⊙AB⌢−BD⌢=CD⌢−BD⌢⊙AB⌢=CB⌢⊙AD⊙AD=BC又⊙∠A=∠C,∠D=∠B⊙△ADE≌△CBE⊙DE=BE.19.⊙AB是⊙O的直径,CD是⊙O的弦,∠ACD=36°⊙∠AOD=2∠ACD=72°⊙∠BOD=180°−∠AOD=108°.20.证明:延长AD交⊙O于H,如图∵AB=AF∴AB⌢=AF⌢∵AD⊥BC∴AB⌢=BH⌢∴BH⌢=AF⌢∴∠BAH=∠ABF ∴AE=BE.21.(1)解:△ABC是等边三角形,理由如下:由圆周角定理得,⊙BCA=⊙APB=60°,⊙BAC=⊙CPB=60°⊙⊙ABC=60°⊙⊙ABC=⊙ACB=⊙BAC=60°⊙⊙ABC是等边三角形;(2)证明:在PB上截取PH=P A⊙⊙APB=60°⊙⊙APH为等边三角形⊙AP=AH,⊙P AH=60°⊙⊙BAH+⊙CAH=⊙P AC+⊙CAH即⊙BAH=⊙P AC在△AHB和△APC中{AB=AC∠BAH=∠PACAH=AP⊙⊙AHB⊙⊙APC(AAS),⊙BH=PC⊙PB=PH+BH=P A+PC.22.解:(1)当点P是OA与⊙O的交点时,PA为最短AP=AO−OP=5−2=3(2)如图,连接AO,当A、P、O在同一直线上时,点P到点A的最短∵AC=BC=2∴r=12BC=1∴AO=√22+12=√5∴AP的最小值为AO−r=√5−1故答案为:√5−1;(3)∵AB=BC,∠ABM=∠BCN∴△ABM≌△BCN∴∠BAM=∠CBN∴∠CBN+∠ABP=90°∴∠BAM+∠ABP=90°∴AM⊥BN故点P点在以AB为直径的圆上运动,连接OC,与⊙O的交点,此交点P即为PC最小时的位置;∵AB=6∴OC=√32+62=3√5∴PC的最小值为3√5−3;(4)连接OA,OB∵OA=OB=4=AB∴△AOB是等边三角形∴∠AOB=60°∴∠ACB=1∠AOB=30°2∵AM⊥AC∴∠M=60°∵AB=4,要使△ABM面积最大,则点M到AB的距离最大如图,∵∠M=60°∴点M在以∠ADB=120°的⊙D上当AM=BM时,点M到AB的距离最大∴△ABM是等边三角形∴△ABM的最大面积为12AB×√32AB=√34AB2=√34×16=4√3.第11页共11页。

人教版数学九年级上册:24.1.4 圆周角 同步练习(附答案)

人教版数学九年级上册:24.1.4 圆周角  同步练习(附答案)

24.1.4 圆周角第1课时圆周角定理及其推论1.如图,点A,B,C是⊙O上的三点,若∠BOC=50°,则∠A的度数是() A.25° B.20°C.80° D.100°2.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55° B.110°C.120° D.125°3.如图,点A,B,C均在⊙O上,若∠A=66°,则∠OCB的度数是() A.24° B.28°C.33° D.48°4.如图是一个圆形人工湖的平面图,弦AB是湖上的一座桥,已知桥长100 m,测得圆周角∠ACB=30°,则这个人工湖的直径为 m.5.如图,已知AB是⊙O的直径,点C在⊙O上,∠A=35°,则∠B的度数是() A.35° B.45° C.55° D.65°6.如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠BDC 的度数是( )A .60°B .45°C .35°D .30°7.如图,在⊙O 中,AB ︵=AC ︵,∠BAC =50°,则∠AEC 的度数为( )A .65°B .75°C .50°D .55°8.如图,已知AB 是⊙O 的直径,∠D =40°,则∠CAB 的度数为 .9.已知⊙O 的弦AB 的长等于⊙O 的半径,则此弦AB 所对的圆周角的度数为 . 10.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD ,垂足为E ,连接CO ,AD ,∠BAD =20°,则下列说法中正确的是( )A .AD =2OB B .CE =EOC .∠OCE =40°D .∠BOC =2∠BAD11.如图,AB ︵是半圆,连接AB ,点O 为AB 的中点,点C ,D 在AB ︵上,连接AD ,CO ,BC ,BD ,OD.若∠COD =62°,且AD ∥OC ,则∠ABD 的大小是( )A .26°B .28°C .30°D .32°12.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD =70°,AO ∥DC ,则∠B 的度数为( )A .40°B .45°C .50°D .55°13.如图,AB 是⊙O 的直径,点D 在⊙O 上,∠BOD =130°,AC ∥OD 交⊙O 于点C ,连接BC ,则∠B = 度.14.如图,⊙C 经过原点,并与两坐标轴分别交于A ,D 两点,已知∠OBA =30°,点A 的坐标为(2,0),则点D 的坐标为 .15.如图,△ABC 的三个顶点都在⊙O 上,AP ⊥BC 于点P ,AM 为⊙O 的直径.若∠BAM =15°,则∠CAP = .16.如图,在△ABC 中,AB =BC =2,以AB 为直径的⊙O 分别交BC ,AC 于点D ,E ,且点D 为边BC 的中点. (1)求证:△ABC 为等边三角形; (2)求DE 的长.17.如图,在⊙O 中,AB 是⊙O 的直径,AB =8 cm ,AC ︵=CD ︵=BD ︵,M 是AB 上一动点,CM +DM 的最小值为 .第2课时圆内接四边形1.如图,图中∠A+∠C=()A.90° B.180°C.270° D.360°2.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD=105°,则∠DCE的大小是()A.115° B.105° C.100° D.95°3.圆内接四边形ABCD中,∠A∶∠B∶∠C∶∠D可以是()A.1∶2∶3∶4 B.1∶3∶2∶4C.4∶2∶3∶1 D.4∶2∶1∶34.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD的位置关系是.5.如图,AB 是半圆O 的直径,∠BAC =30°,D 是AC ︵的中点,则∠DAC 的度数是 度.6.圆内接四边形相邻三个内角度数的比为2∶1∶7,求这个四边形各内角的度数.7.如图,四边形ABCD 内接于⊙O ,∠B =50°,∠ACD =25°,∠BAD =65°.求证: (1)AD =CD ;(2)AB 是⊙O 的直径.8.如图,在⊙O 中,点A ,B ,C 在⊙O 上,且∠ACB =110°,则∠α= .9.如图,四边形ABCD 内接于⊙O ,DA =DC ,∠CBE =50°,则∠DAC 的大小为( )A .130°B .100°C .65°D .50°10.如图,四边形ABCD 内接于⊙O ,AD ∥BC ,∠DAB =48°,则∠AOC 的度数是( )A .48°B .96°C .114°D .132°11.如图,四边形ABCD 内接于⊙O ,F 是CD ︵上一点,且DF ︵=BC ︵,连接CF 并延长交AD 的延长线于点E ,连接AC.若∠ABC =105°,∠BAC =25°,则∠E 的度数为 .12.如图,⊙C 经过坐标原点,且与两坐标轴分别交于点A 与点B ,点A 的坐标为(0,4),M 是圆上一点,∠BMO =120°.求⊙C 的半径.13.如图,AB 是⊙O 的直径,D ,E 为⊙O 上位于AB 异侧的两点,连接BD 并延长至点C ,使得CD =BD.连接AC 交⊙O 于点F ,连接AE ,DE ,DF. (1)求证:∠E =∠C ;(2)若∠E =55°,求∠BDF 的度数.14.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若∠E=∠F时,求证:∠ADC=∠ABC;(2)若∠E=∠F=42°时,求∠A的度数;(3)若∠E=α,∠F=β,且α≠β.请你用含有α,β的代数式表示∠A的大小.参考答案:24.1.4 圆周角第1课时圆周角定理及其推论1.A2.D3.A4.200 .5.C6.D7.A8.50°.9.30°或150°.10.D11.B12.D13.40.1415.15°.16.解:(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°.∵点D是BC的中点,∴AD是BC的垂直平分线.∴AB=AC.又∵AB=BC,∴AB=AC=BC.∴△ABC为等边三角形.(2)连接BE.∵AB是⊙O的直径,∴∠AEB=90°.∴BE⊥AC. ∵△ABC是等边三角形,∴AE=EC,即E为AC的中点.又∵D 是BC 的中点, ∴DE 是△ABC 的中位线. ∴DE =12AB =12×2=1.17.8__cm .第2课时 圆内接四边形1.B 2.B 3.D 4.AB ∥CD . 5.30.6.解:根据圆内接四边形的对角互补可知,其对角和相等,所以四个内角的度数的比为2∶1∶7∶8.设这四个内角的度数分别为2x °,x °,7x °,8x °,则 2x +x +7x +8x =360.解得x =20. 2x =40,7x =140,8x =160.答:这个四边形各内角的度数分别为40°,20°,140°,160°. 7.证明:(1)∵四边形ABCD 内接于⊙O , ∴∠ADC =180°-∠B =130°. ∵∠ACD =25°,∴∠DAC =180°-∠ACD -∠D =180°-25°-130°=25°.∴∠DAC=∠ACD.∴AD=CD.(2)∵∠BAC=∠BAD-∠DAC=65°-25°=40°,∠B=50°,∴∠ACB=180°-∠B-∠BAC=180°-50°-40°=90°. ∴AB是⊙O的直径.8.140°.9.C10.B11.50°.12.解:∵四边形ABMO内接于⊙C,∴∠BAO+∠BMO=180°.∵∠BMO=120°,∴∠BAO=60°.在Rt△ABO中,AO=4,∠BAO=60°,∴AB=8.∵∠AOB=90°,∴AB为⊙C的直径.∴⊙C的半径为4.13.解:(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,即AD⊥BC.∵CD=BD,∴AD垂直平分BC.∴AB=AC.∴∠B=∠C.又∵∠B=∠E,∴∠E=∠C.(2)∵四边形AEDF是⊙O的内接四边形,∴∠AFD=180°-∠E.又∵∠CFD=180°-∠AFD,∴∠CFD=∠E=55°.∵∠E=∠C=55°,∴∠BDF=∠C +∠CFD=110°.14.解:(1)证明:∵∠DCE=∠BCF,∠E=∠F,又∵∠ADC =∠E +∠DCE ,∠ABC =∠F +∠BCF , ∴∠ADC =∠ABC.(2)由(1)知∠ADC =∠ABC ,∵四边形ABCD 内接于⊙O ,∴∠ADC +∠ABC =180°.∴∠ADC =90°.在Rt △ADF 中,∠A =90°-∠F =90°-42°=48°.(3)连接EF.∵四边形ABCD 为⊙O 的内接四边形,∴∠BCD +∠A =180°.又∵∠BCD +∠ECD =180°,∴∠ECD =∠A.∵∠ECD =∠CEF +∠CFE ,∴∠A =∠CEF +∠CFE.∵∠A +∠CEF +∠CFE +∠DEC +∠BFC =180°, ∴2∠A +α+β=180°.∴∠A =90°-α+β2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版九年级数学上册24.1.4 圆周角同步练习
一、选择题
1.如图1,A 、B 、C 三点在⊙O 上,∠AOC=100°,则∠ABC 等于( ).
A .140°
B .110°
C .120°
D .130°
O
B
A
2
1
4
3
O B
(1) (2) (3) 2.如图2,∠1、∠2、∠3、∠4的大小关系是( ) A .∠4<∠1<∠2<∠3 B .∠4<∠1=∠3<∠2
C .∠4<∠1<∠3∠2
D .∠4<∠1<∠3=∠2
3.如图3,AD 是⊙O 的直径,AC 是弦,OB ⊥AD ,若OB=5,且∠CAD=30°,则BC
等于( ).
A .3
B .3.5-1
2
3.5
二、填空题
1.半径为2a 的⊙O 中,弦AB 的长为3,则弦AB 所对的圆周角的度数是________.
2.如图4,A 、B 是⊙O 的直径,C 、D 、E 都是圆上的点,则∠1+∠2=_______.•
O B
C
2
1
E
D
O B
C
(4) (5)
3.如图5,已知△ABC 为⊙O 内接三角形,BC=•1,•∠A=•60•°,•则⊙O•半径为_______.
三、综合提高题
1.如图,弦AB 把圆周分成1:2的两部分,已知⊙O 半径为1,求弦长AB .
O
B
A
2.如图,已知AB=AC ,∠APC=60° (1)求证:△ABC 是等边三角形.
(2)若BC=4cm ,求⊙O 的面积.
O B
A P
3.如图,⊙C 经过坐标原点,且与两坐标轴分别交于点A 与点B ,点A 的坐标为(0,
4),M 是圆上一点,∠BMO=120°. (1)求证:AB 为⊙C 直径. (2)求⊙C 的半径及圆心C 的坐标.
O
B
A C y x
M
参考答案
一、1.D 2.B 3.D
二、1.120°或60° 2.90° 3.
3
三、13.(1)证明:∵∠ABC=∠APC=60°,
又AB AC
,∴∠ACB=∠ABC=60°,∴△ABC为等边三角形.(2)解:连结OC,过点O作OD⊥BC,垂足为D,
在Rt△ODC中,DC=2,∠OCD=30°,
设OD=x,则OC=2x,∴4x2-x2=4,∴OC=4
3
3
3.(1)略(2)4,(32)。

相关文档
最新文档