ADC 静态参数动态参数
高速ADC几个关键指标的定义

高速ADC几个关键指标的定义介绍高速ADC几个指标的定义一个基本概念分贝(dB):按照对数定义的一个幅度单位。
对于电压值,dB以20log(V A/V B)给出;对于功率值,以10log(P A/P B)给出。
dBc是相对于一个载波信号的dB值;dBm是相对于1mW的dB值。
对于dBm而言,规格中的负载电阻必须是已知的(如:1mW提供给50Ω),以确定等效的电压或电流值。
静态指标定义:量化误差(Quantization Error)量化误差是基本误差,用图3所示的简单3bit ADC来说明。
输入电压被数字化,以8个离散电平来划分,分别由代码000b到111b去代表它们,每一代码跨越Vref/8的电压范围。
代码大小一般被定义为一个最低有效位(Least Significant Bit,LSB)。
若假定Vref=8V时,每个代码之间的电压变换就代表1V。
换言之,产生指定代码的实际电压与代表该码的电压两者之间存在误差。
一般来说,0.5 LSB偏移加入到输入端便导致在理想过渡点上有正负0.5LSB的量化误差。
图3 理想ADC转换特性偏移与增益误差(Offset Gain Error)器件理想输出与实际输出之差定义为偏移误差,所有数字代码都存在这种误差。
在实际中,偏移误差会使传递函数或模拟输入电压与对应数值输出代码间存在一个固定的偏移。
通常计算偏移误差方法是测量第一个数字代码转换或“零”转换的电压,并将它与理论零点电压相比较。
增益误差是预估传递函数和实际斜率的差别,增益误差通常在模数转换器最末或最后一个传输代码转换点计算。
为了找到零点与最后一个转换代码点以计算偏移和增益误差,可以采用多种测量方式,最常用的两种是代码平均法和电压抖动法。
代码平均测量就是不断增大器件的输入电压,然后检测转换输出结果。
每次增大输入电压都会得到一些转换代码,用这些代码的和算出一个平均值,测量产生这些平均转换代码的输入电压,计算出器件偏移和增益。
ADC参数解释和关键指标

第五章ADC 静态电参数测试(一)翻译整理:李雷本文要点:ADC 的电参数定义ADC 电参数测试特有的难点以及解决这些难题的技术ADC 线性度测试的各类方法ADC 数据规范(Data Sheet)样例快速测试ADC 的条件和技巧用于ADC 静态电参数测试的典型系统硬件配置关键词解释失调误差 Eo(Offset Error):转换特性曲线的实际起始值与理想起始值(零值)的偏差。
增益误差E G(Gain Error):转换特性曲线的实际斜率与理想斜率的偏差。
(在有些资料上增益误差又称为满刻度误差)线性误差Er(Linearity Error):转换特性曲线与最佳拟合直线间的最大偏差。
(NS 公司定义)或者用:准确度E A(Accuracy):转换特性曲线与理想转换特性曲线的最大偏差(AD 公司定义)。
信噪比(SNR): 基频能量和噪声频谱能量的比值。
一、ADC 静态电参数定义及测试简介模拟/数字转换器(ADC)是最为常见的混合信号架构器件。
ADC是一种连接现实模拟世界和快速信号处理数字世界的接口。
电压型ADC(本文讨论)输入电压量并通过其特有的功能输出与之相对应的数字代码。
ADC的输出代码可以有多种编码技术(如:二进制补码,自然二进制码等)。
测试ADC 器件的关键是要认识到模/数转换器“多对一”的本质。
也就是说,ADC 的多个不同的输入电压对应一个固定的输出数字代码,因此测试ADC 有别于测试其它传统的模拟或数字器件(施加输入激励,测试输出响应)。
对于 ADC,我们必须找到引起输出改变的特定的输入值,并且利用这些特殊的输入值计算出ADC 的静态电参数(如:失调误差、增益误差,积分非线性等)。
本章主要介绍ADC 静态电参数的定义以及如何测试它们。
Figure5.1:Analog-to-Digital Conversion Process. An ADC receives an analog input and outputs the digital codes that most closely represents then input magnitude relative to full scale.1.ADC 的静态电参数规范ADC的静态电参数主要验证器件的输入-输出转换曲线符合设计(理想)曲线的程度。
高速模数转换器动态参数的定义和测试

高速模数转换器动态参数的定义和测试一、动态参数高速模数转换器(adc)的参数定义和描述如表1 所示。
表一、动态参数定义:二、测试方案中的线路板布局和硬件需求为合理测试高速adc 的动态参数,最好选用制造商预先装配好的电路板,或是参考数据手册中推荐的线路板布局布板,高速数据转换器的布板需要高速电路的设计技巧,通常应遵守以下基本规则:所有的旁路电容尽可能靠近器件安装,最好和adc 在同一层面,采用表面贴装元件使引线最短,减小寄生电感和电容。
模拟电源、数字电源、基准电源和输入公共端采用两个0.1mf 的陶瓷电容和一个2.2m(f 双极性电容并联对地旁路。
采用具有独立的地平面和电源平面的多层电路板,保证信号的完整性。
采用独立的接地平面时应考虑adc 模拟地和数字地的物理位置。
两个地平面之间的阻抗要尽可能低,二者间的交流和直流电压差低于0.3v 以避免器件的损坏和死锁。
模拟地与数字地应单点连接,可以用低阻值表贴电阻(1ω~5ω)、铁氧体磁珠连接或直接短路,避免充满噪声的数字地电流对模拟地的干扰。
如果模拟地与数字地充分隔离时,也可以将所有的接地引脚置于同一平面。
高速数字信号线应远离敏感的模拟信号线。
所有的信号线应尽可能短,而且无90(拐角。
时钟输入要作为模拟输入信号来处理,远离任何模拟输入和数字信号。
选择恰当的测试方案和正确的测试设备是获得数据转换器最佳参数的重要环节。
以下提出的硬件选择方案对高速adc max1448 的测试是必需的,也是行之有效的。
直流电源(hewlett packard e3620a, 双电源0-25v, 0-1a):为模拟和数字电路提供独立的供电电源。
每个电源必须能够提供100ma 的驱动电流。
ADC参数解释和关键指标

第五章 ADC静态电参数测试(一)翻译整理:李雷本文要点:ADC的电参数定义ADC电参数测试特有的难点以及解决这些难题的技术ADC线性度测试的各类方法ADC数据规范(Data Sheet)样例快速测试ADC的条件和技巧用于ADC静态电参数测试的典型系统硬件配置关键词解释失调误差Eo(Offset Error):转换特性曲线的实际起始值与理想起始值(零值)的偏差。
增益误差E G(Gain Error):转换特性曲线的实际斜率与理想斜率的偏差。
(在有些资料上增益误差又称为满刻度误差)线性误差Er(Linearity Error):转换特性曲线与最佳拟合直线间的最大偏差。
(NS公司定义)或者用:准确度E A(Accuracy):转换特性曲线与理想转换特性曲线的最大偏差(AD 公司定义)。
信噪比(SNR): 基频能量和噪声频谱能量的比值。
一、 ADC静态电参数定义及测试简介模拟/数字转换器(ADC)是最为常见的混合信号架构器件。
ADC是一种连接现实模拟世界和快速信号处理数字世界的接口。
电压型ADC(本文讨论)输入电压量并通过其特有的功能输出与之相对应的数字代码。
ADC的输出代码可以有多种编码技术(如:二进制补码,自然二进制码等)。
测试ADC器件的关键是要认识到模/数转换器“多对一”的本质。
也就是说,ADC的多个不同的输入电压对应一个固定的输出数字代码,因此测试ADC有别于测试其它传统的模拟或数字器件(施加输入激励,测试输出响应)。
对于ADC,我们必须找到引起输出改变的特定的输入值,并且利用这些特殊的输入值计算出ADC的静态电参数(如:失调误差、增益误差,积分非线性等)。
本章主要介绍ADC静态电参数的定义以及如何测试它们。
Figure5.1:Analog-to-Digital Conversion Process. An ADC receives an analog input and outputs the digital codes that most closely represents then input magnitude relative to full scale.1.ADC的静态电参数规范ADC的静态电参数主要验证器件的输入-输出转换曲线符合设计(理想)曲线的程度。
ADC的分类比较及性能指标

ADC的分类比较及性能指标1 A/D转换器的分类与比较 (1)1.1 逐次比较式ADC (1)1.2 快闪式(Flash)ADC (2)1.3 折叠插值式(Folding&Interpolation)ADC (3)1.4 流水线式ADC (4)1.5 ∑-Δ型ADC (6)1.6 不同ADC结构性能比较 (6)2 ADC的性能指标 (7)2.1 静态特性指标 (7)2.2 动态特性指标 (11)1 A/D转换器的分类与比较A/D转换器(ADC)是模拟系统与数字系统接口的关键部件,长期以来一直被广泛应用于雷达、通信、电子对抗、声纳、卫星、导弹、测控系统、地震、医疗、仪器仪表、图像和音频等领域。
随着计算机和通信产业的迅猛发展,进一步推动了ADC在便携式设备上的应用并使其有了长足进步,ADC正逐步向高速、高精度和低功耗的方向发展。
通常,A/D转换器具有三个基本功能:采样、量化和编码。
如何实现这三个功能,决定了A/D转换器的电路结构和工作性能。
A/D转换器的分类很多,按采样频率可划分为奈奎斯特采样ADC和过采样ADC,奈奎斯特采样ADC又可划分为高速ADC、中速ADC和低速ADC;按性能划分为高速ADC和高精度ADC;按结构划分为串行ADC、并行ADC和串并行ADC。
在频率范围内还可以按电路结构细分为更多种类。
中低速ADC可分为积分型ADC、过采样Sigma-Delta型ADC、逐次逼近型ADC、Algonithmic ADC;高速ADC可以分为闪电式ADC、两步型ADC、流水线ADC、内插性ADC、折叠型ADC和时间交织型ADC。
下面主要介绍几种常用的、应用最广泛的ADC结构,它们是:逐次比较式(S A R)ADC、快闪式(F l a s h)ADC、折叠插入式(F o ld i n g&Interpolation)ADC、流水线式(Pipelined)ADC和∑-Δ型A/D转换器。
1.1 逐次比较式ADC图1 SAR ADC原理图图1是SAR ADC的原理框图。
搞清ADC的动态范围(DR)和有效位数(ENOB)

搞清ADC的动态范围(DR)和有效位数(ENOB)模数转换器即A/D转换器,简称ADC,将模拟信号转变为数字信号。
输入端输入的模拟电压,经采样、保持、量化和编码四个过程的处理,转换成对应的二进制数码输出。
典型的数据采样系统采样是利用模拟开关将连续变化的模拟量变成离散的数字量,由于经采样后形成的数字量宽度较窄,经过保持电路可将窄脉冲展宽,形成梯形波。
量化是将阶梯形模拟信号中各个电压值转化为某个最小单位的整数倍,便于用数字量来表示。
编码是将量化的结果(即整数倍值)用二进制数码来表示。
这个过程则实现了模数转换。
01分辨率与动态范围ADC分辨率为用于表示模拟输入信号的位数。
为了更准确地复现模拟信号,须提高分辨率,使用较高分辨率的ADC也降低了量化误差。
但成本就上去了。
动态范围(DR)定义为器件本底噪声至其规定最大输出电平之间的范围,通常用dB表示。
ADC的动态范围是指ADC能够分辨的信号幅值范围;ADC的分辨率位数(N)决定ADC的动态范围,代表ADC可测量的输入信号等级范围,DR可定义为:由于信号在给定时间视窗内的RMS幅值取决于信号幅值在该时间视窗内如何变化,因此ADC的DR变化取决于输入信号特征。
对于其满量程范围(FSR)内的恒定DC输入而言,理想的N位ADC可分别测量FSR和FSR/2N 的最大及最小RMS幅值。
因此,ADC的DR为:对于正弦波信号输入而言,正弦波输入信号的最小可测量RMS幅值受量化误差的限制,正弦波输入信号的理想ADC的DR是:DR=6.02N+1.76dB假设ADC 的动态范围为60dB,则其可分辨的信号幅值为x至1000x。
通常动态范围非常重要,因为如果信号太大,则会造成ADC输入过量程;如果信号太小,则会被淹没在转换器的量化噪声中。
02信噪比与信噪失真比数模转换器的信噪比(SNR)是指输入信号功率与噪声功率的比值,这里用来量化数据转换器内的噪声,SNR也能使用信号幅度和噪声幅度的RMS值来衡量,以dB为单位。
ADC测试方案

量产测试
装备有测ADC的板卡的ATE有
1. Teradye J750 模拟信号低于2MHz 2. Teradye Ultra Flex 模拟信号1GHz 3. Advantest 93K 模拟信号1GHz 4. Credence D10
3. Offset Error-偏移误差
当输入信号是零时,输出值和理论数值之间差。
4. Gain Error-增益误差
当满幅值输出时,输出值和最大理论输出值之间的差。
静态参数测试方法
方法一
使用信号源输出理想斜线信号,然后测得数据进行静态参数计算,但是此方法局限于信号源的品质, 对于精度比较高的ADC此种方法,会引入较大测量误差。因为ATE精度较高,所以在量产ATE上用此 方法。
➢ 8位ADC采样率超过1Gsps
➢ 12位Msps
静态技术参数
1. DNL-微分线性度
DNL = |[(VD+1- VD)/VLSB-IDEAL - 1] |,其中0 < D < 2N - 2
2. INL-积分线性度
INL是DNL误差的数学积分。
方法二
软件模拟一个理想正弦波,然后通过示波器满幅度输入,采集较大量数据,理想数据和实测数据进 行对比,然后计算出静态参数。在实验室精度比较高的电源不好找,但是精度比较高的信号发生器 比较容易得到,所以一般用这个方法。这种方法需要采集很多样本,样本越多,测得数据越精确。
静态参数matlab计算结果
采样时钟:FS=184MSPS 待测信号: FIN=1.9MHz 样本数据:4百万个
高速ADC、DAC测试原理及测试方法

高速ADC/DAC 测试原理及测试方法随着数字信号处理技术和数字电路工作速度的提高,随着数字信号处理技术和数字电路工作速度的提高,以及对于系统灵敏度等以及对于系统灵敏度等要求的不断提高,对于高速、高精度的ADC ADC、、DAC 的指标都提出了很高的要求。
比如在移动通信、图像采集等应用领域中,一方面要求ADC 有比较高的采样率以采集高带宽的输入信号,另一方面又要有比较高的位数以分辨细微的变化。
因此,保证ADC/DAC 在高速采样情况下的精度是一个很关键的问题。
ADC/DAC 芯片的性能测芯片的性能测试试是由芯片芯片生产厂家完成生产厂家完成生产厂家完成的,的,的,需需要借助昂贵借助昂贵的的半导体测试仪器试仪器,,但是对于是对于板级板级板级和系统和系统和系统级级的设计人员来说设计人员来说,,更重更重要的是如要的是如要的是如何验何验何验证芯片在证芯片在板级或板级或系统系统系统级级应用应用上上的真正真正性能指标。
性能指标。
一、ADC的主要参数ADC 的主要指标分要指标分为静态为静态为静态指标和动指标和动指标和动态态指标2大类大类。
静态静态指标指标指标主主要有要有::•Differential Non-Linearity (DNL)•Integral Non-Linearity (INL)•Offset Error•Full Scale Gain Error动态指标指标主主要有要有::•Total harmonic distortion (THD)•Signal-to-noise plus distortion (SINAD)•Effective Number of Bits (ENOB) •Signal-to-noise ratio (SNR) •Spurious free dynamic range (SFDR)二、ADC 的测试方案要进行ADC 这些众多这些众多指标的指标的指标的验验证,证,基本基本基本的方的方的方法法是给ADC 的输入的输入端端输入一个理想的信号,的信号,然后然后然后对对ADC 转换转换以以后的数的数据进行据进行据进行采集和分采集和分采集和分析析,因此,,因此,ADC ADC 的性能测的性能测试试需要多台仪器多台仪器的的配合并配合并用用软件软件对测对测对测试结果进行试结果进行试结果进行分分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重要的电特性参数,但在高分辨率成像应用中却具有重要意义。
[Maxim Corperation. ADC and DAC Glossary. Application Note. Dec 2000. ] [10 位高速流水线模数 转换器的研究 ]
差分非线性(DNL)误差:
定义:差分非线性误差定义为 ADC 实际转移曲线的转移量化台阶与理想量化台阶之差的最大值。
2. 积分非线性(INL)误差:
定义:积分非线性误差定义为模数转换器的实际转移曲线与理想转移曲线的最大偏差,它表示了实际转移曲线偏离理想曲线的程度。
3. 失调(Offset):
4. 增益误差(Gain Error)
5. 线性误差
6. 转换时间
动态参数
1. 信噪比(SNR)
理想的信噪比:SNR = 6.02N + 1.76 dB
2. 总谐波失真(THD)
指的是基波信号的均方根值与其谐波(一般仅前5次谐波比较重要)的和方根的平均值之比。
ADC的THD虽然可以用任何电平来规定,但是一般也用接近满量程的输入信号来规定
3. 总谐波失真加噪声 (THD+N)
指的是基波信号的均方根值与其谐波加上所有噪声成分(直流除外)的和方根的平均值之比。
必须说明噪声测量的带宽。
对于FFT,带宽为DC至f s/2。
如果测量带宽为DC
至f s/2(奈奎斯特带宽),则THD + N等于下文所述的SINAD。
不过应注意,在音频应用中,测量带宽不一定是奈奎斯特带
4. 无杂散动态范围 (SFDR)
指的是信号的均方根值与最差杂散信号(无论它位于频谱中何处)的均方根值之比。
最差杂散可能是原始信号的谐波,也可能不是。
在通信系统中,SFDR是一项重要指标,因为它代表了可以与大干扰信号(阻塞信号)相区别的最小信号值。
SFDR可以相对于满量程(dBFS)或实际信号幅度(dBc)来规定。
图4以图形化方式说明了SFDR的定义。
5. 信纳比(SINAD)
是信号幅度均方根与所有其它频谱成分(包括谐波但不含直流)的和方根(rss)的平均值之比。
SINAD很好地反映了ADC的整体动态性能,因为它包括所有构成噪声和失真的成分。
SINAD曲线常常针对不同的输入幅度和频率而给出。
对于既定的输入频率和幅度,如果SINAD和THD + N二者的噪声测量带宽相同(均为奈奎斯特带宽),则二者的值相等。
6. 有效位数(ENOB)
把SINAD转化为位数的形式表示。
7.
8. 时钟抖动对ADC jitter 信噪比的影响:(这个公式怎么来的?)。