高中数学选修2-3离散型随机变量导学案

合集下载

人教新课标版数学高二人教A版选修2-3离散型随机变量的分布列 导学案

人教新课标版数学高二人教A版选修2-3离散型随机变量的分布列 导学案

2.1.2离散型随机变量的分布列一、【学习目标】知识目标1.理解取有限个值的离散型随机变量及其分布列的概念。

2.掌握离散型随机变量的分布列的表示方法和基本性质。

能力目标1.在具体问题中能写出随机变量的取值,能列出概率分布列;2.培养学生独立思考问题的能力.情感、态度与价值观1加强师生情感交流,营造和谐课堂。

2在教学过程中让学生体会数学在生活的应用。

3充分发挥非智力因素在教学中的作用,增强学生对数学学习的兴趣二、【重点难点】重点:1.离散型随机变量概率分布列的概念。

2. 离散型随机变量分布列的表示方法和性质;难点:1.确定离散型随机变量的取值、随机变量所对应的概率2. 随机变量在某个范围内取值的概率的计算考点:1离散型随机变量及其分布列的概念2离散型随机变量的分布列的表示方法和基本性质3具体问题中能写出随机变量的取值,能列出概率分布列三、【知识链接】.1.随机变量的概念:如果____________________可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母__________________等表示2. 离散型随机变量的概念:对于随机变量可能取的值,可以按__________________,这样的随机变量叫做离散型随机变量3.对立事件定义.:其中必有一个发生的两个______叫做对立事件是,一种特殊的互斥事件4.互斥事件事件定义:A与事件B在任何一次试验中__________________四、【合作探究】引入对于一个随机试验,仅仅知道试验结果的取值是不够的,还要把握每一个结果发生概率的大小。

还要研究这些结果取值的平均数,这些结果取值的波动状态等等。

实例引入:在随机试验掷一枚骰子中,我们可以定义一个随机变量X , X 的值分别对应试验所得的点数.X能取那些值,X 取每个值的概率分别是多少?解:X的取值有1、2、3、4、5、6则列成表格形式X 1 2 3 4 5 6P归纳小结:该表不仅列出了随机变量X的所有取值.而且列出了X的每一个取值的概率.这样,我们就从概率的角度指出了随机变量在随机试验中取值的分布状况,为进一步研究随机现象奠定了基础,这就是今天我们要学习的内容——离散型随机变量的分布列离散型随机变量的分布列定义:一般地,设离散型随机变量X可能取的不同值为:,X取每一个x(i=1,2,……)的概率,P(X=xi)=Pi.,以表格的形式表示如下:X …………P P P……P……此表称为离散型随机变量X的概率分布列,简称X 的分布列也可用P(X=xi)=P i=1,2,3 …n表示X的分布列合作探究1分布列的构成:⑴列出随机变量ξ的所有取值;⑵给出ξ的每一个取值的概率注:在具体问题中关键是要搞清楚什么是随机变量,随机变量能取哪些值,随机变量取值的概率是什么2分布列的性质:(1)请同学们思考随机变量概率的取值有什么特点呢(2) 请同学们思考P1+P2+…+Pn=?为什么(3)随机变量在某个范围内取值的概率等于随机变量在这个范围内取各个值得概率的和。

高二数学选修2-3离散型随机变量的方差导学案

高二数学选修2-3离散型随机变量的方差导学案

2.32离散型随机变量的方差学习目标1、理解各种分布的方差2、会应用均值(期望)和方差来解决实际问题自主学习:课本1.一般地,设一个离散型随机变量X 所有可能取的值是n x x x x ⋅⋅⋅321,,这些值对应的概率是n p p p p ⋅⋅⋅,,,321则________________________________________________________叫做这个离散型随机变量X 的方差;______________________________叫作离散型随机变量X 的标准差2. 离散型随机变量的方差刻画了这个离散型随机变量的_____________________________.3. 离散型随机变量X 分布列为二点分布时, ()___________D X =.4.离散型随机变量X 服从参数为n ,p 的二项分布时,()___________D X =.5. 离散型随机变量X 服从参数为,N M ,n 的超几何分布时, ()___________D X = 自学检测1.已知X ~(),B n p ,()8,() 1.6E X D X ==,则,n p 的值分别是( )A .100和0.08B .20和0.4C .10和0.2D .10和0.82.设掷1颗骰子的点数为X ,则( )A. 2() 3.5,() 3.5E X D X ==B. 35() 3.5,()12E X D X == C. () 3.5,() 3.5E X D X == D. 35() 3.5,()16E X D X ==3.一牧场的10头牛,因误食疯牛病病毒污染的饲料被感染,已知疯牛病发病的概率是0.02,若发病的牛数为X 头,则()D X 等于( )A. 0.2B. 0.196C.0.8D.0.8124. 已知随机变量X 的分布列为则X 的标准差()X σ= A. 3.56 B. C. 3.2 D. 5.王非从家乘车到学校,途中有3个交通岗,设在个交通岗遇红灯的事件是相互独立的,并且概率都是25,则王非上学路上遇红灯的数学期望是___________,方差是_______________. 6.已知随机变量X 的分布列为且() 1.1E X =,设,则()____________D X =7.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为21,ξξ,它们的分布列如下:试对这两名工人的技术水平进行比较。

高中数学选修2-3 离散型随机变量导学案加课后作业及答案

高中数学选修2-3   离散型随机变量导学案加课后作业及答案

§2.1.1 离散型随机变量【学习要求】1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系.【学法指导】引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广.【知识要点】1.随机试验:一般地,一个试验如果满足下列条件:(1)试验可以在相同的情形下重复进行;(2)试验所有可能的结果是明确的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验.2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量.3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量.【问题探究】探究点一随机变量的概念问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢?问题2随机变量和函数有类似的地方吗?例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.(1)上海国际机场候机室中2013年10月1日的旅客数量;(2)2013年某天济南至北京的D36次列车到北京站的时间;(3)2013年某天收看齐鲁电视台《拉呱》节目的人数;(4)体积为1 000 cm3的球的半径长.小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值.跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值;(4)某个人的属相.探究点二离散型随机变量的判定问题1什么是离散型随机变量?问题2非离散型随机变量和离散型随机变量有什么区别?例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出.跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由.(1)白炽灯的寿命ξ;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ;(4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数.探究点三离散型随机变量的应用例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果.(2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η.(2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ.(3)离开天安门的距离η.(4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ.【当堂检测】1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数2.10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是()A.2枚都是4点B.1枚是1点,另1枚是3点C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________.【课堂小结】1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.2.写随机变量表示的结果,要看三个特征:(1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.【课后作业】一、基础过关1.袋中有2个黑球6个红球,从中任取两个,可以作为随机变量的是() A.取到的球的个数B.取到红球的个数C.至少取到一个红球D.至少取到一个红球的概率2.①某电话亭内的一部电话1小时内使用的次数记为X;②某人射击2次,击中目标的环数之和记为X;③测量一批电阻,在950 Ω~1 200 Ω之间的阻值记为X;④一个在数轴上随机运动的质点,它在数轴上的位置记为X.其中是离散型随机变量的是()A.①②B.①③C.①④D.①②④3.袋中装有大小相同的5个球,分别标有1,2,3,4,5五个号码,现在在有放回取出的条件下依次取出两个球,设两个球号码之和为随机变量ξ,则ξ所有可能取值的个数是()A.5 B.9C.10 D.254.某人射击的命中率为p(0<p<1),他向一目标射击,当第一次射中目标则停止射击,射击次数的取值是()A.1,2,3,…,n B.1,2,3,…,n,…C.0,1,2,…,n D.0,1,2,…,n,…5.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是()A.第5次击中目标B.第5次未击中目标C.前4次均未击中目标D.第4次击中目标6.一木箱中装有8个同样大小的篮球,编号为1,2,3,4,5,6,7,8,现从中随机取出3个篮球,以ξ表示取出的篮球的最大号码,则ξ=8表示的试验结果有________种.二、能力提升7.如果X是一个离散型随机变量且η=aX+b,其中a,b是常数且a≠0,那么η() A.不一定是随机变量B.一定是随机变量,不一定是离散型随机变量C.一定是连续型随机变量D.一定是离散型随机变量8.在8件产品中,有3件次品,5件正品,从中任取一件,取到次品就停止,抽取次数为ξ,则ξ=3表示的试验结果是__________________9.在一次考试中,某位同学需回答三个问题,考试规则如下:每题回答正确得100分,回答不正确得-100分,则这名同学回答这三个问题的总得分ξ的所有可能取值是________.10.一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X,随机变量X的可能值有________个.11.设一汽车在开往目的地的道路上需经过5盏信号灯,ξ表示汽车首次停下时已通过的信号灯的盏数,写出ξ所有可能取值并说明这些值所表示的试验结果.12.某车间两天内每天生产10件某产品,其中第一天、第二天分别生产了1件、2件次品,而质检部门每天要在生产的10件产品中随机抽取4件进行检查,若发现有次品,则当天的产品不能通过.若厂内对车间生产的产品采用记分制,两天全不通过检查得0分,通过一天、两天分别得1分、2分,设该车间在这两天内总得分为ξ,写出ξ的可能取值.三、探究与拓展13.小王钱夹中只剩有20元、10元、5元、2元和1元的人民币各一张.他决定随机抽出两张,用来买晚餐,用X表示这两张金额之和.写出X的可能取值,并说明所取值表示的随机试验结果§2.1.2离散型随机变量的分布列(一)【学习要求】1.在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念.认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.【学法指导】离散型随机变量的分布列可以完全描述随机变量所刻画的随机现象,利用分布列可以计算随机变量所表示的事件的概率.【知识要点】1.定义:一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i (i=1,2,…,n)的概率此表称为离散型随机变量X的概率分布列,简称为X的.2.离散型随机变量的分布列的性质:(1)p i 0,i =1,2,3,…,n ;(2)∑ni =1p i = .【问题探究】探究点一 离散型随机变量的分布列的性质问题1 对于一个随机试验,仅知道试验的可能结果是不够的,还要能把握每一个结果发生的概率.请问抛掷一枚骰子,朝上的一面所得点数有哪些值?取每个值的概率是多少?问题2 离散型随机变量X 的分布列刻画的是一个函数关系吗?有哪些表示法? 问题3 离散型随机变量的分布列有哪些性质?例1 设随机变量X 的分布列P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 小结 离散型随机变量的分布列的性质可以帮助我们求题中参数a ,然后根据互斥事件的概率加法公式求得概率.跟踪训练1 (1试说明该同学的计算结果是否正确.(2)设ξ①求q 的值;②求P (ξ<0),P (ξ≤0).探究点二 求离散型随机变量的分布列例2 将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.小结 (1)求离散型随机变量的分布列关键是搞清离散型随机变量X 取每一个值时对应的随机事件,然后利用排列、组合知识求出X 取每个值的概率,最后列出分布列.(2)求离散型随机变量X 的分布列的步骤是:首先确定X 的所有可能的取值;其次,求相应的概率P (X =x i )=p i ;最后列成表格的形式.跟踪训练2 将一颗骰子掷2次,求下列随机事件的分布列. (1)两次掷出的最小点数Y ;(2)第一次掷出的点数减去第二次掷出的点数之差ξ.【当堂检测】1.下列表中可以作为离散型随机变量的分布列的是( )ABCD2.设随机变量ξ的分布列为P (ξ=i )=a ⎝⎛⎭⎫13i,i =1,2,3,则a 的值为 ( ) A .1B .913C .2713D .11133.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________.4.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.【课堂小结】1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.【课后作业】一、基础过关1.若随机变量X( )A .1B .12C .13D .162.设随机变量X 的分布列为P (X =k )=m ⎝⎛⎭⎫23k,k =1,2,3,则m 的值为( )A .1718B .2738C .1719D .27193.抛掷2颗骰子,所得点数之和ξ是一个随机变量,则P (ξ≤4)等于( ) A .16 B .13 C .12D .234.袋中有大小相同的红球6个,白球5个,从袋中每次任意取出1个球,直到取出的球是白球为止,所需要的取球次数为随机变量ξ,则ξ的可能取值为( )A .1,2,3,…,6B .1,2,3,…,7C .0,1,2,…,5D .1,2,…,5 5.随机变量ξ的所有可能取值为1,2,…,n ,若P (ξ<4)=0.3,则 ( ) A .n =3B .n =4C .n =10D .不能确定6.抛掷两次骰子,两次点数的和不等于8的概率为 ( )A .1112B .3136C .536D .1127.设随机变量X 的分布列为P (X =k )=Ck (k +1),k =1,2,3,C 为常数,则P (0.5<X <2.5)=________.二、能力提升8.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A .⎣⎡⎦⎤0,13B .⎣⎡⎦⎤-13,13C .[-3,3]D .[0,1]9.一盒中有12个乒乓球,其中9个新的,3个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X 是一个随机变量,其分布列为P (X ),则P (X =4)的值为( )A .1220B .2755C .27220D .212510.盒中装有大小相等的10个球,编号分别是0,1,2,…,9,从中任取1个,观察号码是“小于5”“等于5”“大于5”三类情况之一,求其概率分布列.11.已知随机变量ξ(1)求η1=12ξ的分布列;(2)求η2=ξ2的分布列.12.从4张已编号(1~4号)的卡片中任意取出2张,取出的卡片号码数之和为X .求随机变量X 的分布列.三、探究与拓展13.安排四名大学生到A ,B ,C 三所学校支教,设每名大学生去任何一所学校是等可能的.(1)求四名大学生中恰有两人去A 校支教的概率; (2)设有大学生去支教的学校的个数为ξ,求ξ的分布列.§2.1.2 离散型随机变量的分布列(二)【学习要求】1.进一步理解离散型随机变量的分布列的求法、作用.2.理解两点分布和超几何分布.【学法指导】两点分布是常见的离散型随机变量的概率分布,如某队员在比赛中能否胜出,某项科学试验是否成功,都可用两点分布来研究.在产品抽样检验中,一般采用不放回抽样,则抽到次品数服从超几何分布;在实际工作中,计算次品数为k 的概率,由于涉及产品总数,计算比较复杂,因而,当产品数较大时,可用后面即将学到的二项分布来代替.【知识要点】1则称离散型随机变量X 服从2.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC nN,k =0,1,2,…,m ,其中*为 .如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从【问题探究】探究点一 两点分布问题1 利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?问题2 只取两个不同值的随机变量是否一定服从两点分布?例1 袋中有红球10个,白球5个,从中摸出2个球,如果只关心摸出两个红球的情形,问如何定义随机变量X ,才能使X 满足两点分布,并求分布列.小结 两点分布中只有两个对应的结果,因此在解答此类问题时,应先分析变量是否满足两点分布的条件,然后借助概率的知识,给予解决.跟踪训练1 设某项试验成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=0)等于 ( ) A .0B .12C .13D .23探究点二 超几何分布问题 超几何分布适合解决什么样的概率问题?例2 从一批含有13件正品、2件次品的产品中,不放回任取3 件,求取得次品数为ξ的分布列.跟踪训练2 某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中的男生人数. (1)求X 的分布列;(2)求至少有2名男生参加数学竞赛的概率. 探究点三 实际应用例3 在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从这10张中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.小结 此类题目中涉及的背景多数是生活、生产实践中的问题,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等,分析题意,判断其中的随机变量是否服从超几何分布是解决此类题目的关键. 跟踪训练3 交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人所得钱数的分布列.【当堂检测】1.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为 ( ) A .C 35C 350B .C 15+C 25+C 35C 350 C .1-C 345C 350D .C 15C 25+C 25C 145C 3502.一个箱内有9张票,其号数分别为1,2,3,…,9,从中任取2张,其号数至少有一个为奇数的概率是 ( )A .13B .12C .16D .563.在掷一枚图钉的随机试验中,令X =⎩⎪⎨⎪⎧1,针尖向上0,针尖向下,如果针尖向上的概率为0.8,试写出随机变量X 的分布列为___________4.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________【课堂小结】1.两点分布两点分布是很简单的一种概率分布,两点分布的试验结果只有两种可能,要注意成功概率的值指的是哪一个量.2.超几何分布超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -k N -MC nN求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.【课后作业】一、基础过关1.在100张奖券中,有4张能中奖,从中任取2张,则2张都能中奖的概率是 ( )A .150B .125C .1825D .14 9502.从一副不含大、小王的52张扑克牌中任意抽出5张,则至少有3张是A 的概率为( )A .C 34C 248C 552B .C 348C 24C 552 C .1-C 148C 44C 552D .C 34C 248+C 44C 148C 5523.一个盒子里装有相同大小的10个黑球,12个红球,4个白球,从中任取2个,其中白球的个数记为X ,则下列概率等于C 122C 14+C 22C 226的是 ( )A .P (0<X ≤2)B .P (X ≤1)C .P (X =1)D .P (X =2) 4.在3双皮鞋中任意抽取两只,恰为一双鞋的概率为( )A .15B .16C .115D .135.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以710为概率的事件是( )A .都不是一等品B .恰有一件一等品C .至少有一件一等品D .至多有一件一等品 6.若离散型随机变量X 的分布列为:则c =________. 二、能力提升7.从只有3张中奖的10张彩票中不放回随机逐张抽取,设X 表示直至抽到中奖彩票时的次数,则P (X =3)等于( )A .310B .710C .2140D .7408.若随机变量X 服从两点分布,且P (X =0)=0.8,P (X =1)=0.2.令Y =3X -2,则P (Y =-2)=____. 9.有同一型号的电视机100台,其中一级品97台,二级品3台,从中任取4台,则二级品不多于1台的概率为________.(用式子表示)10.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的分布列; (2)他能及格的概率.11.已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.求X的分布列.三、探究与拓展12.袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的分布列;(3)计算介于20分到40分之间的概率.§2.2.1条件概率【学习要求】1.理解条件概率的定义.2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题.【学法指导】理解条件概率可以以简单事例为载体,先从古典概型出发求条件概率,然后再进行推广;计算条件概率可利用公式P(B|A)=P(AB)P(A),也可以利用缩小样本空间的观点计算.【知识要点】1.条件概率的概念设A,B为两个事件,且P(A)>0,称P(B|A)=为在事件发生的条件下,事件发生的条件概率.P(B|A)读作发生的条件下发生的概率.2.条件概率的性质(1)P(B|A)∈.(2)如果B与C是两个互斥事件,则P(B∪C|A)=.【问题探究】探究点一条件概率问题13张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?问题2如果已知第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少?问题3怎样计算条件概率?问题4若事件A、B互斥,则P(B|A)是多少?例1在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.小结利用P(B|A)=n ABn A解答问题的关键在于明确B中的基本事件空间已经发生了质的变化,即在A事件必然发生的前提下,B事件包含的样本点数即为事件AB包含的样本点数.跟踪训练1一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求第一次取到白球的条件下,第二次取到黑球的概率.探究点二条件概率的性质及应用问题条件概率满足哪些性质?例2一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.小结本题条件多,所设事件多,要分清楚事件之间的关系及谁是条件,同时利用公式P(B∪C|A)=P(B|A)+P(C|A)可使有些条件概率的计算较为简捷,但应注意这个性质在“B与C互斥”这一前提下才成立.跟踪训练2在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.【当堂检测】1.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B|A)等于()A.18B.14C.25D.122.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________ 3.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是_______4.考虑恰有两个小孩的家庭.若已知某家有男孩,求这家有两个男孩的概率;若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率.(假定生男生女为等可能)【课堂小结】1.条件概率:P(B|A)=P(AB)P(A)=n(AB)n(A).2.概率P(B|A)与P(AB)的区别与联系:P(AB)表示在样本空间Ω中,计算AB发生的概率,而P(B|A)表示在缩小的样本空间ΩA中,计算B发生的概率.用古典概型公式,则P(B|A)=AB中样本点数ΩA中样本点数,P(AB)=AB中样本点数Ω中样本点数.【课后作业】一、基础过关1.若P (A )=34,P (B |A )=12,则P (AB )等于( )A .23B .38C .13D .582.盒中装有10只乒乓球,其中6只新球,4只旧球,不放回地依次取出2只球使用,在第一次摸出新球的条件下,第二次也取到新球的概率为( ) A .59 B .110C .35D .253.某地区气象台统计,该地区下雨的概率是415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A .8225B .12C .38D .344.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是 ( )A .110B .210C .810D .9105.某地一农业科技实验站,对一批新水稻种子进行试验,已知这批水稻种子的发芽率为0.8,出芽后的幼苗成活率为0.9,在这批水稻种子中,随机地抽取一粒,则这粒水稻种子能成长为幼苗的概率为 ( ) A .0.02B .0.08C .0.18D .0.726.有一匹叫Harry 的马,参加了100场赛马比赛,赢了20场,输了80场.在这100场比赛中,有30场是下雨天,70场是晴天.在30场下雨天的比赛中,Harry 赢了15场.如果明天下雨,Harry 参加赛马的赢率是 ( )A .15B .12C .34D .3107.从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( )A .119B .1738C .419D .217二、能力提升8.一个袋中装有7个大小完全相同的球,其中4个白球,3个黄球,从中不放回地摸4次,一次摸一球,已知前两次摸得白球,则后两次也摸得白球的概率为________.9.以集合A ={2,4,6,7,8,11,12,13}中的任意两个元素分别为分子与分母构成分数,已知取出的一个数是12,则取出的数构成可约分数的概率是________.10.抛掷红、蓝两枚骰子,设事件A 为“蓝色骰子的点数为3或6”,事件B 为“两枚骰子的点数之和大于8”.(1)求P (A ),P (B ),P (AB );(2)当已知蓝色骰子点数为3或6时,问两枚骰子的点数之和大于8的概率为多少?11.把外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中有7个球标有字母A,3个球标有字母B ;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一个盒子中任取一个球,若取得标有字母A 的球,则在第二个盒子中任取一个球;若第一次取得标有字母B 的球,则在第三个盒子中任取一个球.如果第二次取出的是红球,则称试验为成功.求试验成功的概率.三、探究与拓展12.某生在一次口试中,共有10题供选择,已知该生会答其中6题,随机从中抽5题供考生回答,答对3题及格,求该生在第一题不会答的情况下及格的概率.§2.2.2 事件的相互独立性【学习要求】1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.【学法指导】相互独立事件同时发生的概率可以和条件概率对比理解,事件独立可以简化概率计算,学习中要结合实例理解.【知识要点】1.相互独立的概念设A ,B 为两个事件,若P (AB )= ,则称事件A 与事件B 相互独立. 2.相互独立的性质如果事件A 与B 相互独立,那么A 与 , 与B , 与 也都相互独立.【问题探究】探究点一 相互独立事件的概念问题1 3张奖券只有1张能中奖,3名同学有放回地抽取.事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“第三名同学抽到中奖奖券”,事件A 的发生是否会影响B 发生的概率?问题2 在问题1中求P (A )、P (B )及P (AB ),观察它们有何关系?总结相互独立事件的定义. 问题3 互斥事件与相互独立事件有什么区别?问题4 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立,如何证明?例1 (1)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥(2)掷一颗骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是 ( )A .互斥但不相互独立B .相互独立但不互斥。

人教版选修2-3 2.1.1 离散型随机变量导学案

人教版选修2-3  2.1.1 离散型随机变量导学案

2.1.1《离散型随机变量》导学案制作王敬审核高二数学组2016-05-27【学习目标】1.通过实例了解随机变量的概念,理解离散型随机变量的概念.2.能写出离散型随机变量的可能取值,并能解释其意义.【重点难点】重点:离散型随机变量的概念.难点:离散型随机变量的意义.【预习导航】1.一个试验如果满足下列条件:(1)试验可以在相同的情形下__________进行;(2)试验的所有可能结果是__________的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的__________,但在一次试验之前却不能肯定这次试验会出现哪一个结果.这种试验就是一个随机试验,为了方便起见,也简称试验.2.随着__________变化而变化的变量称为随机变量,随机变量常用字母X、Y、ξ、η等表示.3.______________________的随机变量,称为离散型随机变量.【问题整合】【问题1】一个正四面体玩具,四个面分别涂有红、黄、绿、黑,投掷一次观察落地一面的颜色,有多少种可能的结果?这些结果可以用数字表示吗?【问题2】在一块地里种了6棵树苗,设成活的树苗棵数为X,则X可取哪些数字?【探究活动一】随机变量及其取值的意义例1写出下列各随机变量可能的取值,并说明随机变量的值所表示的随机试验的结果.(1)正方体的骰子,各面分别刻着1、2、3、4、5、6,随意掷两次,所得的点数之和为ξ;(2)一个人要开房门,他共有10把钥匙,其中仅有一把是能开门的,他随机取钥匙去开门并且用后不放回,其中打开门所试的钥匙个数为ξ;(3)电台在每个整点都报时,某人随机打开收音机对表,他所等待的时间ξ(min).方法规律总结跟踪训练1100件产品中,含有5件次品,任意抽取4件产品,其中含有的次品数为ξ,抽取产品的件数为η,ξ、η是随机变量吗?【探究活动二】离散型随机变量例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是()A.①②③④B.①②④C.①③④D.②③④【方法规律总结】【方法规律总结】跟踪训练3盒中有9个正品和3个次品共12个零件,每次从中取一个零件,如果取出的是次品,则不再放回,直到取出正品为止,设取得正品前已取出的次品数为X.(1)写出X的所有可能取值.(2)写出X=2所表示的事件.(3)求X=2的概率.跟踪训练2下列随机变量中不是离散型随机变量的是()A.盒子里有除颜色不同,其他完全相同的红球和白球各5个,从中摸出3个球,白球的个数XB.小明回答20道选择题,答对的题数XC.某人早晨在车站等出租车的时间XD.某人投篮10次投中的次数X【探究三】离散型随机变量的取值及其概率写出下列各随机变量可能的取值,并说明随机变量所取的值表示的随机试验的结果.(1)从一个装有编号为1号到10号的10个球的袋中任取1球,被取出的球的编号为X;(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;(3)投掷甲、乙两枚骰子,所得点数之和为X,所得点数之和是偶数为Y.【总结概括】本节课的收获:【课后作业】必做题:课本习题2.1A组1,2题选做题:同步练习册知能提升。

【B版】人教课标版高中数学选修2-3《离散型随机变量的方差》导学案

【B版】人教课标版高中数学选修2-3《离散型随机变量的方差》导学案

2.3.2离散型随机变量的方差【学习要求】1.理解取有限个值的离散型随机变量的方差及标准差的概念。

2.能计算简单离散型随机变量的方差,并能解决一些实际问题。

3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差。

【学法指导】1.通过实例理解离散型随机变量的方差的意义,通过例题体会方差在解决实际问题中的应用。

2.要善于将实际问题转化为数学问题来解决,通过模仿建立起数学建模的思维常识。

【知识要点】1.离散型随机变量的方差、标准差设离散型随机变量X的分布列为则(x i-E(X))2描述了x i(i=1,2,…,n)相对于均值E(X)的偏离程度,而D(X)=为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度。

我们称D(X)为随机变量X的,并称其算术平方根随机变量X的。

2.离散型随机变量方差的性质(1)设a,b为常数,则D(aX+b)=,(2)D(c)=0(其中c为常数)。

3.服从两点分布与二项分布的随机变量的方差(1)若X服从两点分布,则D(X)=(其中p为成功概率);(2)若X~B(n,p),则D(X)=。

【问题探究】探究点一方差、标准差的概念及性质问题1某省运会即将举行,在最后一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下:甲运动员:7,8,6,8,6,5,8,10,7,5;乙运动员:9,5,7,8,7,6,8,6,7,7。

观察上述数据,两个人射击的平均成绩是一样的。

那么,是否两个人就没有水平差距呢?如果你是教练,选哪位选手去参加正式比赛?问题2类比样本方差、标准差的概念,能否得出离散型随机变量的方差、标准差?问题3随机变量的方差与样本的方差有何不同?问题4方差、标准差的单位与随机变量的单位有什么关系?问题5我们知道若一组数据x i(i=1,2,…,n)的方差为s2,那么另一组数据ax i+b(a、b是常数且i=1,2,…,n)的方差为a2s2。

最新人教版高中数学选修2-3《离散型随机变量及其分布》示范教案

最新人教版高中数学选修2-3《离散型随机变量及其分布》示范教案

第二章随机变量及其分布本章概览课标要求1.离散型随机变量及其分布列(1)在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性.(2)通过实例(如彩票抽奖),理解超几何分布及其导出过程,并能进行简单的应用.2.二项分布及其应用在具体情境中,了解条件概率和两个事件相互独立的概念,理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题.3.离散型随机变量的均值与方差通过实例,理解取有限值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题.4.正态分布通过实际问题,借助直观(如实际问题的直观图),认识正态分布、正态密度曲线的特点及曲线所表示的意义.内容概述教学建议1.在教学过程中要交代引入随机变量的原因(章引言中);2.通过与函数的比较加深对随机变量的理解;3.在介绍有关随机变量的概念过程中,重点在于概念的理解及应用,不宜引入过于复杂的计算,以免喧宾夺主;4.注意产生超几何分布与二项分布的背景差别,以帮助学生更好地理解两个模型以及两个事件间独立性的概念.超几何分布:从a个红球和b个黑球中,不放回摸出m个球中的红球个数,结果导致“第i次摸出红球”与“第j次摸出红球”不相互独立(i≠j);二项分布:从a个红球和b个黑球中,有放回摸出m个球中的红球个数,结果导致“第i次摸出红球”与“第j次摸出红球”相互独立(i≠j).5.注意解释随机变量与样本均值(方差)的关系:两者都表示各自的平均位置(变化剧烈程度);样本均值(方差)是随机变量,具有随机性,而随机变量的均值(方差)是实数,没有随机性;样本均值(方差)的极限是总体均值(方差).6.在高尔顿钉板试验中,课文中说“随着试验次数的增加,这个频率直方图的形状会越来越像一条钟形曲线”的含义为:随着试验次数的增加,这个频率直方图的形状会越来越接近于钟形曲线的离散化.课时安排全章共安排了4个小节,教学约需9课时,具体内容和课时分配如下(仅供参考):2.1离散型随机变量及其分布列约2课时2.2二项分布及其应用约3课时2.3离散型随机变量的均值与方差约2课时2.4正态分布约1课时习题课约1课时2.1离散型随机变量及其分布列2.1.1离散型随机变量整体设计教材分析本章是在初中“统计初步”和高中必修课“概率”的基础上,学习随机变量和分布列的一些知识.学习这些知识后,学生将能解决类似引言中的一些实际问题.随机变量在概率统计研究中起着极其重要的作用,随机变量是用来描述随机现象的结果的一类特殊的变量,随机变量能够反映随机现象的共性,有关随机变量的结论可以应用到具有不同背景的实际问题中.随机变量就是建立了一个从随机试验结果的集合到实数集合的映射,这与函数概念在本质上(一种对应关系)是一致的.随机试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.离散型随机变量是最简单的随机变量,随机变量和离散型随机变量是上、下位概念的关系.本节课主要通过离散型随机变量展示用实数空间刻画随机现象的方法.重点是怎样用数学的方法来研究随机事件(即先把随机事件映射成随机变量,建立随机变量X与随机事件发生的概率P之间的函数关系,用研究函数的方法来研究随机变量),并在此过程中深刻体会和领悟随机变量在研究随机现象中的工具和桥梁作用.课时分配1课时教学目标知识与技能1.理解随机变量的意义;2.学会区分离散型与非离散型随机变量,并能举出离散型随机变量的例子;3.理解随机变量所表示试验结果的含义,并恰当地定义随机变量.过程与方法发展抽象、概括能力,提高解决实际问题的能力.情感、态度与价值观使学生感悟数学与生活的和谐之美,体现数学的文化功能与人文价值.重点难点教学重点:随机变量、离散型随机变量、连续型随机变量的意义.教学难点:随机变量、离散型随机变量、连续型随机变量的意义.教学过程引入新课统计表明:商场内的促销活动可获得经济效益2万元;商场外的促销活动,如果不遇雨天则带来经济效益10万元,如果遇到雨天则带来经济损失4万元.假设国庆节有雨的概率是40%,请问商场应该选择哪种促销方式较好?为了解决类似问题,从今天开始学习本章内容——随机变量及其分布列.设计意图:设置悬念,营造一种神秘气氛,容易吸引学生注意力,调动学生学习兴趣,揭示随机变量的分布列的客观存在性和研究它的必要性,点出了本章内容.活动设计:复习回顾概率有关知识.概率是描述在一次随机试验中的某个随机事件发生可能性大小的度量.随机试验是指满足下列三个条件的试验:①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.(本部分可由教师提示、学生完成)提出问题:同学们能举出一些随机试验的例子吗?并说明该随机试验的所有可能结果.学情预测:学生容易举出抛硬币、掷骰子等试验,然后教师可根据例子实施引导、启发.活动结果:(以下为可能出现的例子)掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示;某人射击一次,可能出现命中0环,命中1环,…,命中10环等结果,即可能出现的结果可以由0,1,…,10这11个数表示;从装有4个黑球,3个红球的篮子中任意拿出2个球,可能出现哪些情况?提出问题:这些随机试验,有哪些共同点?活动结果:随机试验中可能出现的每种结果都可以用一个数来表示.(由学生完成)探究新知提出问题:掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?学情预测:此时有的学生会产生疑虑,不敢作答,教师根据学情引导.活动结果:抛一枚硬币,可能出现正面向上、反面向上两种结果.虽然这个随机试验的结果不具有数量性质,但我们可以用数1和0分别表示正面向上和反面向上.(也可用另外两个数如1、2分别表示正面向上和反面向上,通过准确、恰当的抽象,可使问题简单化,这正是数学的魅力所在)教师指出:在前面掷骰子和抛硬币的随机试验中,我们确定了一个对应关系,使得每一个试验结果都用一个确定的数字表示.在这个对应关系下,数字随着试验结果的变化而变化.(给出定义)定义1:随着试验结果变化而变化的变量称为随机变量.随机变量常用字母X,Y,ξ,η,…表示.随机变量ξ或η的特点:(1)可以用数表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不可能确定取何值.提出问题:随机变量和高一学习的什么概念有类似的地方吗?(函数或映射)活动结果:随机变量和函数都是一种映射,随机变量把随机试验的结果映为实数,函数把实数映为实数.在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域.(学生为主,教师完善)教师:例如,从含有4个黑球3个红球的篮子中,任意抽取两个球,可能含有的红球数X将随着抽取结果的变化而变化,是一个随机变量,其取值范围是{0,1,2}.提出问题:利用随机变量可以表达一些事件.例如{X=0}表示“抽出两个黑球”,{X=2}表示“抽出2个红球”等.你能说出{X<1}在这里表示什么事件吗?“抽出1个以上黑球”又如何用X表示呢?(学生基本能顺利完成)教师指出:红球数X是一个随机变量,其取值是0、1、2,可以一一列举(给出定义).定义2:所有取值可以一一列出的随机变量,称为离散型随机变量.提出问题:离散型随机变量的例子很多.例如某人一分钟内眨眼次数X是一个离散型随机变量,它的所有可能取值为0,1,2…;同学们还能举出哪些例子?学情分析:有的学生在举例时会错举出一个连续型随机变量来,借机发问,例如:提出问题:灯泡的使用寿命X是离散型随机变量吗?活动结果:灯泡的使用寿命X 的可能取值是任何一个非负实数,而所有非负实数不能一一列出,所以X 不是离散型随机变量.定义3:连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量.提出问题:同学们还能举出哪些例子?活动结果:如某林场树木最高达30米,则林场树木的高度是一个随机变量,它可以取(0,30]内的一切值(或者其他).教师指出:在研究随机现象时,有时可根据需要恰当地定义随机变量.例如,如果我们仅关心电灯泡的使用寿命是否不少于1 000小时,那么就可以定义如下的随机变量:Y =⎩⎪⎨⎪⎧0,寿命<1 000小时;1,寿命≥1 000小时. 与电灯泡的寿命X 相比较,随机变量Y 的构造更简单,它只取两个不同的值0和1,是一个离散型随机变量,研究起来更加容易.提出问题:同学们还能举出哪些离散型或连续型随机变量的例子?你能否总结出二者的区别与联系?活动结果:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出(由学生完成).理解新知教师进一步指出:(1)有些随机试验的结果虽然不具有数量性质,但可以用数量来表达,如投掷一枚硬币,ξ=0,表示正面向上,ξ=1,表示反面向上.(2)若ξ是随机变量,η=aξ+b ,a ,b 是常数,则η也是随机变量.(可通过拓展练习来说明)运用新知例1一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ;写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果.解:(1)ξ可取3,4,5.ξ=3,表示取出的3个球的编号为1,2,3;ξ=4,表示取出的3个球的编号为1,2,4或1,3,4或2,3,4;ξ=5,表示取出的3个球的编号为1,2,5或1,3,5或1,4,5或2,3,5或3,4,5.例2抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?解:因为一枚骰子的点数可以是1,2,3,4,5,6六种结果之一,由已知得-5≤ξ≤5,也就是说“ξ>4”就是“ξ=5”.所以,“ξ>4”表示第一枚为6点,第二枚为1点.【变练演编】写出某用户的电话在单位时间内收到的呼叫次数η的可能值.解:η可取0,1,…,n ,….η=i ,表示被呼叫i 次,其中i =0,1,2,….变式:一用户在打电话时忘记了最后3个号码,只记得最后3个数两两不同,且都大于5.于是他随机拨最后3个数(两两不同),设他拨到正确号码的次数为X ,写出随机变量X 的可能值.解:X 可取1,2,3, (24)【达标检测】1.有下列问题:①某路口一天经过的车辆数为ξ;②某地半年内下雨的次数为ξ;③一天之内的温度为ξ;④某人一生中的身高为ξ;⑤射击运动员对某目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示运动员在射击中的得分.上述问题中的ξ是离散型随机变量的是( )A .①②③⑤B .①②④C .①D .①②⑤2.随机变量ξ的所有可能取值为1,2,…,n ,若P(ξ<4)=0.3,则( )A .n =3B .n =4C .n =10D .不能确定3.抛掷两次骰子,两次点数的和不等于8的概率为( )A.1112B.3136C.536D.112答案:1.D 2.C 3.B课堂小结1.离散型随机变量、连续型随机变量的概念;2.随机变量ξ是关于试验结果的映射,即每一个试验结果对应着一个实数;3.随机变量ξ的线性组合η=aξ+b(其中a 、b 是常数)也是随机变量.补充练习【基础练习】1.写出下列各随机变量可能的取值:(1)从10张已编号的卡片(从1号到10号)中任取1张,被取出的卡片的号数X.解:X =1,2,3, (10)(2)某一自动装置无故障运转的时间ξ.解:ξ取(0,+∞)内的一切值.【拓展练习】某城市出租汽车的起步价为10元,行驶路程不超出4 km ,则按10元的标准收租车费.若行驶路程超出4 km ,则按每超出1 km 加收2元计费(超出不足1 km 的部分按1 km 计).从这个城市的民航机场到某宾馆的路程为15 km.某司机常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按1 km 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量,他收旅客的租车费η也是一个随机变量.(1)求租车费η关于行车路程ξ的关系式;(2)已知某旅客实付租车费38元,而出租汽车实际行驶了15 km ,问出租车在途中因故停车累计最多几分钟?解:(1)依题意得η=2(ξ-4)+10,即η=2ξ+2.(2)由38=2ξ+2,得ξ=18,5×(18-15)=15.所以,出租车在途中因故停车累计最多15分钟.设计说明本节主要采用教师提出问题引导,学生思考归纳的形式,让学生经历概念的形成过程,避免了以往由老师叙述概念条文,然后讲解例题的教学模式,以实际问题为向导,引导学生分析问题、归纳问题的共性,提炼出随机变量的概念.备课资料备选例题:1.把一枚硬币先后抛掷两次,如果出现两个正面得5分,出现两个反面得-3分,其他结果得0分,用X表示得分的分值,列表写出可能出现的结果与对应的X值.解:2.写出下列各随机变量可能取的值,并说明随机变量所取的值所表示的随机试验的结果:(1)从一个装有编号为1号到10号的10个球的袋中,任取1球,被取出的球的编号为X;解:ξ可取1,2, (10)(2)一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数为X;解:X可取0,1,2,3,4.(3)投掷两枚骰子,所得点数之和为X,所得点数之和是偶数为Y.解:X可取2,3,4,5,6,7,8,9,10,11,12.Y可取2,4,6,8,10,12.(设计者:王宏东李王梅)。

(完整版)高中数学选修2-3导学案,正规模版2.1

(完整版)高中数学选修2-3导学案,正规模版2.1
是不是把钱分成7份,赢了4局的就拿4份,赢了3局的就拿3份呢?或者,因为最早说的是满5局,而谁也没达到,所以就一人分一半呢?
这两种分法都不对。正确的答案是:赢了4局的拿这个钱的3/4,赢了3局的拿这个钱的1/4.
《离散型随机变量的分布列》导学案
【学习目标】
1.理解离散型随机变量的分布列的两种形式;
2.理解并运用两点分布和超几何分布.
新知3:两点分布列:
0
1
称 服从;
称 为
例2在含有5件次品的100件产品中,任取3件,试求:
(1)取到的次品数 的分布列;
(2)至少取到1件次品的概率.
变式:抛掷一枚质地均匀的硬币2次,写出正面向上次数 的分布列?
新知4:超几何分布列:
0
1


※动手试试
练1.在某年级的联欢会上设计了一个摸奖游戏,在一个口袋中装有10个红球和20个白球,这些球除颜色外完全相同.一次从中摸出5个球,至少摸到3个红球就中奖.求中奖的概率.
1在某项体能测试中,跑1km成绩在4min之内为优秀,某同学跑1km所花费的时间 是离散型随机变量吗?如果我们只关心该同学是否能够取得优秀成绩,应该如何定义随机变量?
2下列随机试验的结果能否用离散型随机变量表示:若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.
(1)从学校回家要经过5个红绿灯口,可能遇到红灯的次数;
练2.盒中9个正品和3个次品零件,每次取一个零件,如果取出的次品不再放回,且取得正品前已取出的次品数为 .
(1)写出 可能取的值;
(2)写出 所表示的事件
【当堂检测】
1.下列先项中不能作为随机变量的是().
A.投掷一枚硬币 次,正面向上的次数B.某家庭每月的电话费

【B版】人教课标版高中数学选修2-3《离散型随机变量的分布列》导学案

【B版】人教课标版高中数学选修2-3《离散型随机变量的分布列》导学案

2.1.2 离散型随机变量的分布列【学习要求】1.在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念,认识分布列对于刻画随机现象的重要性。

2.掌握离散型随机变量分布列的表示方法和性质。

【学法指导】离散型随机变量的分布列可以完全描述随机变量所刻画的随机现象,利用分布列可以计算随机变量所表示的事件的概率。

【知识要点】1.定义:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )= ,以表格的形式表示如下:此表称为离散型随机变量X 的概率分布列,简称为X 的 。

2.离散型随机变量的分布列的性质:(1)p i 0,i =1,2,3,…,n ;(2)∑ni =1p i = 。

【问题探究】探究点一 离散型随机变量的分布列的性质问题1 对于一个随机试验,仅知道试验的可能结果是不够的,还要能把握每一个结果发生的概率。

请问抛掷一枚骰子,朝上的一面所得点数有哪些值?取每个值的概率是多少?问题2 离散型随机变量X 的分布列刻画的是一个函数关系吗?有哪些表示法? 问题3 离散型随机变量的分布列有哪些性质?例1 设随机变量X 的分布列P ⎝ ⎛⎭⎪⎫X =k 5=ak (k =1,2,3,4,5)。

(1)求常数a 的值; (2)求P ⎝ ⎛⎭⎪⎫X ≥35;(3)求P ⎝ ⎛⎭⎪⎫110<X <710。

小结 离散型随机变量的分布列的性质可以帮助我们求题中参数a ,然后根据互斥事件的概率加法公式求得概率。

跟踪训练1 (1)下面是某同学求得的离散型随机变量X 的分布列:试说明该同学的计算结果是否正确。

(2)设ξ是一个离散型随机变量,其分布列为①求q 的值; ②求P (ξ<0),P (ξ≤0)。

探究点二 求离散型随机变量的分布列例2 将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.1离散型随机变量【学习要求】1.理解随机变量及离散型随机变量的含义.2.了解随机变量与函数的区别与联系.【学法指导】引进随机变量的概念,就可以用数字描述随机现象,建立连接数和随机现象的桥梁,通过随机变量和函数类比,可以更好地理解随机变量的定义,随机变量是函数概念的推广.【知识要点】1.随机试验:一般地,一个试验如果满足下列条件:(1)试验可以在相同的情形下重复进行;(2)试验所有可能的结果是明确的,并且不只一个;(3)每次试验总是恰好出现这些可能结果中的一个,但在一次试验之前却不能肯定这次试验的结果会出现哪一个.这种试验就是一个随机试验.2.随机变量:在随机试验中,随着变化而变化的变量称为随机变量.3.离散型随机变量:所有取值可以的随机变量,称为离散型随机变量.【问题探究】探究点一随机变量的概念问题1掷一枚骰子,出现的点数可以用数字1,2,3,4,5,6来表示,那么掷一枚硬币的结果是否也可以用数字来表示呢?问题2随机变量和函数有类似的地方吗?例1下列变量中,哪些是随机变量,哪些不是随机变量?并说明理由.(1)上海国际机场候机室中2013年10月1日的旅客数量;(2)2013年某天济南至北京的D36次列车到北京站的时间;(3)2013年某天收看齐鲁电视台《拉呱》节目的人数;(4)体积为1 000 cm3的球的半径长.小结随机变量从本质上讲就是以随机试验的每一个可能结果为自变量的一个函数,即随机变量的取值实质上是试验结果对应的数,但这些数是预先知道所有可能的值,而不知道究竟是哪一个值.跟踪训练1指出下列变量中,哪些是随机变量,哪些不是随机变量,并说明理由.(1)某人射击一次命中的环数;(2)任意掷一枚均匀硬币5次,出现正面向上的次数;(3)投一颗质地均匀的骰子两次出现的点数(最上面的数字)中的最小值;(4)某个人的属相.探究点二离散型随机变量的判定问题1什么是离散型随机变量?问题2非离散型随机变量和离散型随机变量有什么区别?例2①某座大桥一天经过的中华牌轿车的辆数为ξ;②某网站中歌曲《爱我中华》一天内被点击的次数为ξ;③一天内的温度为ξ;④射手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射手在一次射击中的得分.上述问题中的ξ是离散型随机变量的是() A.①②③④B.①②④C.①③④D.②③④小结该题主要考查离散型随机变量的定义,判断时要紧扣定义,看是否能一一列出.跟踪训练2指出下列随机变量是否是离散型随机变量,并说明理由.(1)白炽灯的寿命ξ;(2)某加工厂加工的一批某种钢管的外径与规定的外径尺寸之差ξ;(3)江西九江市长江水位监测站所测水位在(0,29]这一范围内变化,该水位站所测水位ξ;(4)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数.探究点三离散型随机变量的应用例3(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5.现从该袋内随机取出3只球,被取出的球的最大号码数ξ.写出随机变量ξ可能取的值,并说明随机变量所取的值表示的随机试验的结果.(2)抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?小结解答此类问题的关键在于明确随机变量的所有可能的取值,以及其取每一个值时对应的意义,即一个随机变量的取值可能对应一个或多个随机试验的结果,解答过程中不要漏掉某些试验结果.跟踪训练3下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果.(1)盒中装有6支白粉笔和2支红粉笔,从中任意取出3支,其中所含白粉笔的支数ξ,所含红粉笔的支数η.(2)从4张已编有1~4的卡片中任意取出2张,被取出的卡片号数之和ξ.(3)离开天安门的距离η.(4)袋中有大小完全相同的红球5个,白球4个,从袋中任意取出一球,若取出的球是白球,则过程结束;若取出的球是红球,则将此红球放回袋中,然后重新从袋中任意取出一球,直至取出的球是白球,此规定下的取球次数ξ.【当堂检测】1.下列变量中,不是随机变量的是()A.一射击手射击一次命中的环数B.标准状态下,水沸腾时的温度C.抛掷两枚骰子,所得点数之和D.某电话总机在时间区间(0,T)内收到的呼叫次数2.10件产品中有3件次品,从中任取2件,可作为随机变量的是()A.取到产品的件数B.取到正品的概率C.取到次品的件数D.取到次品的概率3.抛掷2枚骰子,所得点数之和记为ξ,那么“ξ=4”表示的随机试验的结果是()A.2枚都是4点B.1枚是1点,另1枚是3点C.2枚都是2点D.1枚是1点,另1枚是3点,或者2枚都是2点4.一袋中装有6个同样大小的黑球,编号为1,2,3,4,5,6.现从中随机取出2个球,以ξ表示取出的球的最大号码,则“ξ=6”表示的试验结果是___________________.【课堂小结】1.所谓的随机变量就是试验结果和实数之间的一个对应关系,随机变量是将试验的结果数量化,变量的取值对应于随机试验的某一个随机事件.2.写随机变量表示的结果,要看三个特征: (1)可用数来表示;(2)试验之前可以判断其可能出现的所有值;(3)在试验之前不能确定取值.【拓展提高】2.1.2 离散型随机变量的分布列(一)【学习要求】1.在对具体问题的分析中,理解取有限值的离散型随机变量及其分布列的概念.认识分布列对于刻画随机现象的重要性.2.掌握离散型随机变量分布列的表示方法和性质.【学法指导】离散型随机变量的分布列可以完全描述随机变量所刻画的随机现象,利用分布列可以计算随机变量所表示的事件的概率.【知识要点】1.定义:一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率此表称为离散型随机变量X 的概率分布列,简称为X 的 . 2.离散型随机变量的分布列的性质:(1)p i 0,i =1,2,3,…,n ;(2)∑ni =1p i = .【问题探究】探究点一 离散型随机变量的分布列的性质问题1 对于一个随机试验,仅知道试验的可能结果是不够的,还要能把握每一个结果发生的概率.请问抛掷一枚骰子,朝上的一面所得点数有哪些值?取每个值的概率是多少?问题2 离散型随机变量X 的分布列刻画的是一个函数关系吗?有哪些表示法? 问题3 离散型随机变量的分布列有哪些性质?例1 设随机变量X 的分布列P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 小结 离散型随机变量的分布列的性质可以帮助我们求题中参数a ,然后根据互斥事件的概率加法公式求得概率.跟踪训练1 (1试说明该同学的计算结果是否正确.(2)设ξ是一个离散型随机变量,其分布列为①求q 的值;②求P (ξ<0),P (ξ≤0).探究点二 求离散型随机变量的分布列例2 将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.小结 (1)求离散型随机变量的分布列关键是搞清离散型随机变量X 取每一个值时对应的随机事件,然后利用排列、组合知识求出X 取每个值的概率,最后列出分布列.(2)求离散型随机变量X 的分布列的步骤是:首先确定X 的所有可能的取值;其次,求相应的概率P (X =x i )=p i ;最后列成表格的形式.跟踪训练2 将一颗骰子掷2次,求下列随机事件的分布列. (1)两次掷出的最小点数Y ;(2)第一次掷出的点数减去第二次掷出的点数之差ξ.【当堂检测】1.下列表中可以作为离散型随机变量的分布列的是 ( ) ABCD2.设随机变量ξ的分布列为P (ξ=i )=a ⎝⎛⎭⎫13i,i =1,2,3,则a 的值为 ( ) A .1B .913C .2713D .11133.将一枚硬币扔三次,设X 为正面向上的次数,则P (0<X <3)=________.4.一盒中放有大小相同的红色、绿色、黄色三种小球,已知红球个数是绿球个数的两倍,黄球个数是绿球个数的一半.现从该盒中随机取出一个球,若取出红球得1分,取出黄球得0分,取出绿球得-1分,试写出从该盒中取出一球所得分数ξ的分布列.【课堂小结】1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到每一个值的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.【拓展提高】2.1.2 离散型随机变量的分布列(二)【学习要求】1.进一步理解离散型随机变量的分布列的求法、作用. 2.理解两点分布和超几何分布.【学法指导】两点分布是常见的离散型随机变量的概率分布,如某队员在比赛中能否胜出,某项科学试验是否成功,都可用两点分布来研究.在产品抽样检验中,一般采用不放回抽样,则抽到次品数服从超几何分布;在实际工作中,计算次品数为k 的概率,由于涉及产品总数,计算比较复杂,因而,当产品数较大时,可用后面即将学到的二项分布来代替.【知识要点】1则称离散型随机变量X 服从2.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -k N -MC nN,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,称分布列为 .如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从【问题探究】探究点一 两点分布问题1 利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?问题2 只取两个不同值的随机变量是否一定服从两点分布?例1 袋中有红球10个,白球5个,从中摸出2个球,如果只关心摸出两个红球的情形,问如何定义随机变量X ,才能使X 满足两点分布,并求分布列.小结 两点分布中只有两个对应的结果,因此在解答此类问题时,应先分析变量是否满足两点分布的条件,然后借助概率的知识,给予解决.跟踪训练1 设某项试验成功率是失败率的2倍,用随机变量ξ描述1次试验的成功次数,则P (ξ=0)等于 ( ) A .0B .12C .13D .23探究点二 超几何分布问题 超几何分布适合解决什么样的概率问题?例2 从一批含有13件正品、2件次品的产品中,不放回任取3 件,求取得次品数为ξ的分布列.跟踪训练2 某校高三年级某班的数学课外活动小组中有6名男生,4名女生,从中选出4人参加数学竞赛考试,用X 表示其中的男生人数. (1)求X 的分布列;(2)求至少有2名男生参加数学竞赛的概率. 探究点三 实际应用例3 在一次购物抽奖活动中,假设某10张奖券中有一等奖券1张,可获得价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖,某顾客从这10张中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X (元)的分布列.小结 此类题目中涉及的背景多数是生活、生产实践中的问题,如产品中的正品和次品,盒中的白球和黑球,同学中的男生和女生等,分析题意,判断其中的随机变量是否服从超几何分布是解决此类题目的关键. 跟踪训练3 交5元钱,可以参加一次摸奖,一袋中有同样大小的球10个,其中8个标有1元钱,2个标有5元钱,摸奖者只能从中任取2个球,他所得奖励是所抽2球的钱数之和,求抽奖人所得钱数的分布列.【当堂检测】1.今有电子元件50个,其中一级品45个,二级品5个,从中任取3个,出现二级品的概率为 ( ) A .C 35C 350B .C 15+C 25+C 35C 350 C .1-C 345C 350D .C 15C 25+C 25C 145C 3502.一个箱内有9张票,其号数分别为1,2,3,…,9,从中任取2张,其号数至少有一个为奇数的概率是 ( )A .13B .12C .16D .563.在掷一枚图钉的随机试验中,令X =⎩⎪⎨⎪⎧1,针尖向上0,针尖向下,如果针尖向上的概率为0.8,试写出随机变量X 的分布列为___________4.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤6)=________【课堂小结】1.两点分布两点分布是很简单的一种概率分布,两点分布的试验结果只有两种可能,要注意成功概率的值指的是哪一个量.2.超几何分布超几何分布在实际生产中常用来检验产品的次品数,只要知道N 、M 和n 就可以根据公式:P (X =k )=C k M C n -k N -MC nN求出X 取不同值k 时的概率.学习时,不能机械地去记忆公式,而要结合条件以及组合知识理解M 、N 、n 、k 的含义.【拓展提高】2.2.1 条件概率【学习要求】1.理解条件概率的定义. 2.掌握条件概率的计算方法.3.利用条件概率公式解决一些简单的实际问题. 【学法指导】理解条件概率可以以简单事例为载体,先从古典概型出发求条件概率,然后再进行推广;计算条件概率可利用公式P (B |A )=P (AB )P (A ),也可以利用缩小样本空间的观点计算. 【知识要点】1.条件概率的概念 设A ,B 为两个事件,且P (A )>0,称P (B |A )= 为在事件 发生的条件下,事件 发生的条件概率.P (B |A )读作 发生的条件下 发生的概率. 2.条件概率的性质 (1)P (B |A )∈ .(2)如果B 与C 是两个互斥事件,则P (B ∪C |A )= .【问题探究】探究点一 条件概率问题1 3张奖券中只有1张能中奖,现分别由3名同学无放回地抽取,问最后一名同学抽到中奖奖券的概率是否比其他同学小?问题2 如果已知第一名同学没有抽到中奖奖券,那么最后一名同学抽到中奖奖券的概率是多少? 问题3 怎样计算条件概率?问题4 若事件A 、B 互斥,则P (B |A )是多少?例1 在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求: (1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率. 小结 利用P (B |A )=n ABn A解答问题的关键在于明确B 中的基本事件空间已经发生了质的变化,即在A 事件必然发生的前提下,B 事件包含的样本点数即为事件AB 包含的样本点数.跟踪训练1 一个盒子中有6个白球、4个黑球,每次从中不放回地任取1个,连取两次,求第一次取到白球的条件下,第二次取到黑球的概率. 探究点二 条件概率的性质及应用 问题 条件概率满足哪些性质?例2 一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,求:(1)任意按最后一位数字,不超过2次就按对的概率;(2)如果他记得密码的最后一位是偶数,不超过2次就按对的概率.小结 本题条件多,所设事件多,要分清楚事件之间的关系及谁是条件,同时利用公式P (B ∪C |A )=P (B |A )+P (C |A )可使有些条件概率的计算较为简捷,但应注意这个性质在“B 与C 互斥”这一前提下才成立. 跟踪训练2 在某次考试中,从20道题中随机抽取6道题,若考生至少能答对其中的4道即可通过;若至少能答对其中5道就获得优秀.已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.【当堂检测】1.从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )等于 ( ) A .18B .14C .25D .122.某人一周晚上值班2次,在已知他周日一定值班的条件下,则他在周六晚上值班的概率为________3.设某种动物能活到20岁的概率为0.8,能活到25岁的概率为0.4,现有一只20岁的这种动物,问它能活到25岁的概率是_______4.考虑恰有两个小孩的家庭.若已知某家有男孩,求这家有两个男孩的概率;若已知某家第一个是男孩,求这家有两个男孩(相当于第二个也是男孩)的概率.(假定生男生女为等可能)【课堂小结】1.条件概率:P (B |A )=P (AB )P (A )=n (AB )n (A ).2.概率P (B |A )与P (AB )的区别与联系:P (AB )表示在样本空间Ω中,计算AB 发生的概率,而P (B |A )表示在缩小的样本空间ΩA 中,计算B 发生的概率.用古典概型公式,则P (B |A )=AB 中样本点数ΩA 中样本点数,P (AB )=AB 中样本点数Ω中样本点数.【拓展提高】2.2.2 事件的相互独立性【学习要求】1.在具体情境中,了解两个事件相互独立的概念.2.能利用相互独立事件同时发生的概率公式解决一些简单的实际问题.【学法指导】相互独立事件同时发生的概率可以和条件概率对比理解,事件独立可以简化概率计算,学习中要结合实例理解.【知识要点】1.相互独立的概念设A ,B 为两个事件,若P (AB )= ,则称事件A 与事件B 相互独立. 2.相互独立的性质如果事件A 与B 相互独立,那么A 与 , 与B , 与 也都相互独立.【问题探究】探究点一 相互独立事件的概念问题1 3张奖券只有1张能中奖,3名同学有放回地抽取.事件A 为“第一名同学没有抽到中奖奖券”,事件B 为“第三名同学抽到中奖奖券”,事件A 的发生是否会影响B 发生的概率?问题2 在问题1中求P (A )、P (B )及P (AB ),观察它们有何关系?总结相互独立事件的定义. 问题3 互斥事件与相互独立事件有什么区别?问题4 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立,如何证明?例1 (1)甲、乙两名射手同时向一目标射击,设事件A :“甲击中目标”,事件B :“乙击中目标”,则事件A 与事件B ( )A .相互独立但不互斥B .互斥但不相互独立C .相互独立且互斥D .既不相互独立也不互斥(2)掷一颗骰子一次,设事件A :“出现偶数点”,事件B :“出现3点或6点”,则事件A ,B 的关系是 ( )A .互斥但不相互独立B .相互独立但不互斥C .互斥且相互独立D .既不相互独立也不互斥 小结 有三种方法判断两事件是否具有独立性(1)定义法:直接判定两个事件发生是否相互影响. (2)公式法:检验P (AB )=P (A )P (B )是否成立.(3)条件概率法:当P (A )>0时,可用P (B |A )=P (B )判断. 跟踪训练1 已知下列各对事件: (1)甲组3名男生,2名女生;乙组2名男生,3名女生.今从甲、乙两组中各选一名同学参加游园活动.“从甲组中选出一名男生”与“从乙组中选出一名女生”.(2)一盒内盛有5个白乒乓球和3个黄乒乓球.“从8个球中任取1个,取出的是白球”与“从剩下的7个球中任意取1个,取出的仍是白球”.(2)一筐内有6个苹果和3个梨,“从中任取1个,取出的是苹果”与“取出第一个后放回筐内,再取1个是梨”.其中为相互独立事件的有 ( ) A .(1)(2) B .(1)(3) C .(2) D .(2)(3) 探究点二 相互独立事件同时发生的概率例2 某商场推出二次开奖活动,凡购买一定价值的商品可以获得一张奖券.奖券上有一个兑奖号码,可以分别参加两次抽奖方式相同的兑奖活动.如果两次兑奖活动的中奖概率都是0.05,求两次抽奖中以下事件的概率:(1)都抽到某一指定号码;(2)恰有一次抽到某一指定号码; (3)至少有一次抽到某一指定号码.小结 求P (AB )时注意事件A 、B 是否相互独立,求P (A +B )时同样应注意事件A 、B 是否互斥,对于“至多”,“至少”型问题的解法有两种思路:①是分类讨论;②是求对立事件,利用P (A )=1-P (A )来运算. 跟踪训练2 甲、乙两人独立地破译密码的概率分别为13、14.求:(1)两个人都译出密码的概率; (2)两个人都译不出密码的概率; (3)恰有一人译出密码的概率; (4)至多一人译出密码的概率; (5)至少一人译出密码的概率.探究点三 综合应用——系统可靠性问题例3 在一段线路中并联着3个自动控制的常开开关,只要其中1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.小结 (1)解答此类题目时,先分析给的元件间是串联、并联还是串并联混合关系,在此基础上结合事件的相互独立性及互斥事件、对立事件的有关知识依据“串联通易求,并联断易求”的原则,给予解答. (2)有的事件正面情况较繁,可以从其对立事件入手解决.跟踪训练3 (1)如图(1)添加第四个开关J D 与其他三个开关串联,在某段时间内此开关能够闭合的概率也是0.7,计算在这段时间内线路正常工作的概率.(2)如图(2)两个开关串联再与第三个开关并联,在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.(1) (2)【当堂检测】1.坛子中放有3个白球,2个黑球,从中进行不放回地取球2次,每次取一球,用A 1表示第一次取得白球,A 2表示第二次取得白球,则A 1和A 2是 ( ) A .互斥的事件B .相互独立的事件C .对立的事件D .不相互独立的事件2.甲、乙两人独立地解决同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是 ( ) A .p 1p 2 B .p 1(1-p 2)+p 2(1-p 1) C .1-p 1p 2 D .1-(1-p 1)(1-p 2) 3.甲、乙、丙三人独立地去译一个密码,分别译出的概率为15,13,14,则此密码能译出的概率是 ( )A .160B .25C .35D .59604.有一道数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是13,2人试图独立地在半小时内解决它,则两人都未解决的概率为______,问题得到解决的概率为________【课堂小结】一般地,两个事件不可能既互斥又相互独立,因为互斥事件不可能同时发生,而相互独立事件是以它们能够同时发生为前提.相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的.(列表比较)【拓展提高】2.2.3 独立重复试验与二项分布【学习要求】1.理解n 次独立重复试验的模型. 2.理解二项分布.3.能利用独立重复试验的模型及二项分布解决一些简单的实际问题.【学法指导】独立重复试验是研究随机现象的重要途径,二项分布是来自于独立重复试验的一个概率模型,学习中要把握它们的联系,掌握二项分布的特点.【知识要点】1.n 次独立重复实验在 条件下 的n 次试验称为n 次独立重复试验. 2.二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p , ,k =0,1,2,…,n .此时称随机变量X 服从二项分布,记作X ~ ,并称p 为【问题探究】探究点一 n 次独立重复试验的概率求法问题1 投掷一枚图钉,设针尖向上的概率为p ,则针尖向下的概率为q =1-p ,连续掷一枚图钉3次,仅出现1次针尖向上的概率是多少?问题2 问题1中若连续掷一枚图钉n 次,恰好出现k 次(k ≤n )针尖向上的概率又是多少?它与二项式定理有何联系?问题3 独立重复试验有哪些特点?例1 某射手每次射击击中目标的概率是0.8,求这名射手在10次射击中, (1)恰有8次击中目标的概率;(2)至少有8次击中目标的概率.(结果保留两个有效数字)小结 解决此类问题的关键是正确设出独立重复试验中的事件A ,接着分析随机变量是否满足独立重复试验概型的条件,若是,利用公式P (ξ=k )=C k n p k (1-p )n -k计算便可. 跟踪训练1 已知一个射手每次击中目标的概率为p =35,求他在4次射击中下列事件发生的概率.(1)命中一次;(2)恰在第三次命中目标; (3)命中两次;(4)刚好在第二次、第三次两次击中目标. 探究点二 二项分布的应用问题 二项分布和两点分布有何联系?`例2 甲、乙两队参加世博会知识竞赛,每队3人,每人回答一个问题,答对者为本队赢得一分,答错得零分.假设甲队中每人答对的概率均为23,乙队中3人答对的概率分别为23,23,12,且各人答对正确与否相互之间没有影响.用ξ表示甲队的总得分.(1)求随机变量ξ的分布列;(2)设C 表示事件“甲得2分,乙得1分”,求P (C ). 小结 解决二项分布问题的两个关注点(1)对于公式P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n )必须在满足“独立重复试验”时才能运用,否则不能应用该公式.(2)判断一个随机变量是否服从二项分布,关键有两点:一是对立性,即一次试验中,事件发生与否两者必有其一;二是重复性,即试验独立重复地进行了n 次.跟踪训练2 某学生在上学路上要经过4个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min.(1)求这名学生在上学路上到第三个路口时首次遇到红灯的概率; (2)求这名学生在上学路上因遇到红灯停留的总时间ξ的分布列. 探究点三 综合应用例3 实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛).(1)试分别求甲打完3局、4局、5局才能取胜的概率. (2)求按比赛规则甲获胜的概率.小结 二项分布在生产实际中的应用十分广泛,求解此类问题的关键是把实际问题概率知识化,在此基础上,。

相关文档
最新文档