单相半控桥式晶闸管整流电路电阻负载
单相全控桥式晶闸管整流电路的设计(纯电阻负载)解读

1 单相桥式全控整流电路的功能要求及设计方案介绍1.1 单相桥式全控整流电路设计方案1.1.1 设计方案图1设计方案1.1.2 整流电路的设计主电路原理图及其工作波形图2 主电路原理图及工作波形主电路原理说明:(1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。
因此在0~α区间,4个晶闸管都不导通。
(2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。
(3)在u2负半波的(π~π+α)区间,在π~π+α间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。
(4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。
2 触发电路的设计2.1 晶闸管触发电路触发电路在变流装置中所起的基本作用是向晶闸管提供门极电压和门极电流,使晶闸管在需要导通的时刻可靠导通。
根据控制要求决定晶闸管的导通时刻,对变流装置的输出功率进行控制。
触发电路是变流装置中的一个重要组成部分,变流装置是否能正常工作,与触发电路有直接关系,因此,正确合理地选择设计触发电路及其各项技术指标是保证晶闸管变流装置安全,可靠,经济运行的前提。
,开始启动A/D转换;在A/D转换期间,START应保持低电平。
2.1.1 晶闸管触发电路的要求晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。
触发电路对其产生的触发脉冲要求:(1)触发信号可为直流、交流或脉冲电压。
(2)触发信号应有足够的功率(触发电压和触发电流)。
(3)触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。
电力电子技术第3章 习题答案

3章 交流-直流变换电路 课后复习题第1部分:填空题1.电阻负载的特点是 电压与电流波形、相位相同;只消耗电能,不储存、释放电能 ,在单相半波可控整流电阻性负载电路中,晶闸管控制角α的最大移相范围是 0° ≤a ≤ 180° 。
2.阻感负载的特点是 电感对电流变化有抗拒作用,使得流过电感的电流不发生突变 ,在单相半波可控整流带阻感负载并联续流二极管的电路中,晶闸管控制角α的最大移相范围是 0°≤a ≤ 180° ,2 ,续流二极管承受的最大反向电压2 (设U 2为相电压有效值)。
3.单相桥式全控整流电路中,带纯电阻负载时,α角移相范围为 0° ≤a ≤ 180° ,2 和2 ;带阻感负载时,α角移相范围为 0° ≤a ≤ 90° ,单个晶闸管所承受的最大正向电压和反向电压分别为22U 2 ;带反电动势负载时,欲使电阻上的电流不出现断续现象,可在主电路中直流输出侧串联一个 平波电抗器(大电感) 。
4.单相全控桥反电动势负载电路中,当控制角α大于不导电角δ时,晶闸管的导通角θ = 180°-2δ ; 当控制角α小于不导电角 δ 时,晶闸管的导通角 θ = 0° 。
5.从输入输出上看,单相桥式全控整流电路的波形与 单相全波可控整流电路 的波形基本相同,只是后者适用于 较低 输出电压的场合。
6.2 ,随负载加重U d 逐渐趋近于0.9 U 2,通常设计时,应取RC≥ 1.5~2.5T ,此时输出电压为U d ≈ 1.2 U 2(U 27.电阻性负载三相半波可控整流电路中,晶闸管所承受的最大正向电压U Fm 2 ,晶闸管控制角α的最大移相范围是 0°≤a ≤90° ,使负载电流连续的条件为 a ≤30° (U 2为相电压有效值)。
8.三相半波可控整流电路中的三个晶闸管的触发脉冲相位按相序依次互差 120° ,当它带阻感负载时,α的移相范围为 0°≤a ≤90° 。
2.1.4_单相桥式全控整流电路(电阻性负载)解析

4)输出电流有效值I与变压器二次侧电流I2 输出电流有效值I与变压器二次侧电流I2相同为
U U2 I I2 R R
1 π sin 2 2π π
4.3.2单相桥式全控整流电路(阻-感性负载)
1、电路结构
电感的感应电势使输出电压波形出现负波。输出电流是近似 平直的,晶闸管和变压器副边的电流为矩形波。
ud Ud
0
t1
t 2
t
iT1,4
id
Tr
iT2,3
0
Id
t
Id
i2 u2
VT1 a
VT3
L
0 u T1
t
u1
ud
b
VT2 VT4
0
R
u 2 (i2 )
t
u2 i2
Id
(a)
0
t
图4-4
(b)
2、工作原理
1)在u2正半波的(0~α)区间:
晶闸管VT1、VT4承受正压,但无触发脉冲,
3、波形
300
图4-2
600
900
1200
图4-3
1500
单相桥式整流器电阻性负载时的移相范围是 0~180º 。 α=0º 时,输出电压最高;α=180º 时,输出电压最小。
4. 基本数量关系 1)输出电压平均值Ud
1 Ud π
2U 2 sin tdt
4.3.1 单相桥式全控整流电路(电阻性负载)
1、电路结构 用四个晶闸管,两只晶闸管接成共阴极,两只晶闸管接成 共阳极,每一只晶闸管是一个桥臂。
ud (id )
Ud
单相桥式半控整流电路实验

实验二单相桥式半控整流电路实验一.实验目的1.研究单相桥式半控整流电路在电阻负载,电阻—电感性负载及反电势负载时的工作。
2.熟悉MCL—05组件锯齿波触发电路的工作。
3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法。
二.实验线路及原理见图4-6。
三.实验内容1.单相桥式半控整流电路供电给电阻性负载。
2.单相桥式半控整流电路供电给电阻—电感性负载(带续流二极管)。
3.单相桥式半控整流电路供电给反电势负载(带续流二极管)。
4.单相桥式半控整流电路供电给电阻—电感性负载(断开续流二极管)。
四.实验设备及仪器1.MCL系列教学实验台主控制屏。
2.MCL—18组件(适合MCL—Ⅱ)或MCL—31组件(适合MCL—Ⅲ)。
3.MCL—33组件或MCL—53组件(适合MCL—Ⅱ、Ⅲ、Ⅴ)4.MCL—05组件或MCL—05A组件5.MEL—03三相可调电阻器或自配滑线变阻器。
6.MEL—02三相芯式变压器。
7.二踪示波器8.万用电表五.注意事项1.实验前必须先了解晶闸管的电流额定值(本装置为5A),并根据额定值与整流电路形式计算出负载电阻的最小允许值。
2.为保护整流元件不受损坏,晶闸管整流电路的正确操作步骤(1)在主电路不接通电源时,调试触发电路,使之正常工作。
(2)在控制电压U ct =0时,接通主电源。
然后逐渐增大U ct ,使整流电路投入工作。
(3)断开整流电路时,应先把U ct 降到零,使整流电路无输出,然后切断总电源。
3.注意示波器的使用。
4.MCL —33(或MCL —53组件)的内部脉冲需断开。
5.接反电势负载时,需要注意直流电动机必须先加励磁六.实验方法1.将MCL —05(或MCL —05A ,以下均同)面板左上角的同步电压输入接MCL —18的U 、V 输出端(如您选购的产品为MCL —Ⅲ、Ⅴ,则同步电压输入直接与主控制屏的U 、V 输出端相连), “触发电路选择”拨向“锯齿波”。
单相全控桥式晶闸管整流电路(纯电阻负载)

在电源电压负半周,仍在触发延迟角α处触发T2和T3,T2和T3导通,电流从电源流入T2最后由T3流出,流回电源。当电源电压过零时,电流又降为0,T2和T3关断。此后又是T1和T4导通,如此循环工作下去。
由于在交流电源的正负半周都有整流输出电流流过负载,故该电路称为全波整流。
3.参数计算
流过晶闸管的电流有效值为:
电力电子综合课程设计报告
班级:自动化A班
********
学号:**********
第一部分
1.Matlab仿真电路图及参数设置
1.1仿真电路图
1.2系统参数设置
电源及晶闸管参数设置
触发信号参数设置
2.原理分析
单相桥式全控整流电路是单相整流电路中应用较多的。在单相桥式全控整流电路中,晶闸管T1和T4组成一对桥臂,T2和T3组成另外一对桥臂。在电源电压正半周,若4个晶闸管均没有被触发,则负载电流为0,负载电压也为0,T1和T4各承受一半电源电压。若在触发角α处给T1和T4加触发脉冲,T1和T4导通,电流从电源流入T1最后由T4流出,流回电源。当电源电压过零时,流经晶闸管的电流也降到0,T1和T4关断。
输出直流电流有效值 为:
由于本次仿真设计要求电源电压为100V/50Hz,最大输出功率为500W。又当触发延迟角为0度时,晶闸管导通时间最长,流过负载电流有效值最大,所以应使导通延迟角为0度时输出功率为500W。令上式α为00,Us为100V, 为 /25rad/s可得RL等于20 。
电力电子课题选择

自本1004班课题选择
1、单相半波晶闸管整流电路的设计(纯电阻负载):谢世峰,刘超,肖亮湘
2、单相半波晶闸管整流电路的设计(阻感负载):房帮亮,赵振江,罗涛
3、单相全控桥式晶闸管整流电路的设计(纯电阻负载):喻鹏,杨元友,刘伟
4、单相全控桥式晶闸管整流电路的设计(阻感负载):薛涛,袁林海,马佑军
5、单相半控桥式晶闸管整流电路的设计(阻感负载):刘爽,黄宗杰,葛取文
6、单相半控桥式晶闸管整流电路的设计(带续流二极管,阻感负载):吴磊,徐松松
7、MOSFET降压斩波电路设计(纯电阻负载):张旭,吴志,林鹏
8、IGBT降压斩波电路设计(纯电阻负载):崔倩雯,赵丽娜,王娥
9、升压斩波电路设计(纯电阻负载):邓静,乐力铭,刘奇
10、IGBT升压斩波电路设计(纯电阻负载):邵一峰,梁咏柏,喻盛
11、MOSFET单相桥式无源逆变电路设计(纯电阻负载):刘志伟,朱谣,提云凯
12、IGBT单相桥式无源逆变电路设计(纯电阻负载):刘一环,王向阳,舒乐军
13、MOSFET单相半桥无源逆变电路设计(纯电阻负载):阳发,刘相伟,王德龙
14、IGBT单相半桥无源逆变电路设计(纯电阻负载):
15、升降压斩波在直流可逆电动机调速中的应用:李敏,王文亮。
电力电子技术试题及答案(E)

一、填空(30分)1、双向晶闸管的图形符号是 ,三个电极分别是 , 和 ;双向晶闸管的的触发方式有 、 、 、 .。
2、单相全波可控整流电路中,晶闸管承受的最大反向电压为 。
三相半波可控整流电路中,晶闸管承受的最大反向电压为 。
(电源相电压为U 2)3、要使三相全控桥式整流电路正常工作,对晶闸管触发方法有两种,一是用 触发;二是用 触发。
4、在同步电压为锯齿波的触发电路中,锯齿波底宽可达 度;实际移相才能达 度。
5、异步电动机变频调速时,对定子频率的控制方式有 、 、 、 。
6、软开关电路种类很多,大致可分成 电路、 电路两大类。
7、变流电路常用的换流方式有 、 、 、 四种。
8、逆变器环流指的是只流经 、 而不流经 的电流,环流可在电路中加 来限制。
9、提高变流置的功率因数的常用方法有 、 、 。
10、绝缘栅双极型晶体管是以 作为栅极,以 作为发射极与集电极复合而成。
三、选择题(每题2分 10分)1、α为 度时,三相桥式全控整流电路,带电阻性负载,输出电压波形处于连续和断续的临界状态。
A 、0度。
B 、60度。
C 、30度。
D 、120度。
2、晶闸管触发电路中,若使控制电压U C =0,改变 的大小,使触发角α=90º,可使直流电机负载电压U d =0。
达到调整移相控制范围,实现整流、逆变的控制要求。
A 、 同步电压,B 、控制电压,C 、偏移调正电压。
3、能够实现有源逆变的电路为 。
A 、三相半波可控整流电路,B 、三相半控整流桥电路,C 、单相全控桥接续流二极管电路,D 、单相桥式全控整流电路。
4、如某晶闸管的正向阻断重复峰值电压为745V ,反向重复峰值电压为825V ,则该晶闸管的额定电压应为( ) A 、700V B 、750V C 、800V D 、850V5、单相半波可控整流电阻性负载电路中,控制角α的最大移相范围是( ) A 、90° B 、120° C 、150° D 、180° 四、问答题(20分)1、 实现有源逆变必须满足哪些必不可少的条件?(6分)2、根据对输出电压平均值进行控制的方法不同,直流斩波电路可有哪三种控制方式?并简述其控制原理。
电力电子技术试卷及答案

一、填空题(每空1分,34分)1、实现有源逆变的条件为和。
2、在由两组反并联变流装置组成的直流电机的四象限运行系统中,两组变流装置分别工作在正组状态、状态、反组状态、状态。
3、在有环流反并联可逆系统中,环流指的是只流经而不流经的电流.为了减小环流,一般采用αβ状态.4、有源逆变指的是把能量转变成能量后送给装置。
5、给晶闸管阳极加上一定的电压;在门极加上电压,并形成足够的电流,晶闸管才能导通。
6、当负载为大电感负载,如不加续流二极管时,在电路中出现触发脉冲丢失时与电路会出现失控现象.7、三相半波可控整流电路,输出到负载的平均电压波形脉动频率为H Z;而三相全控桥整流电路,输出到负载的平均电压波形脉动频率为H Z;这说明电路的纹波系数比电路要小。
8、造成逆变失败的原因有、、、等几种。
9、提高可控整流电路的功率因数的措施有、、、等四种。
10、晶闸管在触发开通过程中,当阳极电流小于电流之前,如去掉脉冲,晶闸管又会关断.三、选择题(10分)1、在单相全控桥整流电路中,两对晶闸管的触发脉冲,应依次相差度。
A 、180度;B、60度;C、360度;D、120度;2、α= 度时,三相半波可控整流电路,在电阻性负载时,输出电压波形处于连续和断续的临界状态。
A、0度;B、60度; C 、30度;D、120度;3、通常在晶闸管触发电路中,若改变的大小时,输出脉冲相位产生移动,达到移相控制的目的。
A、同步电压;B、控制电压;C、脉冲变压器变比;4、可实现有源逆变的电路为。
A、单相全控桥可控整流电路B、三相半控桥可控整流电路C、单相全控桥接续流二极管电路D、单相半控桥整流电路5、由晶闸管构成的可逆调速系统中,逆变角βmin选时系统工作才可靠。
A、300~350B、100~150C、00~100D、00四、问答题(每题9分,18分)1、什么是逆变失败?形成的原因是什么?2、为使晶闸管变流装置正常工作,触发电路必须满足什么要求?五、分析、计算题:(每题9分,18分)1、三相半波可控整流电路,整流变压器的联接组别是D/Y-5,锯齿波同步触发电路中的信号综合管是NPN型三极管.试确定同步变压器TS的接法钟点数为几点钟时,触发同步定相才是正确的,并画出矢量图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电气工程学院电力电子课程设计设计题目:单相半控桥式晶闸管整流电路(电阻负载)学号:姓名:同组人:指导教师:设计时间:设计地点:电力电子课程设计成绩评定表指导教师签字:年月日电力电子课程设计任务书学生姓名:指导教师:一、课程设计题目:单相半控桥式晶闸管整流电路(电阻负载)二、课程设计要求1. 根据具体设计课题的技术指标和给定条件,独立进行方案论证和电路设计,要求概念清楚、方案合理、方法正确、步骤完整;2. 查阅有关参考资料和手册,并能正确选择有关元器件和参数,对设计方案进行仿真;3. 完成预习报告,报告中要有设计方案,设计电路图,还要有仿真结果;4. 进实验室进行电路调试,边调试边修正方案;5. 撰写课程设计报告——最终的电路图、调试过程中遇到的问题和解决问题的方法。
三、进度安排2.执行要求课程设计共5个选题,每组不得超过2人,要求学生在教师的指导下,独力完成所设计的详细电路(包括计算和器件选型)。
严禁抄袭,严禁两篇设计报告雷同。
摘要本次课程设计的题目为:单相半控桥式晶闸管整流电路,其中负载为纯电阻负载。
电路设计的主要参数及要求:1、电源电压:交流100V/50Hz;2、输出功率:500W;3、移相范围:0º-180º。
对于单相半控桥式晶闸管整流电路(电阻负载),其电路设计的主要功能为:单相桥式半控整流电路的工作特点是晶闸管触发导通,而整流二极管在阳极电压高于阴极电压时自然导通。
单相桥式半控整流电路在纯电阻负载电流连续时,当相控角α<180°时,可实现将交流电功率变为直流电功率的相控整流,同时,调节触发电路,可改变触发角进行调压;在α>180°时,由于二极管的单相导电性,电路无法实现逆变,输出电压为零。
关键词:单相半控桥式晶闸管整流电路、纯电阻负载、相控角调节AbstractABSTRACT:Curriculum design topics: single-phase half-controlled bridge thyristor rectifier circuit, where the load is purely resistive load. The main parameters and requirements of the circuit design: 1, the power supply voltage: AC 100V/50Hz, output power: 500W; 2; 3, the phase shift range: 0 º ~180 º.For the single phase half controlled bridge thyristor rectifier circuit (resistive load), the main function of the circuit design:Characteristics of single phase bridge half controlled rectifier circuit is triggered thyristor turn-on, and rectifier diode is higher than that of cathode voltage in the anode voltage natural conduction.Single phase bridge half controlled rectifier circuit load current is continuous in the pure resistance, while the mouldings α <180 °, c an realize the phase control rectifier, AC power into DC power at the same time, adjusting trigger circuit, which can change the trigger angle regulator; when α >180 °, because the phase conductivity diode, the circuit can not be achieved inverter, output voltage to zero. KEYWORDS:S ingle phase half controlled bridge thyristor rectifier circuit, pure resistive load, adjust phase mouldings目录第一章系统方案设计 (1)一、主电路方案设计 (1)1.1主电路方案论证 (1)1.2主电路结构及其工作原理 (2)1.3参数计算 (3)1.4主电路器件选用 (3)二、控制电路方案设计 (4)2.1 触发控制电路方案 (4)2.1.1 方案一 (4)2.1.2 方案二 (5)第二章仿真 (8)一、主电路仿真 (8)1.1 仿真设置 (8)1.2 仿真结果 (10)二、控制电路仿真 (11)2.1 方案一仿真 (11)2.2 方案二仿真 (13)2.2.1 各部分电路分析与仿真 (14)2.2.2输出控制信号仿真 (17)第三章电路调试 (19)一、实物制作 (19)二、实际控制信号测量 (20)2.1 电路各组成部分输出波形 (20)2.2 控制信号输出波形 (21)第四章结论 (24)第五章心得体会与建议 (25)参考文献 (26)附录1:元器件清单 (27)第一章系统方案设计一、主电路方案设计1.1 主电路方案论证方案一:单相半控桥式整流电路(含续流二极管)单相桥式半控整流电路虽然具有电路简单、调整方便、使用元件少等优点,而且不会导致失控显现,续流期间导电回路中只有一个管压降,少了一个管压降,有利于降低损耗,如图1-1。
图 1-1含续流二极管方案二:单相半控桥式整流二极管(不含续流二极管)不含续流二极管的电路具有自续流能力,但一旦出现异常,会导致:一只晶闸管与两只二极管之间轮流导电,其输出电压失去控制,这种情况称之为“失控”。
失控时的的输出电压相当于单相半波不可控整流时的电压波形。
在失控情况下工作的晶闸管由于连续导通很容易因过载而损坏。
因为半导体本身具有续流作用,半控电路只能将交流电能转变为直流电能,而直流电能不能返回到交流电能中去,即能量只能单方向传递,如图1-2。
图 1-2不含续流二极管经过比较本设计选择方案一含续流二极管的单相半控桥式整流电路能更好的达到设计要求。
1.2 主电路结构及其工作原理单相桥式半控整流电路虽然具有电路简单、调整方便、使用元件少等优点,但却有整流电压脉动大、输出整流电流小的缺点。
其使用的电路图如下图2-1所示。
图1-3 主体电路结构原理图在交流输入电压u2的正半周(a端为正)时,Th1和D1承受正向电压。
这时如对晶闸管Th1引入触发信号,则Th1和D1导通电流的通路为u2+→Th1→R →D1→u2-。
这时Th2和D1都因承受反向电压而截至。
同样,在电压u2的负半周时,Th2和D2承受正向电压。
这时,如对晶闸管Th2引入触发信号,则Th2和D2导通,电流的通路为:u2-→Th2→R→D2→u2+。
这时Th1和D1处于截至状态。
显然,与单相半波整流相比较,桥式整流电路的输出电压的平均值要大一倍,即输出电压的平均值:U o=0.9U∙1+2cosα2输出电流的平均值:I o=U oR L=0.9UR L∙1+cosα21.3 参数计算输出电压平均值:U d=0.9U2∙1+cosα2输出电流平均值:I d=U d R流过晶闸管电流有效值:I Tℎ=I √2交流侧相电流的有效值:I2=√π−αα∙I d续流管电流有效值:I D=√απ∙I d1.4 主电路器件选用:由已知条件可知U1=100V P o=500W 移相范围0°—180°假设R=1.25Ω,α=0°,可得:U d=√P o R=25VI d=U d=20A输出电压有效值:U2=U d=25V所以变压器变比:N2=100:25=4:1变压器选用变压器容量S=500V A 变比N2取4:1晶闸管选用(考虑裕量)额定电压:U T=(2−3)√2U2=(70.71−106.07)V 额定电流:I T=√2I d=28.28A流过晶闸管电流有效值:I rms=10√2=14.14A 晶闸管平均电流(有裕量):I AV=(1.5−2)×I rms1.57=(13.51−18.02)A故选用额定电压为100V,通态平均电流为20A的晶闸管。
二、控制电路方案设计为保证相控电路的正常工作,很重要的一点是应保证按触发角a的大小在正确的时刻向电路中的晶闸管施加有效的触发脉冲。
2.1 触发控制电路方案对于触发电路通常有如下要求:●触发电路输出的脉冲必须具有足够的功率;●触发脉冲必须与晶闸管的主电压保持同步;●触发脉冲能满足主电路移相范围的要求;●触发脉冲要具有一定的宽度,前沿要陡。
2.1.1 方案一:单结晶体管自激振荡电路:1. 电源接通:E通过Re对C充电,时间常数为ReC;2. Uc增大,达到UP ,单结晶体管导通,C通过R1放电;3. Uc减少,达到Uv,单结晶体管截止,uR1 下降,接近于零;4. 重复充放电过程。
Re的值不能太大或太小,满足电路振荡的Re的取值范围:E−U P I P ≥R e≥E−U VI V图2-1 仿真电路图2.1.2 方案二:图2-2 控制电路原理图图2-3 仿真电路图主要元器件(1)LM339LM339引脚图 LM393引脚图主要功能:LM339内部装有四个独立的电压比较器,每个比较器有两个输入端和一个输出端。
两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。
在任意一个输入端加一个固定电压做参考电压,另一端加一个待比较的信号电压。
当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。
当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。
LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。
选不同阻值的上拉电阻会影响输出端高电位的值。
另外,各比较器的输出端允许连接在一起使用。
由于本次实验过程中LM339较为紧缺,所以我们改用LM393进行试验,因为LM339与LM393的功能与性能较为接近,只是封装稍有不同。
(2)LM324主要功能:LM324系列器件为价格便宜的带有真差动输入的四运算放大器。