动力学课后思考题答案
第六章化学动力学习题参考答案

t1In 2/ k In 2/(5.07 103) 136.7d
2
t 1ln——Ca^————1ln^^ 454.2d kCa,00.9Ca,05.07 1031 0.9
2.已知某药物在体内的代谢过程为某简单级数反应,给某病人在上午8时注射该 药物,然后分别经过不同时刻t测定药物在血液中的浓度c(以mmoI?L-1表示),得到 如下数据:
Ink298W口)
k283RTT2
2.49 104(298 283)4
In k298In3.19 1047.51
2988.314 283 293
k2985.48 104d1
25oC时该药物的有效期为:
7对丁一级反应,试证2303率达到87、2%0册时间为转戮达到
t有效(298K)2—lg————.~0"lg,
要的时间就是2min,求A消耗掉初浓度的2/3所需要的时间。
-11…
由——kAt
CaCa,0
的3倍。知丁二级反应窗况乂炯A?5.48 104d1cA,00&抓
解:对丁一级反应有峪切2ln2
k1t2ln ln^A0ln8t2ln8 3
t〔/2ln 2
时A的浓度为1molL-1,B、C的浓度均为0。
(1)求当B的浓度达到最大时的时间tmax;
(2)该时刻A、B、C的浓度分别为多少?
解:(1)B浓度达到最大时的时间
解:反应由最后一步决定,所以
d[R] rk2[PC]
dt
平衡态近似,k1[PJ][C] k1[PC]
k1[FU][C]
所以[PC]--
代入得,r业[R][C] k[R] k1
6.已知某药物分解反应为一级反应,在1000C时测得该药物的半衰期为170d。该 药物分解20%为失效,已知100C时其有效期为2a(按700d计)。若改为室温下(250C)保存,该药物的有效期为多少天?
高等动力学课后习题答案及考题解答

J ξη =
w
(V )
∫ ρξη dV = ρ ∫ ( x cos θ + y sin θ )( y cos θ − x sin θ )dV
(V )
w w
⎧ξ = x cos θ + y sin θ ⎩η = y cos θ − x sin θ
= ( ∫ ρ y 2 dV −
(V ) z =0
.n
∫ ρ x dV ) sin θ cos θ + (cos
ψ = ψ t = 15t
ω y = ω sinψ = 20sin15t
i
ω x = ω cosψ = 20 cos15t
∴ω = 20 cos15ti + 20sin15t j ⇒ ε = −300sin15ti + 300 cos15t j ⇒ ε = 300
理工大机械论坛让你学习更轻松!
.cn
2 (V )
2 (V )
∫ ρ(x
(V )
∫ ρ(z
∫ ρ(x
tjx
(V )
∵ Jz =
∫ ρ (x
2
+ y 2 )dV
Jx =
∫ ρ (z
2
+ y 2 )dV
Jy =
+ z 2 )dV ⇒
即该刚体为薄片平面
2、 ξ 轴在 xoy 中的方向余弦为 (cos θ ,sin θ )
J ξ = α ξ2 J x + βξ2 J y − 2α ξ βξ J xy = cos 2 θ J x + sin 2 θ J y − 2sin θ cos θ J xy
= ω × j' ⋅ k ' = ω ⋅ ( j' × k ' ) = ω ⋅ i' = p
结构动力学思考题解答by李云屹

结构动力学思考题made by 李云屹思考题一1、结构动力学与静力学的主要区别是什么结构的运动方程有什么不同主要区别为:(1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响;(2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化;(3)动力学的求解方法通常与荷载类型有关,静力学一般无关。
运动方程的不同:动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。
2、什么是动力自由度什么是静力自由度区分动力自由度和静力自由度的意义是什么动力自由度:确定结构体系质量位置的独立参数;静力自由度:确定结构体系在空间中的几何位置的独立参数。
意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。
3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体系,它们所采用的手法有什么不同4、在结构振动的过程中引起阻尼的原因有哪些(1)材料的内摩擦或材料变形引起的热耗散;(2)构件连接处或结构构件与非结构构件之间的摩擦;(3)结构外部介质的阻尼。
5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变 如果满足条件: (1)线性问题;(2)重力的影响预先被平衡;则动位移的运动方程不会改变,否则会改变。
思考题二1、刚度系数k ij 和质量系数m ij 的直接物理意义是什么如何直接用m ij 的物理概念建立梁单元的质量矩阵[M]k ij :由第j 自由度的单位位移所引起的第i 自由度的力; m ij :由第j 自由度的单位加速度所引起的第i 自由度的力。
依次令第j (j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i 自由度上的力,从而得到m ij ,集成得到质量矩阵[M]。
2、如何用刚度矩阵和质量矩阵,以矩阵的形式表示多自由度体系的势能和动能{}[]{}1=2TT u M u {}[]{}1=2TV u K u3、建立多自由度体系运动方程的直接动力平衡法和拉格朗日方程法的优缺点是什么 (1)直接动力平衡法:优点:概念直观,易于通过各个结构单元矩阵建立整体矩阵,便于计算机编程。
大学物理化学7动力学课后习题及答案

动力学课后习题习题1某溶液中反应A+B →Y 开始时A 与B 的物质的量相等,没有Y ,1h 后A 的转化率为75%,问2h 后A 尚有多少未反应?假设: (1)对A 为一级,对B 为零级; (2)对A ,B 皆为一级; (3)对A ,B 皆为零级。
习题2某反应A →Y +Z ,在一定温度下进行,当t=0,c A,0=1mOl ·dm -3时,测定反应的初始速率υA,0=0.01mOl ·dm -3·s -1。
试计算反应物A 的物质的量浓度c A =0.50mOl ·dm -3及x A =0.75时,所需时间,若对反应物A (i)0级;(ii)1级;(iii)2级;习题3已知气相反应2A+B →2Y A 和B 按物质的量比2:1引入一抽空的反应器中,反应温度保持400K 。
反应经10min 后测得系统压力为84kPa ,经很长时间反应完了后系统压力为63kPa 。
试求:(1)气体A 的初始压力p A,0及反应经10min 后A 的分压力p A ; (2)反应速率系数k A ; (3)气体A 的半衰期。
习题4反应2A(g)+B(g)Y(g)的动力学方程为-tc d d B=k B A 与B 的摩尔比为2∶1的混合气体通入400K 定容容器中,起始总压力为3.04kPa ,50s 后,总压力变为2.03kPa ,试求反应的反应速率系数k B 及k A 。
习题5已知反应2HI →I 2+H 2,在508℃下,HI 的初始压力为10132.5Pa 时,半衰期为135min ;而当HI 的初始压力为101325Pa 时,半衰期为13.5min 。
试证明该反应为二级,并求出反应速率系数(以dm 3·mol -1·s -1及以Pa -1·s -1表示)。
习题6某有机化合物A ,在酸的催化下发生水解反应。
在50℃,pH=5和pH =4的溶液中进行时,半衰期分别为138.6min 和13.86min ,且均与c A,0无关,设反β]H [d d A A A )(+=-c c k tc a(i)试验证:α=1,β=1 (ii)求50℃时的k A(iii)求在50℃,pH=3的溶液中,A 水解75%需要多少时间?习题7在定温定容下测得气相反应的速率方程为:A p A 720K 时,当反应物初始压力p A,0=1333Pa ,p B,0=3999Pa 时测出得用总压力表示的初始反应速率为-t=0=200Pa -1·min -1。
地下水动力学课后思考题及其参考答案

整理课件
15
第五章 包气带水的运动
(1)当潜水水位下降时,支持毛细水和悬挂毛细水的运动有什么不 同特点?
当潜水水位下降时,支持毛细水随水位向下运动,悬挂毛细水 不运动。 (2)对于特定的均质包气带,其渗透系数随着岩石含水量的增加而 增大直至为一常数,所以渗透系数是含水量的函数;
正确。参见P48中。
详见P7、P8。
第二章 岩石中的空隙与水
(1)对比以下概念: 孔隙度和孔隙比; 详见P15中。
(2)在一个孔隙度为30%的砾石堆积体中,充填了孔隙度为60%的粉 质粘土,试估算该堆积体的实际孔隙度。
P17中:n=30%×60%=18%。 (3)粘性土的孔隙特点?
粘性土中结构孔隙和次生孔隙(虫孔、根孔、裂缝等)的存在, 使得粘性土的孔隙率超过理论最大值很多。
(2)潜水含水层的给水度和承压含水层的给水度存在很大 的区别,你知道为什么吗?
参见P33。
整理课件
8
(3)请对以下陈述作出辨析: >>在排泄区,地下水不接受大气降水的补给; 不正确,在排泄区也可接受补给。 >>只有测压水位高于地面的地下水才叫承压水; 不正确,只要测压水位高于隔水顶板的地下水都为承压水。 >>地面的污染物可通过包气带扩散到潜水中,但不会影响承压水。 错误,只要承压水与潜水有水力联系,就会受到影响。
12
(2)请对以下陈述作出辨析 >>潜水面如果不是流线,则流线可能向下穿越潜水面,也可
能向上穿越潜水面; 正确。
>>地下水总是从高处往低处流; 错误,地下水总是从能量高的地方流向能量低的地方。
>>含水层孔隙度越大,则渗透系数越大; 错误,粘土的孔隙度很大,但其渗透系数很小。
动力学课后习题答案

第一章 质点动力学1-3 解:运动方程:θtan l y =,其中kt =θ。
将运动方程对时间求导并将030=θ代入得34cos cos 22lk lk l y v ====θθθ938cos sin 2232lk lk ya =-==θθ1-6证明:质点做曲线运动,所以质点的加速度为:n t a a a +=,设质点的速度为v ,由图可知: aa v v y n cos ==θ,所以: yv v a a n =将c v y =,ρ2n va =代入上式可得 ρc va 3=证毕 1-7证明:因为n2a v=ρ,va a v a ⨯==θsin n所以:va ⨯=3vρ证毕1-10解:设初始时,绳索AB 的长度为L ,时刻t 时的长度 为s ,则有关系式:t v L s 0-=,并且 222x l s +=将上面两式对时间求导得:0v s -= ,x x s s 22=由此解得:xsv x 0-= (a )(a)式可写成:s v x x 0-= ,将该式对时间求导得:2002v v s x x x=-=+ (b)xoovovFNFgmyθ将(a)式代入(b)式可得:3220220xl v xxv xa x -=-== (负号说明滑块A 的加速度向上)取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:gF F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的运动微分方程:N F F y m F mg x m +-=-=θθsin cos其中:2222sin ,cos lx l lx x +=+=θθ0,3220=-=yxl v x将其代入直角坐标形式的运动微分方程可得:23220)(1)(x l xl v g m F ++=1-11解:设B 点是绳子AB 与圆盘的切点,由于绳子相对圆盘无滑动,所以R v B ω=,由于绳子始终处于拉直状态,因此绳子上A 、B 两点的速度在 A 、B 两点连线上的投影相等,即:θcos A B v v = (a )因为x Rx 22cos -=θ (b )将上式代入(a )式得到A 点速度的大小为:22Rx x Rv A -=ω (c )由于x v A -=,(c )式可写成:Rx R x xω=--22 ,将该式两边平方可得:222222)(x R R x x ω=-将上式两边对时间求导可得:x x R x x R x x x 2232222)(2ω=--将上式消去x2后,可求得: 22242)(R x xR x--=ω (d)由上式可知滑块A 的加速度方向向左,其大小为 22242)(R x xR a A -=ω取套筒A 为研究对象,受力如图所示,根据质点矢量形式的运动微分方程有:gF F a m m N ++=将该式在y x ,轴上投影可得直角坐标形式的 运动微分方程:mg F F ym F x m N -+=-=θθsin cos其中:xR x x R 22cos ,sin -==θθ, 0,)(22242=--=yR x x R xω将其代入直角坐标形式的运动微分方程可得2525)(,)(225222242R x x R m mg F R x xR m F N --=-=ωω1-13解:动点:套筒A ;动系:OC 杆;定系:机座;运动分析:绝对运动:直线运动;相对运动:直线运动;牵连运动:定轴转动。
结构动力学思考题解答by李云屹

结构动力学思考题made by 李云屹思考题一1、结构动力学与静力学的主要区别是什么?结构的运动方程有什么不同?主要区别为:(1)动力学考虑惯性力的影响,静力学不考虑惯性力的影响;(2)动力学中位移等量与时间有关,静力学中位移等量不随时间变化;(3)动力学的求解方法通常与荷载类型有关,静力学一般无关。
运动方程的不同:动力学的运动方程包括位移项、速度项和加速度项;静力学的平衡方程只包括位移项。
2、什么是动力自由度?什么是静力自由度?区分动力自由度和静力自由度的意义是什么?动力自由度:确定结构体系质量位置的独立参数;静力自由度:确定结构体系在空间中的几何位置的独立参数。
意义:通过适当的假设,当静力自由度数大于动力自由度数时,使用动力自由度可以减少未知量,简化计算,提高计算效率。
3、采用集中质量法、广义坐标法和有限元法都可以使无限自由度体系简化为有限自由度体系,它们所采用的手法有什么不同?4、在结构振动的过程中引起阻尼的原因有哪些?(1)材料的内摩擦或材料变形引起的热耗散;(2)构件连接处或结构构件与非结构构件之间的摩擦;(3)结构外部介质的阻尼。
5、在建立结构运动方程时,如考虑重力的影响,动位移的运动方程有无改变?如果满足条件:(1)线性问题;(2)重力的影响预先被平衡;则动位移的运动方程不会改变,否则会改变。
思考题二1、刚度系数k ij和质量系数m ij的直接物理意义是什么?如何直接用m ij的物理概念建立梁单元的质量矩阵[M]?k ij:由第j自由度的单位位移所引起的第i自由度的力;m ij:由第j自由度的单位加速度所引起的第i自由度的力。
依次令第j(j=1,2,3,4)自由度产生单位加速度,而其他的广义坐标处保持静止,使用平衡方程解出第i自由度上的力,从而得到m ij,集成得到质量矩阵[M]。
2、如何用刚度矩阵和质量矩阵,以矩阵的形式表示多自由度体系的势能和动能?{}[]{}1=2TT u M u {}[]{}1=2TV u K u3、建立多自由度体系运动方程的直接动力平衡法和拉格朗日方程法的优缺点是什么? (1)直接动力平衡法:优点:概念直观,易于通过各个结构单元矩阵建立整体矩阵,便于计算机编程。
动力学课后习题答案

动力学课后习题答案动力学课后习题答案动力学是物理学中的一个重要分支,研究物体的运动以及运动的原因和规律。
在学习动力学的过程中,课后习题是巩固知识、检验理解的重要方式。
下面将为大家提供一些动力学课后习题的答案,希望能够帮助大家更好地理解和掌握动力学知识。
1. 一个物体以5m/s的速度匀速运动了10秒,求物体的位移是多少?答:位移等于速度乘以时间,即位移=速度×时间=5m/s×10s=50m。
2. 一个物体以2m/s²的加速度匀加速运动了8秒,求物体的位移是多少?答:位移等于初速度乘以时间再加上加速度乘以时间的平方的一半,即位移=初速度×时间+0.5×加速度×时间²=0×8s+0.5×2m/s²×(8s)²=64m。
3. 一个物体以10m/s的速度向上抛出,经过2秒后落地,求物体的最大高度是多少?答:物体的最大高度等于初速度的平方除以2倍的重力加速度,即最大高度=(初速度²)/(2×重力加速度)=(10m/s)²/(2×9.8m/s²)≈5.1m。
4. 一个物体以20m/s的速度水平抛出,求物体在2秒后的水平位移是多少?答:物体在水平方向的速度是恒定的,所以水平位移等于速度乘以时间,即水平位移=速度×时间=20m/s×2s=40m。
5. 一个物体以10m/s的速度水平抛出,求物体在2秒后的竖直位移是多少?答:物体在竖直方向上受到重力的作用,所以竖直位移等于初速度乘以时间再加上0.5倍的重力加速度乘以时间的平方,即竖直位移=初速度×时间+0.5×重力加速度×时间²=10m/s×2s+0.5×9.8m/s²×(2s)²=19.6m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22
2
2 12
3 m R2 2 m R2 2 m R2 2 cos 1 m R2 2 m gRcos C
4
6
23 mR2 2 mR2 2 cos mgRcos C
12
两边对时间t求导数
23 mR2 2mR2cos mR2 3 sin mgR sin 0
2
3
5 mR2 3mR2 m 2R2 m gR
6
210g
529R
X 0 F 144 mg 529
Y 0
FN
848 mg 529
2. 如图所示, 均质圆轮质量为m1, 半径为R, 放在粗糙水平面上, 均质杆BC质量为m2 , 长 为2R, 用铰链连接于轮心C. 开始时系统静止, 杆BC位于铅锤位置. 杆BC受小的扰动后 倒下, 设圆盘在地面上作纯滚动, 求当杆BC运动到水平位置时,
B
解: (1) 由动能定理: T2 T1 WA
1
2
3 2
mR
2
2
1 2
1 12
m2R2
2R 2 m 2 0 mgR
C
2 12g
2 3g
23R
23R
(2)
VC R 2
3gR 23
C
B
(3) 轮杆组合体运动到任意位置时由机械能
FN 2m g
529
mg 529
另解: 求解某时刻的加速度和约束力, 还可用达朗伯原理.
FgC mR FgeO mR
M gC
FgrOy
M gO
Fr gOx
m 2R
Fr gOy
mR
FgC
C
aC
mg
aOr x
FgeO
O aOe
FgrOx
aOr y
R
m1 x m2 x R cos 0
t
Fdt
0
取圆轮分析:
由对质心的动量矩定理
1
2
m1
R
2
x O R
t
FRdt
0
B
O
x
C
R
m2 g
m1 x m2 x R cos 0
t
Fdt
0
1
2
轮心C加速度大小
aC
R 210g 529
由动量定理:
mi ai Fie
FN
x 方向: maC maOx F
F 210mg 66mg 144 mg 529 529 529
y 方向: ma Oy FN 2mg
FN ma Oy 2mg
210mg 848
a Bx
R 2 2 R
210g 24g 342g 529 23 529
aBy
2R
420g 529
F
y
FN
(5) 求地面对圆轮的法向反力和摩擦力的大小.
x
C
arn O ae B
aC
art
mg
F
先求BC杆中心O点的加速度
aOx R 2 R
B
M gC
1 2
m R2
mD 0
M gO
1 3
m R2
mg
MgC
MgO
FgC
R
FgeO
R
Fr gOy
R
Fr gOx
Hale Waihona Puke RmgR 0
F
D
FN
2 2 12g 23R
1 mR2 1 mR2 mR2 mR2 mR2 m 2R2 mgR 0
m1
6
B
O
mgR
C
R
D
23 mR2 2mR2cos mR2 2 sin mgRsin 0
6
当 = 900 时
2 2 12g 23R
上式为
23 mR2 mR2 12g mgR 0
6
23R
B
O
mgR
C
R
D
y
上式为
23 mR2 mR2 12g mgR 0
6
23R
210g
529R
轮心C加速度大小
aC
R
210g 529
(4) 杆上B点的加速度的大小
2 2 12g
23R 210g
529R
C
aC
Oa
n BC
B aC
x
mg
a
t BC
守恒可得:
T V C
选过C水平面为重力势能零点, 对任意位置, 系统有
1 2
J D 2
1 2
m VO2
1 2
JO 2
m gRcos
C
1 3 mR2 2 1 m R R cos 2 2R2 sin2 1 1 m2R2 2 mgRcos C
(1)杆BC的角速度的大小; (2) 圆轮心C的速度的大小; (3) 杆BC的角加速度的大小;
(4) 圆轮心C的加速度的大小; (5) 地面对圆轮的法向反力和摩擦力的大小.
B
解: 系统有两个自由度, 选 x 、 为广义坐标
x
x
F
C x
FCy
F
C
FCx
FN
O
C m2g
FN
B
取系统分析:
由动量定理的水平方向投影
210g 12g 66g 529 23 529
aOy
R
210g 529
FN
y
(5) 求地面对圆轮的法向反力和摩擦力的大小.
C
arn O ae B x
mg aC
art
mg
F
aOx R 2 R
66g 529
aOy
R
210g 529
m1
R
2
x O R
t 0
FRdt
即是 两式联立可得:
m1 x m2 x m2R cos
t
Fdt
0
1
2
m1 x
t
Fdt
0
3 2
m1 x
m2 x
m2R cos
0
(1)
由系统的动能定理: T2 T1 WA
x C
3 4