单片机现代交通灯报告

合集下载

单片机的交通灯实训报告

单片机的交通灯实训报告

一、引言随着我国经济的快速发展,城市交通问题日益突出,交通拥堵、事故频发等问题严重影响了市民的生活质量。

为了解决这些问题,智能交通系统应运而生。

单片机作为一种高效、低成本的微控制器,在智能交通系统中扮演着重要角色。

本实训报告以单片机为控制核心,设计并实现了一套交通灯控制系统,旨在提高交通效率,保障交通安全。

二、实训目标1. 熟悉单片机的基本原理和编程方法。

2. 掌握交通灯控制系统的设计方法。

3. 学会使用单片机进行交通灯控制。

4. 提高动手实践能力和团队协作能力。

三、实训内容1. 系统组成本系统采用AT89C52单片机作为核心控制单元,通过外围电路实现交通灯的控制。

系统主要由以下模块组成:(1)单片机模块:负责整个系统的控制和数据处理。

(2)信号灯模块:包括红、黄、绿三个信号灯,用于指示交通灯状态。

(3)按键模块:用于手动控制交通灯状态。

(4)数码管模块:用于显示交通灯倒计时时间。

(5)电源模块:为整个系统提供稳定的电源。

2. 系统工作原理系统启动后,单片机首先进行初始化设置,包括设定交通灯状态、倒计时时间等。

然后进入主循环,不断检测按键状态,并根据交通灯状态和倒计时时间进行控制。

(1)正常状态:系统按照预设的交通灯状态和时间进行控制,绿灯亮30秒,黄灯亮5秒,红灯亮25秒。

(2)紧急状态:当检测到紧急车辆时,系统立即切换到紧急状态,所有交通灯亮红灯,直到紧急车辆通过。

(3)手动控制:用户可以通过按键手动控制交通灯状态,实现交通灯的切换。

3. 程序设计程序采用C语言编写,主要包括以下部分:(1)初始化函数:设置单片机的工作模式、IO口状态、定时器等。

(2)主循环函数:检测按键状态,控制交通灯状态和倒计时时间。

(3)中断服务程序:处理按键中断和定时器中断。

四、实训过程1. 硬件设计根据系统组成,设计并焊接电路板,包括单片机模块、信号灯模块、按键模块、数码管模块和电源模块。

2. 软件设计使用Keil uVision软件编写程序,并进行编译、下载和调试。

单片机交通灯实验报告

单片机交通灯实验报告

单片机交通灯实验报告简介本实验通过使用单片机设计并实现一个交通灯控制系统,模拟城市道路上的交通信号灯。

实验过程中,我们通过编程控制不同灯的亮灭状态,实现交通灯的循环变换,以此来模拟车辆和行人的行进。

实验材料•单片机•LED灯•电阻•连线•电源实验过程及结果1. 电路连接首先,我们根据实验需要将单片机和LED灯等材料进行连接。

具体连接方式如下:- 将电阻连接到单片机的IO口上,起到限流的作用。

- 将LED灯连接到电阻的另一端。

- 将单片机通过连线与电源进行连接。

2. 程序设计接下来,我们需要编写程序来实现交通灯的循环变换。

使用C语言编程,通过控制IO口的高低电平来控制LED灯的亮灭状态。

以下是程序的主要逻辑:#include <reg52.h>sbit redLed = P1^0; // 红灯sbit yellowLed = P1^1; // 黄灯sbit greenLed = P1^2; // 绿灯void delay(unsigned int t){while(t--);}void main(){while(1){// 红灯亮,其他灯灭redLed = 0;yellowLed = 1;greenLed = 1;delay(50000);// 红灯亮黄灯亮,绿灯灭redLed = 0;yellowLed = 0;greenLed = 1;delay(20000);// 绿灯亮,其他灯灭redLed = 1;yellowLed = 1;greenLed = 0;delay(50000);// 黄灯亮,其他灯灭redLed = 1;yellowLed = 0;greenLed = 1;delay(20000);}}3. 实验结果与分析通过实验,我们观察到LED灯按照我们设计的程序循环地变换亮灭状态,从而实现了交通灯的模拟效果。

红灯、黄灯、绿灯在规定的时间间隔内依次亮起,并在该时间间隔结束后熄灭。

单片机交通灯实验报告

单片机交通灯实验报告

单片机交通灯实验报告一、实验目的二、实验原理三、实验器材四、实验步骤五、实验结果六、实验分析与讨论七、实验总结一、实验目的:本次单片机交通灯实验的主要目的是通过使用单片机控制LED灯的亮灭,模拟交通信号灯的运行状态,并能够正确地掌握单片机编程技巧和硬件连接技术。

二、实验原理:本次交通灯实验采用了单片机作为中央处理器,通过编写程序控制LED灯的亮灭来模拟交通信号灯。

在程序中,我们需要使用到延时函数和条件判断语句。

具体来说,在红绿黄三个LED灯之间切换时,需要设定一个时间段,并在该时间段内循环执行红绿黄三个LED灯亮度变化的循环语句。

三、实验器材:1. 单片机开发板一块;2. LED 灯若干;3. 杜邦线若干。

四、实验步骤:1. 将红色 LED 灯连接至 P0 口;2. 将黄色 LED 灯连接至 P1 口;3. 将绿色 LED 灯连接至 P2 口;4. 将单片机开发板与电脑连接,打开 Keil 软件;5. 编写程序,将红色 LED 灯亮起来;6. 编写程序,将黄色 LED 灯亮起来;7. 编写程序,将绿色 LED 灯亮起来;8. 编写程序,模拟交通信号灯的运行状态。

五、实验结果:在完成了上述步骤后,我们成功地模拟出了交通信号灯的运行状态。

具体来说,在程序中我们设定了一个时间段为10s,在这个时间段内,红灯亮 5s,黄灯亮 2s,绿灯亮 3s。

在这个时间段结束后,循环执行该过程。

六、实验分析与讨论:通过本次交通灯实验,我们学习到了如何使用单片机控制LED灯的亮灭,并能够正确地编写程序模拟交通信号灯的运行状态。

在编写过程中需要注意以下几点:1. 在使用延时函数时要注意时间单位和精度;2. 在编写条件判断语句时要注意逻辑结构和语法规范;3. 在硬件连接时要注意杜邦线的颜色对应关系和插口位置。

七、实验总结:本次单片机交通灯实验是一次非常有意义的实践活动。

通过此次实验,我们掌握了单片机编程技巧和硬件连接技术,并能够正确地模拟交通信号灯的运行状态。

单片机交通灯实验报告(一)

单片机交通灯实验报告(一)

单片机交通灯实验报告(一)引言概述:交通灯是城市交通管理的重要组成部分,通过控制红绿灯的变化,实现车辆和行人的有序通行。

本文将详细介绍单片机交通灯实验的设计与实现,包括硬件设计、程序编写和实验结果分析。

正文:一、硬件设计1. 确定电路所需元件:单片机、LED灯、电阻等。

2. 组装硬件电路:按照电路图进行元件的连接,确保电路的正确连接。

3. 设计适当的电源:为单片机和LED灯提供稳定的电源。

二、程序编写1. 定义程序所需的IO口:确定控制LED灯的IO口。

2. 初始化单片机:设置单片机的工作频率和中断。

3. 设计交通灯的流程控制:根据实际的交通灯变化规律,设计程序的流程控制。

4. 编写交通灯控制的函数:使用if-else语句或switch-case语句编写函数控制交通灯的变化。

5. 调试程序:通过单片机调试工具或仿真软件,检查程序运行的正确与否。

三、实验结果分析1. 观察实验现象:通过实验现场观察交通灯的变化,记录每一种灯亮的时间和顺序。

2. 分析实验结果:根据实验记录,分析交通灯的工作原理和实现的准确性。

3. 比较与设计要求的符合度:将实验结果与设计要求进行比较,评估实验的完成度。

4. 探讨存在问题与改进方向:分析实验中可能存在的问题,并提出改进措施。

四、小结本文介绍了单片机交通灯实验的设计与实现。

通过硬件设计和程序编写,实现了交通灯的变化控制。

通过实验结果分析,我们可以得出实验的有效性和可行性。

当然,实验中也存在一些问题,需要进一步改进。

在后续的实验中,我们将进一步完善交通灯的控制,提高其实际应用的稳定性和可靠性。

总结:本文详细介绍了单片机交通灯实验的设计与实现,包括硬件设计、程序编写和实验结果分析。

通过该实验,我们对交通灯的工作原理和控制方法有了更为深入的了解,并对实验的经验和教训进行了总结。

相信在今后的学习和实践中,我们能够更好地应用单片机技术,为实现交通管理的智能化和高效化作出贡献。

单片机实训报告交通灯

单片机实训报告交通灯

一、实训背景与目的随着城市化进程的加快,交通流量日益增大,传统的交通灯控制系统已经无法满足日益复杂的交通需求。

为了提高交通效率,减少交通拥堵,本实训项目旨在设计并实现一套基于单片机的智能交通灯控制系统。

通过本实训,学生可以深入了解单片机原理,掌握单片机编程与调试技巧,同时锻炼动手实践能力和团队协作精神。

二、系统设计1. 系统组成本系统主要由以下模块组成:单片机模块:采用AT89C52单片机作为核心控制单元,负责接收传感器信号、处理数据、控制交通灯状态等。

传感器模块:包括红外传感器、地磁传感器等,用于检测车辆和行人,实时获取交通信息。

执行模块:包括LED灯、继电器等,用于驱动交通灯和信号灯。

显示模块:采用LCD显示屏,用于显示交通灯状态、倒计时等信息。

电源模块:为系统提供稳定电源。

2. 工作原理系统工作原理如下:(1)单片机初始化,设置各模块参数。

(2)单片机通过传感器模块检测交通情况,如车辆和行人数量。

(3)单片机根据检测到的交通情况,控制交通灯和信号灯的亮灯状态。

(4)LCD显示屏显示交通灯状态和倒计时信息。

(5)当系统检测到紧急情况时,如行人过马路,系统自动切换到紧急模式,确保行人安全。

三、硬件设计1. 单片机模块选用AT89C52单片机作为核心控制单元,具有以下特点:内置8K字节闪存,可存储程序和数据。

内置8位定时器/计数器,可进行定时或计数操作。

内置串行通信接口,可进行数据通信。

2. 传感器模块红外传感器:用于检测车辆和行人,实现自动控制。

地磁传感器:用于检测车辆行驶方向,实现左转和直行控制。

3. 执行模块LED灯:用于显示交通灯状态。

继电器:用于驱动信号灯。

4. 显示模块采用LCD显示屏,用于显示交通灯状态、倒计时等信息。

5. 电源模块采用DC 12V电源,为系统提供稳定电源。

四、软件设计1. 编程语言采用C语言进行编程,具有以下优点:语法简单,易于理解。

可移植性好,可在不同平台上运行。

单片机交通灯实习报告

单片机交通灯实习报告

一、实习背景随着我国城市化进程的加快,城市交通压力日益增大,交通拥堵问题日益突出。

为了提高交通效率,保障交通安全,交通信号灯控制系统的设计与研究显得尤为重要。

本实习项目旨在通过单片机技术,实现对交通灯的智能控制,提高交通路口的通行效率和安全性。

二、实习目的1. 熟悉单片机的基本原理和编程方法;2. 掌握交通信号灯控制系统的设计方法;3. 提高实际动手能力和问题解决能力;4. 培养团队协作精神和创新意识。

三、实习内容1. 硬件设计(1)单片机选型:选用STC89C51单片机作为核心控制器;(2)传感器选型:选用红外传感器检测车辆和行人流量;(3)显示屏选型:选用LCD显示屏显示交通灯状态和时间;(4)交通灯模块:采用LED灯实现红、黄、绿灯的显示;(5)按键模块:采用按键实现功能切换和参数设置。

2. 软件设计(1)系统初始化:单片机上电后,进行系统初始化,包括设置定时器、初始化I/O端口等;(2)数据采集:通过红外传感器采集交通流量数据,并进行处理;(3)数据处理与决策:根据采集到的交通流量数据,结合预设的算法和规则,计算出当前交通灯的信号配时;(4)信号控制:根据计算出的信号配时,控制交通灯的信号状态;(5)人机交互:通过按键实现功能切换和参数设置,并通过LCD显示屏显示交通灯状态和时间。

3. 系统测试与调试(1)硬件测试:检查电路连接是否正确,电源是否稳定,传感器、显示屏、交通灯模块是否正常工作;(2)软件测试:通过编写测试程序,验证系统功能是否满足设计要求;(3)调试:根据测试结果,对系统进行调试,确保系统稳定可靠地运行。

四、实习成果1. 设计并实现了基于单片机的交通信号灯控制系统;2. 系统能够根据实时交通流量自动调整红绿灯的切换时间,提高交通效率;3. 系统具有故障自诊断、手动/自动切换等功能,提高了系统的可靠性和实用性。

五、实习总结通过本次单片机交通灯实习,我掌握了单片机的基本原理和编程方法,熟悉了交通信号灯控制系统的设计方法,提高了实际动手能力和问题解决能力。

单片机交通灯实验报告

单片机交通灯实验报告实验目的:1.熟悉单片机的基本工作原理和编程方法。

2.学习如何使用单片机控制交通灯的运行。

3.加深对电子元器件和电路原理的理解和掌握。

实验器材:1.51系列单片机开发板:包括单片机主控板、显示器板、外部扩展板等。

2.LED灯:红色、黄色、绿色各一颗。

3.电阻:用于限流。

4.连接线:用于连接各个电子元器件。

实验原理:在交通中,红灯代表停止、黄灯代表警告、绿灯代表通行。

在本实验中,我们将使用单片机控制三个LED灯实现交通灯的运行。

具体原理如下:1.使用单片机的IO口控制LED灯的亮灭。

2.根据交通灯的运行状态,通过改变LED灯的亮灭顺序来模拟交通的运行。

实验步骤:1.连接电路:将三个LED灯连接到单片机的IO口,并通过电阻限流。

2.编写程序:使用C语言编写程序,在主函数中设置交通灯的运行状态和亮灭顺序。

3.烧写程序:将编写好的程序烧写到单片机中。

4.运行实验:启动单片机,观察LED灯的亮灭情况,验证交通灯是否能正常工作。

实验结果:经过实验,我们成功地实现了单片机交通灯的控制。

在程序运行过程中,红灯先亮,表示停止;然后黄灯亮,表示警告;最后绿灯亮,表示通行。

整个过程循环不断,符合实际交通灯的运行规律。

实验总结:通过这次实验,我深入了解了单片机的基本工作原理和编程方法,掌握了使用单片机控制交通灯的技巧。

同时,我也加深了对电子元器件和电路原理的理解和掌握。

这些知识将对我今后的学习和工作产生积极影响。

然而,在实验过程中也遇到了一些问题。

比如,如果LED灯连接不正确或程序编写有误,交通灯可能无法正常运行。

因此,在进行单片机实验时,我们需要仔细检查电路连接和程序编写,确保一切正常。

总之,单片机交通灯实验是一次充满趣味和挑战的实践活动。

通过这次实验,我不仅学到了许多知识,而且培养了动手能力和实践能力。

希望将来能有更多这样的实验机会,继续提升自己的电子技术水平。

单片机交通灯实验报告(二)2024

单片机交通灯实验报告(二)引言概述本报告旨在介绍单片机交通灯实验的进一步研究。

通过对单片机交通灯实验的深入探讨,我们将了解交通信号灯电路的设计原理、控制逻辑以及实际应用的相关知识。

本文将分为五个大点进行阐述,包括:电路设计、控制逻辑编程、硬件连接、功能扩展和实验结果分析。

正文一、电路设计1. 确定交通信号灯的基本电路结构2. 选择适当的电子元件并进行电路布局3. 绘制电路原理图和PCB布局图4. 按照电路设计进行焊接和组装二、控制逻辑编程1. 理解交通信号灯的控制逻辑2. 学习并掌握单片机编程语言3. 根据控制逻辑编写程序代码4. 调试程序的运行,确保交通信号灯按照预期进行切换5. 优化控制逻辑,提高程序效率和稳定性三、硬件连接1. 连接交通信号灯的LED灯及其它电子元件2. 理解并实现灯光的正反相控制3. 使用适当的电阻进行电流限制4. 连接并配置单片机与电路的通信接口5. 建立单片机与计算机之间的连接,方便程序下载与调试四、功能扩展1. 添加电子组件以实现交通信号灯的更多功能2. 尝试不同的交通灯控制算法3. 增加人车辨别传感器以实现智能化控制4. 加入音效与声光提示功能,提高交通信号灯的可视性和可听性5. 设计并实现交通流量的实时监测和统计功能五、实验结果分析1. 对交通信号灯的各项功能进行实验验证2. 分析实验结果,评估系统的性能和稳定性3. 总结实验中遇到的问题和解决方案4. 提出改进交通信号灯设计的建议总结通过本文详细的阐述,我们了解了单片机交通灯实验的电路设计、控制逻辑编程、硬件连接、功能扩展以及实验结果分析等方面的知识。

这些内容不仅对于我们更深入地了解交通信号灯的工作原理和应用具有重要意义,而且为我们开展相关实际项目提供了指导和启示。

希望本报告能够帮助读者更好地理解和应用单片机交通灯实验。

单片机交通灯实验报告

单片机交通灯实验报告交通灯是城市交通管理的重要组成部分,它能够规范车辆和行人的通行秩序,保障交通安全。

为了进一步学习交通灯的原理和掌握其设计,我们进行了一次单片机交通灯实验。

本次实验使用单片机和几个LED灯,通过对单片机的编程控制来实现交通灯的自动切换。

下面是我对该实验进行的详细记录和分析。

首先,我们需要连接电路。

我们采用的是STC89C52单片机,使用3个LED灯来模拟红灯、黄灯和绿灯。

利用杜邦线将LED灯连接到单片机的GPIO口,另外还需要连接一个电位器到单片机的模拟口,用来控制红灯亮灭的时间。

接下来,我们进行了单片机的编程。

我们使用C语言编写程序,利用单片机提供的GPIO口控制LED灯的亮灭,从而实现交通灯的控制。

我们通过控制红灯、黄灯和绿灯的亮灭时间,模拟真实交通灯的工作。

在编写程序的过程中,我们首先做了一些准备工作。

我们初始化了单片机的GPIO口,设定了红灯、黄灯和绿灯的引脚。

然后,我们使用一个循环语句不断地进行交通灯的切换。

具体来说,我们将交通灯控制划分为红灯、绿灯和黄灯三个状态,利用if-else语句对不同状态进行判断并进行相应的控制。

通过对红灯亮灭时间的控制,我们能够实现交通灯的自动切换。

在程序设计的过程中,我们还考虑了交通灯的变化时间。

我们在红灯和绿灯之间设置了一个黄灯过渡时间,以模拟真实交通灯的工作。

同时,我们还设置了一个迟滞时间,使得每个状态之间的切换更加顺滑。

通过这次实验,我们进一步了解了交通灯的工作原理和掌握了单片机的编程技巧。

通过对交通灯的模拟,我们成功地实现了交通灯的自动切换。

总结起来,这次实验不仅提高了我们对交通灯的认识,还锻炼了我们的动手能力和创新思维。

在今后的学习和工作中,我们将继续学以致用,将所学的知识应用到实际问题中。

让我们共同努力,为交通安全做出贡献。

51单片机综合实验交通灯设计报告

51单片机综合实验交通灯设计报告班级:学生姓名:学号:指导教师:一实验题目交通灯控制系统设计二实验目的1、学会用8051单片机开发简单的计算机控制系统;2、学会用汇编语言和C语言开发系统软件;3、学会8051单片机开发环境wave或Keil uVision3软件的使用;4、学会Proteus软件的使用方法,会用Proteus单片机系统进行仿真;5、学会Protel软件的使用方法,会用Protel绘制电气原理图和印制板图;6、熟悉七位数码管显示的使用方法;7、了解交通灯控制系统的基本组成。

三实验要求交通灯处在十字路口上。

它有红﹑黄﹑绿三种颜色的灯组成。

红灯亮时道路上的车辆停止运行;黄灯是一种过渡用的信号灯,当它亮时,表示道路上的红绿色信号灯即将进行转换。

下面拿东西南北四个方向来说明。

当东西方向允许行车(或者左转)的时候,南北方向就禁止行车,即此时东西方向的绿灯亮红灯灭,而南北方向的绿灯灭红灯亮。

反之当南北方向允许行车(或者左转)的时候,东西方向就禁止行车,即此时南北方向的绿灯亮红灯灭,而东西方向的绿灯灭红灯亮。

交通灯配置示意图如图1所示。

同时当有特殊的情况发生时,能手动控制各个方向的信号灯。

设计任务就是将这一电路用单片机来实现具体的控制。

1 十字路口交通灯配置示意图四设计内容与原理为了在后面的分析中便于说明,将南北方向允许直行命名为状态1,南北方向允许左转命名为状态2,南北方向行车到东西方向行车的转换阶段命名为状态3,将东西方向允许直行命名为状态4,东西方向允许左转命名为状态5,东西方向行车到南北方向方向行车的转换阶段命名为状态6。

假定直行绿灯点亮的时间为25s,左转绿灯点亮的时间为20s,黄灯点亮的时间为5s,则对方红灯的点亮时间为50秒。

黄灯每隔500ms亮一次,之后灭500ms (亮灭一次叫作闪烁一次),一共闪烁5次,持续5s。

各个状态之间的变换情况如下:具体显示周期如下:图2交通信号灯点亮时间图设计电路中每个路口的控制信号灯应有四个,即绿灯两个、黄灯、红灯各一个,同时需要七段数码管一个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东海洋大学寸金学院《单片机》期末考查(论文设计)论文题目:现代交通灯Modern traffic ligths系别:信息技术系专业:电气工程及其自动化班级:电气工程及其自动化3班姓名:曾苑学号:2011103120338指导老师:叶伟慧职称:讲师日期:2013年12月15日广东海洋大学寸金学院教务处制目录目录 (1)摘要 (2)第1章引言 (3)1.1背景与意义 (3)1.2系统设计实现的目标 (3)第2章系统分析 (3)2.1系统原理 (3)2.2开发及运行环境 (4)第3章硬件电路设计 (5)3.1交通灯的芯片介绍 (5)3.1.1 AT89c51引脚介绍 (5)3.1.2 74LS245介绍 (6)3.1.3 7seg-mps2-cc七段数码管以及LED灯介绍 (7)3.2按键调整时间 (7)第4章测试 (8)4.1测试软件介绍 (8)4.2软件调试 (8)结束语 (10)附录 (11)程序代码 (11)摘要城市道口交通灯控制系统模型采用单片机作为主控制器,用于十字路口的车辆及行人的交通管理,每个方向具有左拐、右拐、直行及行人4种通行指示灯,计时牌显示路口通行转换剩余时间,在出现紧急情况时可以由交警手动实现全路口车辆禁行而行人通行状态。

另外,在特种车辆如119、120通过路口时,系统可自动转换为特种车辆放行,其他车辆禁行,15s后系统自动恢复正常管理。

其他还有盲人提示音、120s与60s 通行管理转换功能。

采用标准的AT89C52单片机作为控制器;通行倒计时显示采用3位LED数码管;右拐、左拐、直行及行人4种通行状态指示灯采用双色高亮发光二极管;LED显示采用动态扫描,以节省端口数。

特种车辆通行采用实时中断完成,识别方法采用红外线发射及接受方案。

整套电路模块由控制系统模块、通行灯输出控制显示模块、时间显示模块和自动特种车辆控制模块等组成。

道口交通控制系统控制程序主要分为以下几个模块:初始化程序、主程序、定时中断程序和特种车实时响应程序等。

设计时按红绿交通灯控制程序和特种车辆经过中断程序两大部分。

本系统以AT89C51单片机为核心,采用汇编语言编程,设计的交通灯可用于十字路口的车辆及行人的交通管理,设计中应用了两种倒计时显示方式,120s倒计时适用于车流量较大的大城市,60s倒计时可用于中小型城市。

关键词:单片机;显示;汇编语言;交通管理; LED数码管第1章引言1.1背景与意义近年来随着科技的飞速发展,单片机的应用正在不断深渗透到我们生活的各个领域,几乎每个领域有单片机的踪迹,同时带动传统控制检测技术日益更新。

在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。

十字路口车辆穿梭,行人熙攘,车行车道,人行人道,有条不紊。

那么靠什么来实现这井然秩序呢?靠的就是交通信号灯的自动指挥系统。

交通信号灯控制方式很多。

本次课程设采用单片机AT89C51和芯片74LS245为中心器件来设计交通灯控制器,实现了能根据定时控制AT89C51芯片的P0口设置红、绿灯燃亮时间的功能;P1口设置红绿灯循环点亮,倒计时的时间由数码管显示。

1.2系统设计实现的目标在主干道上设置LED的红绿灯,(由于时间问题)设置红灯点亮14秒,绿灯点亮10秒,黄灯3秒,循环点亮,也可以随车流量的问题随时设置时间。

主要内容包括:1)红绿黄三灯循环点亮2)实现倒计时功能;3)按下按钮调整红绿灯的时间4)长按增加(减少)秒数按钮,以10秒递增(递减)。

第2章系统分析2.1系统原理实际交通灯分为东南西北四个方向以及左转右转,本次课程设计我们涉及的是简易交通灯,不包含左转右转,只包括显示红绿灯循环亮灭、倒计时以及可以因交通需要临时调整时间,原理较为简单。

东西通行,南北红灯亮。

过一段时间后,转状态。

东西绿灯灭,黄灯亮。

再转状态;东西红灯亮,南北绿灯亮通行。

过一段时间后转状态;南北绿灯灭,黄灯亮。

一段间后,又循环至初始状态。

2.2开发及运行环境本次设计包括51单片机、7SEG-MPX2的共阴七段数码管、74LS245芯片。

原理图如下:第3章硬件电路设计3.1交通灯的芯片介绍3.1.1 AT89c51引脚介绍VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。

当P0口的管脚第一次写1时,被定义为高阻输入。

P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。

在FIASH编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须接上拉电阻。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。

P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。

在FLASH编程和校验时,P1口作为低八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。

并因此作为输入时,P2口的管脚被外部拉低,将输出电流。

这是由于内部上拉的缘故。

P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。

在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。

P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。

当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。

作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。

P3口也可作为AT89C51的一些特殊功能口,如下表所示:口管脚备选功能P3.0 RXD(串行输入口)P3.1 TXD(串行输出口)P3.2 /INT0(外部中断0)P3.3 /INT1(外部中断1)P3.4 T0(计时器0外部输入)P3.5 T1(计时器1外部输入)P3.6 /WR(外部数据存储器写选通)P3.7 /RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。

RST:复位输入。

当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的低位字节。

在FLASH编程期间,此引脚用于输入编程脉冲。

在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。

因此它可用作对外部输出的脉冲或用于定时目的。

然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE 脉冲。

如想禁止ALE的输出可在SFR8EH地址上置0。

此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。

另外,该引脚被略微拉高。

如果微处理器在外部执行状态ALE禁止,置位无效。

PSEN:外部程序存储器的选通信号。

在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。

但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。

注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。

在FLASH编程期间,此引脚也用于施加12V 编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

74LS245介绍74LS245是我们常用的芯片,用来驱动led或者其他的设备,它是8路同相三态双向总线收发器,可双向传输数据。

74LS245还具有双向三态功能,既可以输出,也可以输入数据。

当8051单片机的P0口总线负载达到或超过P0最大负载能力时,必须接入74LS245等总线驱动器。

当片选端/CE低电平有效时,DIR=“0”,信号由 B 向 A 传输;(接收)DIR=“1”,信号由 A 向 B 传输;(发送)当CE为高电平时,A、B均为高阻态。

由于P2口始终输出地址的高8位,接口时74LS245的三态控制端1G和2G接地,P2口与驱动器输入线对应相连。

P0口与74LS245输入端相连,E端接地,保证数据线畅通。

8051的/RD和/PSEN相与后接DIR,使得RD和PSEN有效时,74LS245输入(P0.1←D1),其它时间处于输出(P0.1→D1)。

7seg-mps2-cc七段数码管以及LED灯介绍LED显示和中断定时电路。

利用定时器T0产生每10ms一次的中断,每100次中断为1s。

对两个方向分别显示红、绿、黄灯,已经相应的剩余时间即可。

A方向红灯时间=B方向绿灯时间+黄灯缓冲时间。

由原理图可以看出单片机:P1口接LED灯,P1.0、P1.1、P1.2分别接南北方向红黄绿交通指示灯,P1.3、P1.4、P1.5分别接东西方向的红黄绿交通指示灯;P0口按顺序从P0.0到P0.6依次接南北数码管的a、b、c、d、e、f、g端;P2.0到P2.6依次接东西数码管的a、b、c、d、e、f、g端;3.2按键调整时间系统设置三个按键,SET(设置)用于选择要增加(减少)对应灯的时间;ADD (增加)用于设置增加亮灯的时间;SUB(减少)用于设置减少亮灯的时间。

增加或减少长按则可以以10秒递增(递减),方便人员的设置,电路图如下:当按下SET(P3.4)按键,P3.0和P3.1为高电平,共阴极数码管关闭,显示东西方向对应灯的时间;P3.5和P3.6对应ADD(加)和SUB(减)按钮。

按键图,前面接口P3.4置高电平,后面接地,按下后为低电平有效。

第4章测试4.1测试软件介绍Keil C51是美国Keil Software公司出品的51系列兼容单片机C语言软件开发系统,与汇编相比,C语言在功能上、结构性、可读性、可维护性上有明显的优势,因而易学易用。

用过汇编语言后再使用C来开发,体会更加深刻。

Keil C51软件提供丰富的库函数和功能强大的集成开发调试工具,全Windows界面。

另外重要的一点,只要看一下编译后生成的汇编代码,就能体会到Keil C51生成的目标代码效率非常之高,多数语句生成的汇编代码很紧凑,容易理解。

在开发大型软件时更能体现高级语言的优势。

Keil C51软件是一个基于32位Windows 环境的应用程序,支持C语言和汇编语言编程,其6.0以上的版本将编译和仿真软件统一为μVision(通常称为μV2)。

Keil提供包括C编译器、宏汇编、连接器、库管理和一个功能强大的仿真调试器等在内的完整开发方案,由以下几部分组成:μVision IDE集成开发环境C51编译器、A51汇编器、LIB51库管理器、BL51连接/定位器、OH51目标文件生成器以及 Monitor-51、RTX51实时操作系统。

相关文档
最新文档