化工原理传质

合集下载

化工原理三传一反

化工原理三传一反

化工原理三传一反化工原理是化学工程专业的一门重要基础课程,它主要包括质量平衡、能量平衡、动量平衡和物质传递四个方面。

这四个方面相互联系、相互影响,是化学工程领域中的基础理论。

其中,物质传递是化工原理中的重要内容之一,它包括了物质的传质过程和传质原理。

本文将围绕化工原理三传一反展开讨论,以便更好地理解和掌握这一重要的理论知识。

首先,我们来谈谈物质传递中的传质过程。

传质过程是指物质在不同相之间传递的过程,常见的传质过程包括气体与气体之间的传质、气体与液体之间的传质、液体与液体之间的传质以及固体与液体之间的传质等。

在这些传质过程中,物质的扩散、对流和传质界面的质量传递是三种基本的传质方式。

扩散是指物质在浓度梯度作用下自发地从高浓度区向低浓度区传递的过程,它是传质过程中最基本的方式。

对流是指由于流体的运动而导致物质传递的过程,它在工程实践中具有重要的应用价值。

传质界面的质量传递则是指在传质过程中,物质在相界面上的传递过程,它对于界面处的传质速率有着重要的影响。

其次,我们来讨论物质传递中的传质原理。

传质原理是指在传质过程中所遵循的基本规律和理论原理,它是物质传递过程的基础。

在传质原理中,三传一反是指扩散、对流和传质界面的质量传递三种传质方式,以及反应速率与传质速率之间的关系。

这里的反应速率与传质速率之间的关系是指在化工过程中,物质的传递过程与化学反应过程相互影响、相互制约的关系。

在实际工程中,我们需要综合考虑传质过程和化学反应过程,以便更好地设计和优化化工过程。

总之,化工原理三传一反是化学工程领域中的重要理论基础,它涉及了物质传递的基本过程和原理,对于化工工程师来说具有重要的理论指导意义。

在工程实践中,我们需要充分理解和掌握化工原理三传一反的相关知识,以便更好地应用于工程设计、工艺优化和生产操作中。

希望本文能够对化工原理三传一反有所帮助,也希望读者能够在学习和工作中加以应用和实践。

化工原理三传一反

化工原理三传一反

化工原理三传一反化工原理是化学工程专业的基础课程之一,它是化学工程专业学生学习的重要内容之一。

化工原理三传一反是化工原理课程中的重要内容,它包括传质、传热、传动和反应四个方面。

这四个方面是化工过程中不可或缺的要素,对于化学工程专业的学生来说,掌握这些内容是非常重要的。

首先,传质是化工过程中的重要环节之一。

传质是指物质在不同相之间的传递过程,包括气体、液体和固体之间的传质。

在化工过程中,传质是化学反应和物质转化的基础,它直接影响着化工过程的效率和产品质量。

因此,学习传质的原理和方法对于化工工程专业的学生来说至关重要。

其次,传热也是化工过程中不可或缺的环节。

传热是指热量在物体之间传递的过程,包括传导、对流和辐射三种传热方式。

在化工过程中,许多反应都需要进行加热或冷却,因此传热是化工过程中的重要环节。

学习传热的原理和方法可以帮助化工工程专业的学生更好地掌握化工过程中的能量转化和传递。

再者,传动是化工过程中的另一个重要方面。

传动是指能量在机械系统中的传递和转换过程,包括传动装置、传动元件和传动系统等。

在化工生产中,许多设备和机械都需要进行传动,因此传动是化工过程中不可或缺的环节。

学习传动的原理和方法可以帮助化工工程专业的学生更好地理解和应用化工设备和机械。

最后,反应是化工过程中的核心环节。

反应是指物质之间发生化学变化的过程,包括化学平衡、反应速率和反应热等。

在化工生产中,许多产品都是通过化学反应来实现的,因此反应是化工过程中的核心环节。

学习反应的原理和方法可以帮助化工工程专业的学生更好地掌握化工过程中的化学变化和反应条件。

综上所述,化工原理三传一反是化学工程专业学生学习的重要内容之一。

传质、传热、传动和反应是化工过程中不可或缺的要素,学习这些内容可以帮助化工工程专业的学生更好地掌握化工原理和方法。

希望学生们能够认真学习,深入理解化工原理三传一反的内容,为将来的化工工作打下坚实的基础。

化工原理传质知识点总结

化工原理传质知识点总结

化工原理传质知识点总结一、基本概念1.1 传质的意义传质是指物质在不同相之间的传递过程。

在化工工程中,传质是指溶质在溶剂中的扩散、对流、传热、反应等传输现象。

1.2 传质的分类传质可以根据溶质与溶剂之间的接触方式分为不同的分类:(1)扩散传质:溶质在溶剂中的自由扩散过程,不需要外力的帮助。

(2)对流传质:通过溶剂的对流运动,加快溶质的扩散速率。

(3)辐射传质:发射源释放的辐射物质在空气中传输的过程。

1.3 传质的单位在化工工程中,我们通常使用质量通量或摩尔通量来描述传质的速率。

质量通量用kg/(m^2·s)或g/(cm^2·min)表示,摩尔通量用mol/(m^2·s)或mol/(cm^2·min)表示。

1.4 传质的驱动力传质的驱动力可以通过浓度差、温度差、压力差等来实现。

在传质过程中,驱动力越大,传质速率越快。

1.5 传质的应用传质在化工工程中有着广泛的应用,例如在化学反应中,传质过程可以影响反应速率和产物浓度。

在洗涤、脱水、吸附等过程中,传质也起到重要的作用。

二、传质过程2.1 扩散传质扩散传质是指溶质在溶剂中的自由扩散过程,不需要外力的帮助。

扩散传质的速率与溶质浓度梯度成正比,与扩散距离成反比,与传质物质的性质、温度等因素有关。

2.2 对流传质对流传质是指通过溶剂的对流运动,加快溶质的扩散速率。

对流传质速率与对流速度和溶质浓度梯度成正比,与传质物质的性质、温度等因素有关。

2.3 质量传递系数质量传递系数是评价传质速率的重要参数,表示单位时间内溶质通过单位面积的传质速率。

它与溶质的性质、溶剂的性质、温度、压力等因素有关。

2.4 传质速率传质速率是指单位时间内溶质通过单位面积的传质量。

它由传质物质的性质、浓度梯度、温度、压力等因素决定。

三、传质原理3.1 扩散传质的原理扩散传质的原理是由于溶质在溶剂中的无规则热运动。

在热运动的影响下,溶质会沿着浓度梯度自行扩散,直到浓度均匀。

化工原理第章吸收过程的传质速率-V1

化工原理第章吸收过程的传质速率-V1

化工原理第章吸收过程的传质速率-V1化工原理第一章吸收过程的传质速率1. 传质速率的定义及相关概念传质速率是指物质由高浓度区向低浓度区移动的速率,通常使用扩散系数来进行描述。

传质过程中,扩散系数是影响传质速率的重要因素。

2. 吸收过程的基本原理吸收过程是指气体分子在接触到液体表面时被吸附并传递到液体中的过程。

吸收过程涉及到气体和液体之间的传质和化学反应,并且受到温度、压力、液体膜厚度等各种因素的影响。

3. 吸收过程的传质速率和传质系数吸收过程的传质速率与传质系数有关。

传质系数是指物质在固体或液体中的扩散速率,通常使用弗克定律来进行描述。

对于气液吸收过程,还需要考虑到气体在吸收液体中的溶解度。

4. 吸收过程中传质速率的计算方法吸收过程中传质速率的计算方法包括速度分布法、密度分布法、拔出法和梯度法等,其中速度分布法是最常用的计算方法。

在计算过程中,需要考虑传质的扩散和流动作用,同时还需要考虑到气体和液体的物理性质。

5. 影响吸收过程传质速率的因素影响吸收过程传质速率的因素包括吸收液体的组成、温度、液体膜厚度、气体流速和气体浓度等。

其中,吸收液体的组成是影响传质速率的最重要因素之一,同时液体温度的升高也会加速传质速率。

6. 吸收过程的优化及应用吸收过程的优化可以通过提高传质系数、减小液体膜厚度、提高液体温度等多种方法来实现。

吸收过程广泛应用于化工、环保、食品等领域,例如用于去除废气中的有害物质、用于糖果和饮料的调味等。

结论:吸收过程是一种重要的传质过程,其中传质速率是影响吸收效率的重要因素之一。

通过研究和优化吸收过程,可以提高吸收效率,并且广泛应用于工业和生活领域。

化工原理 传质

化工原理 传质

化工原理传质
传质是指在化工过程中,物质通过某种媒介从一个位置传递到另一个位置的过程。

传质过程的关键在于物质的分子之间的相互作用和传递。

传质可以分为以下几种类型:质量传递、热传递和动量传递。

质量传递是指物质的质量通过扩散、对流或反应等机制在系统中的传递。

热传递是指热量通过传导、对流或辐射等方式在系统中的传递。

动量传递则是指动量通过流体的运动在系统中的传递。

在传质过程中,存在三种基本的物质传递机制:扩散、对流和反应。

扩散是指物质由高浓度向低浓度的传递,是靠分子之间的随机热运动实现的。

对流是指物质随着流体的运动而传递的过程,可以是气体或液体的流动。

反应是指物质在满足一定的条件下发生化学反应,从而引起传质的过程。

传质过程可以用一些常见的数学模型来描述,如离散点模型、连续模型和微分模型等。

离散点模型是指将传质系统划分为若干离散的点,通过计算不同点之间的物质传递速率来研究传质过程。

连续模型则是将传质系统看作是连续的媒介,利用方程组来描述传质过程。

微分模型是通过建立微分方程来描述传质过程的变化规律。

在化工过程中,传质是一个非常重要的环节。

对于很多反应来说,传质速率是限制反应速度的因素之一。

因此,研究传质过程对于提高化工过程的效率和产品质量具有重要意义。

化工原理 第六章 蒸馏(传质过程)

化工原理 第六章 蒸馏(传质过程)
X=0.894 78.15℃
t
121.9℃
X=0.383
负偏差
x y
x y
y
y
x
x
19
挥发度与相对挥发度
挥发度:表示某种溶液易挥发的程度。 若为纯组分液体时,通常用其当时温度下饱和蒸 气压PA°来表示。 若为混合溶液时,各组分的挥发度,则用它在一 定温度下蒸气中的分压和与之平衡的液相中该组 分的 摩尔分数之比来表示, vA = pA / xA vB = pB / xB
演示
37
xn
xn 1 yn 1 yn
第四节 双组分连续精馏计算
38
物料衡算
F—原料(液)摩尔流量,kmol/h; D—馏出液摩尔流量,kmol/h; W—釜残液摩尔流量,kmol/h; 总物料衡算 易挥发组分的物料衡算
D xD F xF
F D W
D F ( xF xW ) xD xW
xn 1
n 1
yn xn yn 1
n
n 1
T-x(y) 图
t 假设蒸汽和液体充分接触,并在离 n 1 开第 n 层板时达到相平衡,则 yn 与 xn t n t n 1 平衡,且yn>yn+1,xn<xn-1。
这说明塔板主要起到了传质作用, 使蒸汽中易挥发组分的浓度增加, 同时也使液体中易挥发组分的浓度 减少。
t5 t4 t3 t2 t1
E D
C
B A
x(y)
温度-组成图( t-x-y 图)
12
上述的两条曲线将tx-y图分成三个区域。
液相线以下的区域 代表未沸腾的液体, 称为液相区 气相线上方的区域 代表过热蒸气,称为 过热蒸气区; 二曲线包围的区域 表示气液同时存在, 称为气液共存区。

化工原理7.2 传质传递的方式与描述7.2 质量传递的方式与描述

化工原理7.2 传质传递的方式与描述7.2 质量传递的方式与描述

一些常用物质的扩散系数 – P313附录一
扩散系数的来源 – 实验测定 – 物理化学手册,化学工程手册等查阅 – 经验或半经验公式估算
1、气体中的扩散系数 气体A在气体B中(或B在A中)的扩散系数,可
按马克斯韦尔—吉利兰(Maxwell-Gilliland)公式进 行估算
3
4.36 105T 2 (
NA
cA c
NA

Dc c cA
dcA dz
z=0,cA=cA1 z=z,cA=cA2
NA

Dc z
ln
c cA2 c cA1
NA

Dp zRT
ln
Байду номын сангаас
p p
pA2 pA1
pA1 pB1 pA2 pB2 pA1 pA2 pB2 pB1
NA

Dp zRT
涡流扩散的速率远远大于分子扩散
总扩散通量:
J

(D
M
)
dcA dz
注意:涡流扩散系数与分子扩散系数不同,不是物性
M A Dp ln pB2 d
z
zdz
0 RT A pB1
z0

M A Dp ln
RT A
p B2 pB1

(z2

z
2 0
)/2
已知: PA1 24Kpa PA2 0Kpa P 100Kpa
A 790Kg / m3 M A 58Kg / Kmol
D A RT z 2 z02 M A p ln pB2 2
(2)传质通量
传质通量NA:在任一固定的空间位置上,单位时间 通过单位面积的A物质量。

化工原理-1-第七章-质量传递基础

化工原理-1-第七章-质量传递基础
1 V A 0.285VC .048
其中VC为物质的临界体积(属于基本物性),单位为cm3/mol,可查有关 数据表格,书中表7-4为常见物质的临界体积。 对液体:
同样可由一状态下的D推算出另一状态下的D,即:
T D2 D1 2 1 T 1 2
三、生物物质的扩散系数 常见的一些生物溶质在水溶液中的扩散系数见表7-5。对于水溶液中 生物物质的扩散系数的估算,当溶质相对分子质量小于1000或其分 子体积小于500 cm3/mol时,可用“二”中溶液的扩散系数估算式进 行估算;否则,可用下式进行估算:
解:以A——NH3,B——H2O p 800 y 0.0079 对气相: A A 5 P 1.013 10 pA 800 CA 0.3284 mol 3 m RT 8.314 20 273 0.01 17 对液相: x A 0.01 1 0.01048 17 18
原子扩散体积 v/cm3/mol
S 22.9
分子扩散体积 Σ v/cm3/mol
CO CO2 N2O NH3 H2O SF6 Cl2 Br2 SO2 18.0 26.9 35.9 20.7 13.1 71.3 38.4 69.0 41.8
注:已列出分子扩散体积的,以分子扩散体积为准;若表中未列分子,对一般有机化合物分 子可按分子式由相应的原子扩散体积加和得到。
1 1 MA MB
2
v 13 v 13 P A B
式中:D为A、B二元气体的扩散系数,m2/s;
P为气体的总压,Pa;T为气体的温度,K; MA、MB分别为组分A、B的摩尔质量,kg/kmol; Σ vA、Σ vB分别为组分A、B的分子扩散体积,cm3/mol。 由该式获得的扩散系数,其相对误差一般小于10%。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dc A —组分A在扩散方向z上的浓度梯度(kmol/m3)/m dz
; DAB——组分A在B组分中的扩散系数,m2/s。
负号:表示扩散方向与浓度梯度方向相反,扩散沿
着浓度降低的方向进行
对于气体扩散:
dC A N A J A D dZ D dp A NA RT dZ
nA pA C A V RT
mA wA m
摩尔分率:在混合物中某组分的摩尔数 占混合物总摩尔数的分率。
气相:
nA 液相: x A n
nA yA n
yA yB y N 1
xA xB x N 1
质量分率与摩尔分率的关系:
nA mwA / M A xA n mwA / M A mwB / M B mwN / M N wA /M A wA /M A wB /M B wN /M N
JA NMcA/c
到界面溶解于溶剂中,造
成界面与主体的微小压差
NA

使得混合物向界面处的流 动。 (2)总体流动的特点:
总体流 动NM NMcB/c
JB
1
2
1)因分子本身扩散引起的宏观流动。 2)A、B在总体流动中方向相同,流动速度正比于摩尔 分率。
N MA
cA NM c
N MB
cB NM c
p Bm
——漂流因数,无因次
Sm
漂流因数意义:其大小反映了总体流动对传质速率的影 响程度,其值为总体流动使传质速率较单纯分子

散增大的倍数。 漂流因数的影响因素:
p p Bm 1
c cSm
1
浓度高,漂流因数大,总体流动的影响大。
低浓度时,漂流因数近似等于1,总体流动的影响小 。
扩散通量:单位时间内通过垂直于扩散方向的单位截
面积扩散的物质量,J表示, kmol/(m2· s)

• 传质中的分子扩散类似于导热中的热传导,扩散 速率的规律也类似于导热,即与浓度梯度成正比 -费克定律: dC A • 对于双组分物质在稳态下
J A DAB
dz
JA——组分A扩散速率(扩散通量), kmol/(m2· s);
(传质推动力) (传质阻力)
液相传质可写成
C A1 C A2 (传质推动力) N A k L C A1 C A2 (传质阻力) 1 kL
§5
单相分子扩散
分子扩散两种形式:等分子反向扩散,单向扩散。 1.等分子反向扩散及速率方程 (1)等分子反向扩散
T P pA1 pB1 1 JB T P pA2 pB2 2
NA NM
cA NA J A NM c
dc A cA N A D NA dz c
Dc dcA NA c cA dz
——微分式
在气相扩散
pA cA RT
c
p RT
dp A Dp NA RT ( p p A ) dz

z
0
N A dz
pA2
(2)精馏操作——利用液体混合物各组分沸点( 或挥发度)的不同,将物质多次部分汽化与部分 冷凝,从而使液体混合物分离与提纯的过程。
(3)萃取——利用混合物各组分对某溶剂具有不 同的溶解度,从而使混合物各组分得到分离与提 纯的操作过程。
萃取示意图
(4)干燥操作——利用热能使湿物料的湿分汽化 ,水汽或蒸汽经气流带走,从而获得固体产品的 操作。
干燥传质示意图 (5)其他:固—液萃取,结晶,吸附等操作。
3. 传质过程的研究方法 • 要研究传质过程,主要从三个方面进行 研究。 • (1)相平衡关系(气-液溶解度,液-液 溶解度,干燥中的水蒸气分压) • (2)物料衡算关系 • (3)传质速率关系。
§2 相组成表示法及其换算
1.质量分率与摩尔分率 质量分率:在混合物中某组分的质量占 混合物总质量的分率。
(3)单向扩散传质速率方程
cB NB J B NM c cB 0 J B NM c cB J B NM c
cA NA J A NM c
JA NMcA/c NA
总体流 动NM NMcB/c
JB
1
2
cB J A J B NM c
NA NM
cB cA cA cB NM NM NM c c c
2.质量比与摩尔比 质量比:混合物中某组分A的质量与惰性
组分 B(不参加传质的组分 )
的 质量之比。 mA aA mB 摩尔比:混合物中某组分的摩尔数与惰 性组分摩尔数之比。
气相 :
nA YA nB
液相 :
nA XA nB
质量分率与质量比的关系:
aA wA 1 aA
wA aA 1 - wA
第6章 传质过程导论 • §1 传质过程概述 1.传质过程的定义——物质以扩散的方式,从一 相转移到另一相的相界面的转移过程,称为物质 的传递过程,简称传质过程。
吸收传质示意图
精馏传质示意图
2 传质过程举例 (1)吸收操作——利用组成混合气体的各组分在 溶剂中溶解度不同来分离气体混合物的操作。
吸收局部示意图
摩尔分率与摩尔比的关系:
X x 1 X
x X 1-x
Y y 1 Y
y Y 1-y
3.质量浓度与摩尔浓度
质量浓度:单位体积混合物中某组分的质量。
mA GA V
nA cA V
质量浓度与质量分率的关系:
GA wA
摩尔浓度与摩尔分率的关系:
cA xA c
c—混合物在液相中的总摩尔浓度,kmol/m3;

D kL Z
—以浓度差为推动力表示的液相传质系数,m s 1
kL
NA
—溶质A的传质通量
kmol m 2 s 1
§4 单相传质的滞流“膜模型”
如图,萘片的扩散传质,即 气相传质
p A1 p A2 N A k G p A1 p A2 1 kG
p A1
Dp dpA RT ( p - pA )
p p A2 Dp NA ln RTz p p A1
p B2 Dp NA ln RTz p B1
——积分式
p pA1 pB1 pA2 pB2
Dp pB2 pB2 pB1 NA ln RTz pB1 pB2 pB1 Dp pA1 pA2 RTz pB2 pB1 ln ( pB2 pB1 )
NA
Z
0
D dZ
D p A pi NA Z RT
D p A pi NA RTZ
N A k G p A pi
D 令 kG RTZ
kG —
称为气相传质系数
对于液相扩散有:
N A k L Ci C A
内通过单位面积的物质量,记作N,
kmol/(m2·s) 。
气相:
D dp A NA= J A RT dz
D NA ( p A1 p A2 ) RTz
液相:
dcA NA= J A DAB dz
D N A (c A1 c A2 ) z
2.单向扩散及速率方程 (1)总体流动:因溶质A扩散
—混合物液相的密度,kg/m3。
4.气体总压与理想气体中组分的分压 总压与某组分的分压之间的关系: 摩尔比与分压之间的关系:
pA pyA
pA YA p pA
摩尔浓度与分压之间的关系:
nA pA cA V RT
§3 扩散原理-费克定律
分子扩散:在静止或滞流流体内部,若某一组分存 在浓度差,则因分子无规则的热运动使 该组分由浓度较高处传递至浓度较低处, 这种现象称为分子扩散。
p Bm
p B2 p B1 p B2 ln p B1
Dp NA ( PA1 PA2 ) RTzpBm
液相:
——积分式
Dc NA (C A1 C A2 ) zcSm
cSm cS2 cS1 cS2 ln cS1
——积分式
(4)讨论
1)组分A的浓度与扩散距离z为指数关系 2) p 、 c c
JA
等分子反向扩散:任一截面处两个组分的扩散速率
大小相等,方向相反。
DAB dp A JA RT dz D BA dp B JB RT dz
总压一定
p p A pB
dp A dp B = dz dz
JA=-JB
DAB=DBA=D
(2)等分子反向扩散传质速率方程
传质速率定义:任一固定的空间位置上, 单位时间
相关文档
最新文档