广东省汕头市陈店实验学校2020-2021学年高一上学期数学周测7B含答案

合集下载

广东省汕头市重点中学2020-2021学年高一上学期期末考试数学科参考答案

广东省汕头市重点中学2020-2021学年高一上学期期末考试数学科参考答案

2020级高一第一学期期末考试数学科参考答案
题号123456789101112
答案A D B C D C B A A B D A D A D A C D 题号131415161718
答案681202
19.【解】(1)原式;
(2).
20.【解】(1)∵全集,集合,

,或,

(2)∵,集合,∴,∴,解得.
∴实数的取值范围是.
21.【解】(1)已知,,所以,

所以.
(2)因为,所以
.
22.【解】(1)先求矩形面积的最大值:设,,
则,

∴当,即时,
此时,,.
(2)过Q点作垂足为S,设
在中,有,
则,

令,
∵,∴,
此时,则,
当时,的最大值为
∴方案裁剪出内接五边形面积最大值为,即利用率。

23.【解】(1)当时,不等式,即为,
也就是,解得,所以,不等式的解集为;
(2)不等式即为,化简,即对任意恒成立,
记.
由于当时,,则.
所以,.
(3)由于函数是“可构造三角形函数”,
首先,必有才能保证;其次,必需,
而当时,是上的增函数,则的值域为,由;
当时,,符合题意;
而当时,是上的减函数,则的值域为,由;
综上,.。

广东省汕头市陈店实验学校2020-2021学年高一上学期数学周测7A含答案

广东省汕头市陈店实验学校2020-2021学年高一上学期数学周测7A含答案

陈店实验学校2020-2021学年度第一学期高一数学周测(七)A 卷时间:60分钟 满分:75分一、选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选 项中,只有一项是符合题目要求的.1.已知集合A={x|3≤x <7},B={x|2<x ≤5},则A ∩B=( )A.{x|2<x <7}B.{x|2≤x ≤7}C.{x|3<x <5}D.{x|3≤x ≤5}2.“我是汕头人”是“我是广东人”的( )条件A .充分不必要B .必要不充分C .充要条件D .既不充分也不必要3.命题“∃x ∈R ,2x -x+1=0”的否定是( )A.∃x ∉R ,2x -x+1=0B.∃x ∉R ,2x -x+1≠0C.∀x ∈R ,2x -x+1=0D.∀x ∈R ,2x -x+1≠04.已知x >1,则x+11-x 的最小值及此时的x 值依次为( ) A.1 ,4 B.2,3 C.3,2 D.4,15.下列各组函数表示同一函数的是( )A.22)()(,)(x x g x x f ==B.0)(,1)(x x g x f ==C.11)(,1)(2--=+=x x x g x x f D.313)()(,)(x x g x x f ==6.设函数m x x x f -+-=2|1|)(,12)(-=x x g ,且f(x)的图像恒在g(x)的图像的上方,则m 的取值范围是( )A.m >0B.m <0C.m ≥0D.m ≤0二、多项选择题:本题共2小题,每小题5分,共10分.在每小题给出的选项中有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.7.(多选) 函数32)(2-+=x x x f 的单调区间是( )A .[-1,+∞)B .[1,+∞)C .(-∞ ,3]D .(-∞ ,-3]8.(多选)已知函数⎪⎩⎪⎨⎧〉≤-=0,50,1)(2x xx x x f ,若)(a f =15,则a 的值为( )A .-4B .4C .3D .31三、填空题:本题共3小题,每小题5分,共15分.9.已知函数f(x)=⎩⎨⎧〈+≥+0,30,22x x x x ,则))1((-f f 的值为_____________.10.已知32)121(+=-x x f ,则f(x)=_____________.11.函数32)(2+--=x x x f 的定义域为 ;值域为_____________.答题卡班级: 姓名: 一 、选择题:(每小题5分,共40分)二、填空题:(每小题5分,共15分)9.________________ 10.________________ 11.________________ 三、解答题:本题共2小题,每小题10分,共20分.解答应写出文字说明、证明过程或演算步骤.12.已知函数⎩⎨⎧≤--〉-=0,20|,1|)(2x x x x x x f . (1)画出函数f(x)的图像;(2)若方程f(x)-a=0恰有四个解,求实数a 的取值范围.13.已知函数f(x)=2x +ax+3.(1)若函数f(x)对任意的实数t∈R,都有f(1+t)=f(1-t)成立,求f(x);(2)若函数f(x)在区间[-1,1]上的最大值为-3,求实数a的值.。

2021年高一上学期数学周练试题(实验班1.12) 含答案

2021年高一上学期数学周练试题(实验班1.12) 含答案

2021年高一上学期数学周练试题(实验班1.12)含答案一.选择题(本大题共12小题,每小题5分,共60分)1.求值()A. B. C. D.2.函数的图象是()3.函数的最小值等于()A. B. C. D.4.函数的图象的一个对称中心是()A. B.C. D.5.△ABC中,,则函数的值的情况()A.有最大值,无最小值 B.无最大值,有最小值C.有最大值且有最小值 D.无最大值且无最小值6.若f(sinx)=2-cos2x,则f(cosx)=()A.2-sin2xB.2+sin2xC.2-cos2xD.2+cos2x7.对任意的锐角α,β,下列不等关系中正确的是()A.sin(α+β)>sinα+sinβ B.sin(α+β)>cosα+cosβC.cos(α+β)<sinα+sinβD.cos(α+β)<cosα+cosβ8. 已知函数的最小正周期为,为了得到函数的图象,只要将的图象()A 向左平移个单位长度B 向右平移个单位长度C 向左平移个单位长度D 向右平移个单位长度9.计算下列几个式子,①,②2(sin35︒cos25︒+sin55︒cos65︒), ③, ④,结果为的是()A.①②B. ①③C. ①②③D. ①②③④10.如果两个函数的图象仅经过平移或对称变换后能够重合的,则称这样的两个函数为“同胞函数”。

现在给出下列函数:①f(x)=sinxcosx;②f(x)= 2 sin2x+1;③f(x)=2sin(−x+π/4);④f(x)=sinx+ 3 cosx.其中是“同胞函数”的有()A. ①②B. ①④C. ②③D. ③④11.△ABC中三个内角为A、B、C,若关于x的方程有根为1,则△ABC一定是()A. 直角三角形B. 等腰三角形C. 锐角三角形D. 钝角三角形二:填空题(本大题共4小题,每小题5分,共20分)13.适合的实数m的取值范围是_________.14.已知函数,的图像与直线 y=1的相邻交点的距离最小值等于,则的最小正周期是15若,则函数的最大值为。

2020-2021学年广东省实验中学高一(上)第一次段考数学试卷(附答案详解)

2020-2021学年广东省实验中学高一(上)第一次段考数学试卷(附答案详解)

2020-2021学年广东省实验中学高一(上)第一次段考数学试卷一、单选题(本大题共8小题,共40.0分)1. 已知全集U ={0,1,2,3,4,5,6,7,8,9},集合A ={0,1,3,5,8},集合B ={2,4,5,6,8},则(∁U A)∩(∁U B)=( )A. {5,8}B. {7,9}C. {0,1,3}D. {2,4,6}2. 命题“∀x ∈R ,x 2+x +1>0”的否定为( )A. ∀x ∈R ,x 2+x +1≤0B. ∃x ∈R ,x 2+x +1≤0C. ∃x ∈R ,x 2+x +1<0D. ∃x ∈R ,x 2+x +1>03. 已知函数f(x)=1x 2+2,则f(x)的值域是( )A. {y|y ≤12}B. {y|y ≥12}C. {y|0<y ≤12}D. {y|y >0}4. 已知a ∈R ,则“a >1”是“1a <1”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件5. 若函数y =f(x)的定义域是[0,2],则函数g(x)=f(2x)x−1的定义域是( )A. [0,1]B. [0,1)C. [0,1)∪(1,4]D. (0,1)6. 已知不等式ax 2−5x +b >0的解集为{x|−3<x <2},则不等式bx 2−5x +a >0的解集为( )A. {x|−13<x <12} B. {x|x <−13或x >12} C. {x|−3<x <2}D. {x|x <−3或x >2}7. 设集合A ={1,2,5},B ={x|x 2−4x +m =0},若A ∩B ={1},则B =( )A. {1,−3}B. {1,0}C. {1,3}D. {1,5}8. 设f(x)={√x,0<x <12(x −1),x ≥1若f(a)=f(a +1),则f(1a )=( )A. 2B. 4C. 6D. 8二、多选题(本大题共4小题,共20.0分) 9. 下列各组函数中,两个函数是同一函数的有( )A. f(x)=|x|与g(x)=√x 2B. f(x)=x +1与g(x)=x 2−1x−1C. f(x)=|x|x 与g(x)={1,x >0−1,x <0D. f(x)=√x 2−1与g(x)=√x +1⋅√x −110. 函数f(x)是定义在R 上的奇函数,下列命题中正确的有( )A. f(0)=0B. 若f(x)在[0,+∞)上有最小值−1,则f(x)在(−∞,0]上有最大值1C. 若f(x)在[1,+∞)上为增函数,则f(x)在(−∞,−1]上为减函数D. 若x >0时,f(x)=x 2−2x ,则当x <0时,f(x)=−x 2−2x11. 对于实数a 、b 、c ,下列命题中正确的是( )A. 若a >b ,则ac <bcB. 若a <b <0,则a 2>ab >b 2C. 若c >a >b >0,则ac−a >bc−b D. 若a >b ,1a >1b ,则a >0,b <012. 下列求最值的运算中,运算方法错误的有( )A. 若x <0,x +1x =−[(−x)+1−x ]≤−2√(−x)⋅1−x =−2,故x <0时,x +1x 的最大值是−2B. 当x >1时,x +2x−1≥2√x ⋅2x−1,当且仅当x =2x−1取等,解得x =−1或2.又由x >1,所以取x =2,故x >1时,原式的最小值为2+22−1=4C. 由于x 2+9x 2+4=x 2+4+9x 2+4−4≥2√(x 2+4)⋅9x 2+4−4=2,故x 2+9x 2+4的最小值为2D. 当x ,y >0,且x +4y =2时,由于2=x +4y ≥2√x ⋅4y =4√xy ,∴√xy ≤12,又1x +1y ≥2√1x ⋅1y =√xy≥212=4,故当x ,y >0,且x +4y =2时,1x +1y 的最小值为4三、单空题(本大题共4小题,共20.0分)13. 设函数f(x)={√2x −1−x 2,x ≥12f(x +2),x <12,则f(−3)=______. 14. 函数f(x)=2x 2−4x+5x−1(x >1)的最小值是______ .15. 如图表示一位骑自行车和一位骑摩托车的旅游者在相距80km 的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如图信息:①骑自行车者比骑摩托车者早出发3h,晚到1h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5ℎ后追上了骑自行车者;④骑摩托车者在出发1.5ℎ后与骑自行车者速度一样.其中,正确信息的序号是______.16.若函数f(x)={−x2+(2−a)x,x≤0(2a−1)x+a−1,x>0在R上为增函数,则a取值范围为.四、解答题(本大题共6小题,共70.0分)17.已知全集U=R,集合A={x|x2−2x−15<0},集合B={x|(x−2a+1)(x−a2)<0}.(1)若a=1,求∁U A和B;(2)若A∪B=A,求实数a的取值范围.18.某企业采用新工艺,把企业生产中排放的二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=12x2−200x+80000,且每处理一吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?19. 已知函数f(x)=ax+b x 2+1是定义在(−1,1)上的奇函数,且f(12)=25.(1)求函数的解析式;(2)判断函数f(x)在(−1,1)上的单调性,并用定义证明; (3)解关于t 的不等式:f(t +12)+f(t −12)<0.20. 设函数f(x)对任意x ,y ∈R ,都有f(x +y)=f(x)+f(y),且x >0,f(x)<0;f(1)=−2.(1)证明f(x)是奇函数; (2)证明f(x)在R 上是减函数;(3)求f(x)在区间[−3,3]上的最大值和最小值.21. 已知f(x)=ax 2+x −a ,a ∈R .(1)若a =1,解不等式f(x)≥1;(2)若不等式f(x)>−2x2−3x+1−2a对一切实数x恒成立,求实数a的取值范围;(3)若a<0,解不等式f(x)>1.22.已知幂函数f(x)=(p2−3p+3)x p2−32p−12满足f(2)<f(4).(1)求函数f(x)的解析式;(2)若函数g(x)=f2(x)+mf(x),x∈[1,9],是否存在实数m使得g(x)的最小值为0?若存在,求出m的值;若不存在,说明理由.(3)若函数ℎ(x)=n−f(x+3),是否存在实数a,b(a<b),使函数ℎ(x)在[a,b]上的值域为[a,b]?若存在,求出实数n的取值范围;若不存在,说明理由.答案和解析1.【答案】B【解析】【分析】本题考查交、并、补集的混合运算,解题的关键是熟练掌握交集、补集的定义,属于基础题.先求出集合A,B的补集,再由交集运算即可求出结果.【解答】解:由题意知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},所以∁U A={2,4,6,7,9},∁U B={0,1,3,7,9},所以(∁U A)∩(∁U B)={7,9},故选B.2.【答案】B【解析】解:由题意∀x∈R,x2+x+1>0,否定是∃x∈R,x2+x+1≤0故选:B.根据含有量词的命题的否定为:将任意改为存在,结论否定,即可写出命题的否定.本题的考点是命题的否定,主要考查含量词的命题的否定形式:将任意与存在互换,结论否定即可.3.【答案】C【解析】【分析】本题考查了根据基本初等函数求值域问题,属于基础题.根据条件知x2+2≥2,故0<1x2+2≤12,即可得函数的值域.【解答】解:∵x2+2≥2,∴0<1x2+2≤12;∴f(x)的值域是{y|0<y≤12}.4.【答案】A【解析】 【分析】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,是基础题. “a >1”⇒“1a <1”,“1a <1”⇒“a >1或a <0”,由此能求出结果. 【解答】解:a ∈R ,则“a >1”⇒“1a <1”, “1a <1”⇒“a >1或a <0”,∴“a >1”是“1a <1”的充分非必要条件. 故选A .5.【答案】B【解析】解:因为f(x)的定义域为[0,2],所以对g(x),0≤2x ≤2且x ≠1,故x ∈[0,1), 故选:B .根据f(2x)中的2x 和f(x)中的x 的取值范围一样得到:0≤2x ≤2,又分式中分母不能是0,即:x −1≠0,解出x 的取值范围,得到答案. 本题考查求复合函数的定义域问题.6.【答案】B【解析】解:因为ax 2−5x +b >0的解集为{x|−3<x <2}根据一元二次不等式求解集的方法可得ax 2−5x +b =a(x +3)(x −2)且a <0 解得a =−5,b =30.则不等式bx 2−5x +a >0变为30x 2−5x −5>0解得x <−13或x >12由不等式ax 2−5x +b >0的解集为{x|−3<x <2}得到a 、b 的值,代入到不等式中确定出不等式,求出解集即可.考查学生理解一元二次不等式解集求法的能力,会解一元二次不等式的能力,7.【答案】C【解析】解:∵A ∩B ={1},∴1∈B ,1−4+m =0,解得m =3, ∴B ={x|x 2−4x +3=0}={1,3}. 故选:C .根据A ∩B ={1}可得出1∈B ,从而可得出1−4+m =0,解出m =3,然后解方程x 2−4x +3=0即可得出集合B .本题考查了列举法和描述法的定义,交集的定义及运算,元素与集合的关系,考查了计算能力,属于基础题.8.【答案】C【解析】 【分析】本题考查分段函数,考查转化思想以及计算能力,属于基础题. 利用已知条件,求出a 的值,然后求解所求的表达式的值即可. 【解答】解:当a ∈(0,1)时,f(x)={√x,0<x <12(x −1),x ≥1, 若f(a)=f(a +1),可得√a =2a ,解得a =14,则f(1a )=f(4)=2×(4−1)=6. 当a ∈[1,+∞)时,f(x)={√x,0<x <12(x −1),x ≥1,若f(a)=f(a +1),可得2(a −1)=2a ,显然无解. 故选C .【解析】 【分析】本题考查函数的基本性质,判断两个函数是否相同,需要判断定义域与对应法则是否相同.判断函数的定义域与对应法则是否相同,即可判断两个函数是否相同函数. 【解答】解:对于选项A :函数g(x)=√x 2=|x|,两函数的定义域、值域和解析式都相同,所以它们是同一个函数,对于选项B :函数f(x)的定义域为R ,函数g(x)的定义域为{x|x ≠1},它们的定义域不同,所以它们不是同一个函数,对于选项C :函数f(x)={1,x >0−1,x <0,两函数的定义域、值域和解析式都相同,所以它们是同一个函数,对于选项D :函数f(x)的定义域为{x|x ≤−1或x ≥1},函数g(x)的定义域为{x|x ≥1},它们的定义域不同,所以它们不是同一个函数, 故选:AC .10.【答案】ABD【解析】解:根据题意,依次分析选项:对于A ,函数f(x)是定义在R 上的奇函数,则f(−x)=−f(x),当x =0时,有f(0)=−f(0),变形可得f(0)=0,A 正确,对于B ,若f(x)在[0,+∞)上有最小值−1,即x ≥0时,f(x)≥−1,则有−x ≤0,f(−x)=−f(x)≤1,即f(x)在(−∞,0]上有最大值1,B 正确,对于C ,奇函数在对应的区间上单调性相同,则若f(x)在[1,+∞)上为增函数,则f(x)在(−∞,−1]上为增函数,C 错误,对于D ,设x <0,则−x >0,则f(−x)=(−x)2−2(−x)=x 2+2x ,则f(x)=−f(−x)=−(x 2+2x)=−x 2−2x ,D 正确, 故选:ABD .根据题意,由奇函数的性质依次分析选项,综合即可得答案.本题考查函数奇偶性的性质以及应用,注意函数的奇偶性与单调性的关系,属于基础题.11.【答案】BCD【解析】解:对于实数a、b、c,A错,c>0,不成立,B对a<b<0,因为a<0,所以a2>ab>b2成立,C对,若c>a>b>0,c−a>0,c−b>0,ac−ab−(bc−ab)=ac−bc=c(a−b)>0,故a(c−b)>b(c−a),则ac−a >bc−b成立,D对,a>b,1a >1b,则b−aab>0,得ab<0,若a<0,b>0,1a>1b不成立,故a>0,b<0.故选:BCD.利用不等式的性质和作差法判断即可.考查了不等式的性质,作差法比较大小等,基础题.12.【答案】BCD【解析】【分析】利用基本不等式的性质逐项检查即可,需要注意取等的条件.本题考查利用基本不等式处理最值问题,理解“一正二定三相等”是解题的关键,考查学生的逻辑推理能力和运算求解能力,属于中档题.【解答】解:对于A,符合基本不等式中的“一正二定三相等”,即A的运算方法正确;对于B,当x>1时,x+2x−1=x−1+2x−1+1≥2√(x−1)⋅2x−1+1=2√2+1,当且仅当x−1=2x−1,即x=√2+1时,等号成立,即B的运算方法错误;对于C,取等号的条件是x2+4=9x2+4,即x2+4=±3,显然均不成立,即C的运算方法错误;对于D,第一次使用基本不等式的取等条件为x=4y,而第二次使用基本不等式的取等条件为x =y ,两者不能同时成立,即D 的运算方法错误. 故选:BCD .13.【答案】0【解析】解:根据题意,f(x)={√2x −1−x 2,x ≥12f(x +2),x <12, 则f(−3)=f(−1)=f(1)=√2×1−1−1=0, 故答案为:0根据题意,由函数的解析式可得f(−3)=f(−1)=f(1),计算可得答案. 本题考查分段函数解析式的运用,涉及函数值的计算,属于基础题.14.【答案】2√6【解析】解:∵x >1,∴x −1>0, ∴f(x)=2x 2−4x+5x−1=2(x−1)2+3x−1=2(x −1)+3x−1≥2√2(x −1)(3x−1)=2√6,当且仅当2(x −1)=3x−1时取等号,即x =1+√62时,函数f(x)=2x 2−4x+5x−1的最小值为2√6,故答案为:2√6. 由f(x)=2x 2−4x+5x−1=2(x−1)2+3x−1=2(x −1)+3x−1,利用基本不等式即可求出.本题考查基本不等式的应用,属于基础题.15.【答案】①②③【解析】解:看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,匀速运动.而骑自行车者在3h 到4h 中停了1小时,故②正确;他们的速度一直不一样,但在4.5ℎ时骑摩托车者追上了骑直行车者,故③正确,④错误. 故答案为:①②③.利用函数的图象,判断摩托车与自行车的速度关系,判断命题的真假即可. 本题考查命题的真假的判断,函数的图象的识别与应用,是基本知识的考查.16.【答案】[1,2]【解析】 【分析】本题考查增函数的定义,一次函数及二次函数、分段函数的单调性,二次函数的对称轴. 由一次函数、二次函数,及增函数的定义便可得到{2−a2≥0a −1≥02a −1>0,从而解该不等式组即可得出a 的取值 【解答】解:f(x)在(−∞,+∞)内是增函数,∴根据增函数的定义及一次函数、二次函数的单调性得a 满足:{2−a2≥0a −1≥02a −1>0,解得1≤a ≤2, ∴a 的取值范围为[1,2], 故答案为:[1,2].17.【答案】解:(1)若a =1,则集合A ={x|x 2−2x −15<0}={x|−3<x <5},∴∁U A ={x|x ≤−3或x ≥5},若a =1,则集合B ={x|(x −2a +1)(x −a 2)<0}={x|(x −1)2<0}=⌀, (2)因为A ∪B =A ,所以B ⊆A , ①当B =⌀时,a 2=2a −1,解a =1,②当B ≠⌀时,即a ≠1时,B ={x|2a −1<x <a 2}, 又由(1)可知集合A ={x|−3<x <5}, ∴{2a −1≥−3a 2≤5,解得−1≤a ≤√5,且a ≠1,综上所求,实数a 的取值范围为:−1≤a ≤√5.【解析】(1)利用集合的基本运算即可算出结果;(2)因为A ∪B =A ,所以B ⊆A ,对集合B 分等于空集和不等于空集两种情况讨论,求出a 的取值范围.本题主要考查了集合的基本运算,是基础题.18.【答案】解:(1)由题意可知:y =12x 2−200x +80000(300≤x ≤600),所以,每吨二氧化碳的平均处理成本为yx =12x +80000x−200,由基本不等式可得:12x +80000x−200≥2√12x ⋅80000x−200=200(元),当且仅当12x =80000x时,即当x =400时,等号成立,因此,该单位每月处理量为400吨时,才能使每吨的平均处理成本最低. (2)令f(x)=100x −(12x 2−200x +80000)=−12x 2+300x −80000=−12(x −300)2−35000, ∵300≤x ≤600,函数f(x)在区间[300,600]上单调递减,∴当x =300时,函数f(x)取得最大值,即f(x)max =f(300)=−35000. 所以,该单位每月不能获利,国家至少需要补贴35000元才能使该单位不亏损.【解析】(1)由题意列出该单位每吨的平均处理成本的函数表达式,利用基本不等式求最值;(2)写出该单位获利f(x)关于x 的函数,整理后利用二次函数的单调性求最值,则答案可求.本题考查函数模型的选择及应用,考查利用基本不等式与配方法求最值,考查运算求解能力.19.【答案】解:(1)由奇函数的性质可知,f(0)=0,∴b =0,f(x)=ax1+x 2, ∵f(12)=25=12a 1+14.∴a =1,f(x)=xx 2+1;(2)函数f(x)在(−1,1)上是增函数. 证明:任取−1<x 1<x 2<1, 则f(x 1)−f(x 2)=(x 1−x 2)(1−x 1x 2)(1+x 12)(1+x 22)<0⇒f(x 1)<f(x 2),所以函数f(x)在(−1,1)上是增函数;(3)由f(t +12)<−f(t −12)⇒f(t +12)<f(12−t),∴{t +12<12−t−1<t +12<1−1<t −12<1⇒{t <0−32<t <12−12<t <32⇒−12<t <0−12<t <0. 故不等式的解集为(−12,0).【解析】(1)由奇函数的性质可知,f(0)=0,代入可求b ,然后根据f(12)=25,代入可求a ;(2)任取−1<x 1<x 2<1,然后利用作差法比较f(x 1)与f(x 2)的大小即可判断; (3)结合(2)的单调性即可求解不等式.本题主要考查了奇函数的性质及函数的单调性的定义在单调性的判断中的应用,及利用函数的单调性求解不等式,属于函数性质的综合应用.20.【答案】证明:(1)由f(x +y)=f(x)+f(y),得f[x +(−x)]=f(x)+f(−x), ∴f(x)+f(−x)=f(0).又f(0+0)=f(0)+f(0),∴f(0)=0. 从而有f(x)+f(−x)=0.∴f(−x)=−f(x). ∴f(x)是奇函数.(2)任取x 1、x 2∈R ,且x 1<x 2,则f(x 1)−f(x 2)=f(x 1)−f[x 1+(x 2−x 1)]=f(x 1)−[f(x 1)+f(x 2−x 1)]=−f(x 2−x 1).由x 1<x 2,∴x 2−x 1>0.∴f(x 2−x 1)<0. ∴−f(x 2−x 1)>0,即f(x 1)>f(x 2), 从而f(x)在R 上是减函数. (3)由于f(x)在R 上是减函数, 故f(x)在[−3,3]上的最大值是f(−3), 最小值为f(3).由f(1)=−2, 得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1) =3×(−2)=−6,f(−3)=−f(3)=6. ∴最大值为6,最小值为−6.【解析】(1)先利用赋值法求出f(0)的值,欲证明f(x)是奇函数,即证明f(x)+f(−x)=0,再在题中条件中令y =−x 即得;(2)利用单调性的定义证明,任取x 1、x 2∈R ,且x 1<x 2,证明即f(x 1)>f(x 2),即可; (3)利用(2)的结论得f(x)在[−3,3]上的最大值是f(−3),最小值为f(3).故只要求出f(3)和f(−3)即可.本题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题.21.【答案】解:(1)当a =1,不等式f(x)≥1,即x 2+x −1≥1,即(x +2)(x −1)≥0, 解得x ≤−2或x ≥1,故不等式的解集为{x|x ≤−2或x ≥1}.(2)由题意可得(a +2)x 2+4x +a −1>0恒成立, 当a =−2时,显然不满足条件,∴{a +2>0Δ=16−4(a +2)(a −1)<0,解得a >2,故a 的范围为(2,+∞).(3)若a <0,不等式为ax 2+x −a −1>0, 即(x −1)(x +a+1a)<0. ∵1−(−a+1a)=2a+1a,∴当−12<a <0时,1<−a+1a,不等式的解集为{x|1<x <−a+1a};当a =−12时,1=−a+1a,不等式即(x −1)2<0,它的解集为⌀; 当a <−12时,1>−a+1a,不等式的解集为{x|−a+1a<x <1}.【解析】本题主要考查一元二次不等式的解法,函数的恒成立问题,体现了分类讨论的数学思想,属于中档题.(1)当a =1,不等式即(x +2)(x −1)≥0,解此一元二次不等式求得它的解集; (2)由题意可得(a +2)x 2+4x +a −1>0恒成立,当a =−2时,显然不满足条件,故有{a +2>0Δ=16−4(a +2)(a −1)<0,由此求得a 的范围; (3)若a <0,不等式为ax 2+x −a −1>0,即(x −1)(x +a+1a)<0,再根据1和−a+1a的大小关系,求得此不等式的解集.22.【答案】解:(1)∵f(x)是幂函数,∴得p 2−3p +3=1,解得:p =1或p =2 当p =1时,f(x)=1x ,不满足f(2)<f(4). 当p =2时,f(x)=√x ,满足f(2)<f(4). ∴故得p =2,函数f(x)的解析式为f(x)=√x ;(2)由函数g(x)=f 2(x)+mf(x),即g(x)=(√x)2+m √x , 令t =√x , ∵x ∈[1,9], ∴t ∈[1,3], 记k(t)=t 2+mt , 其对称轴在t =−m2,①当−m2≤1,即m ≥−2时,则k(t)min ═k(1)=1+m =0,解得:m =−1;②当1<−m2<3时,即−6<m <−2,则k(t)min ═k(−m 2)=−m24=0,解得:m =0,不满足,舍去;③当−m2≥3时,即m ≤−6时,则k(t)min ═k(3)=3m +9=0,解得:m =−3,不满足,舍去;综上所述,存在m =−1使得g(x)的最小值为0;(3)由函数ℎ(x)=n −f(x +3)=n −√x +3在定义域内为单调递减函数, 若存在实数存在实数a ,b(a <b),使函数ℎ(x)在[a,b]上的值域为[a,b] 则{n −√a +3=b①n −√b +3=a②两式相减:可得:√a +3−√b +3=a −b =(a +3)−(b +3).∴√a +3+√b +3=1③将③代入②得,n =a +√b +3=a +1−√a +3 令t =√a +3, ∵a <b , ∴0≤t <12,得:n =t 2−t −2=(t −12)2−94,−2].故得实数n的取值范围(−94【解析】(1)根据f(x)是幂函数,可得p2−3p+3=1,求解p,再根据f(2)<f(4)可得解析式;(2)由函数g(x)=f2(x)+mf(x),x∈[1,9],利用换元法转化为二次函数问题求解最小值,可得m的值;(3)由函数ℎ(x)=n−f(x+3),求解ℎ(x)的解析式,判断其单调性,根据在[a,b]上的值域为[a,b],转化为方程有解问题求解n的取值范围.本题主要考查幂函数解析式,函数最值的求解,方程与不等式的性质,掌握分类讨论思想以及一元二次函数的性质是解决本题的关键.属于难题.。

广东省汕头市陈店实验学校2020-2021学年高一上学期第一次月考数学试题

广东省汕头市陈店实验学校2020-2021学年高一上学期第一次月考数学试题
C. 是 的充要条件D. ,则
三、填空题
13.集合 用列举法表示应是______.
14.已知集合 , ,若 ,则实数a的值为______.
15.若“ , ”是假命题,则实数a的取值范围为______.
16. 的最大值为______.
四、解答题
17.已知集合 , .
(1)当 时,求 ;
(2)若 ,求实数 的取值范围.
D中,原式 ,故D正确;
故选BCD.
【点睛】
本题主要考查了根与系数的关系,能够熟练把有关根的代数式变成两个根的和或积的形式,再代值计算,属于中档题.
11.AD
【分析】
利用作差法可得A正确;利用不等式的性质可得B错误;举例可说明C错误;利用不等式的性质可得D正确.
【详解】
因为 ,所以A正确;
当 时, ,故B错误;
当 , 时, ,但 ,故C错误;
若 , ,则 , ,且 , ,所以 ,又 ,所以 ,故D正确;
C. D.
二、多选题
9.设全集为U,若B⊆A,则()
A.A∪B=AB.
C.A∩B=BD.( )∩B=∅
10.若 是方程 的两个根,则下列式子正确的是()
A. B. C. D.
11.已知 、 、 、 是实数,则下列一定正确的有()
A. B.
C.若 ,则 D.若 , ,则
12.下列命题正确的是( )
A. B. ,使得
2.D
【分析】
将集合 化简可得 ,然后再根据元素与集合的关系及集合与集合的关系,判断各选项即可.
【详解】
因为 ,所以 , , , .
故选:D.
【点睛】
本题主要考查集合与元素,集合与集合间的符号使用,属于基础题.

2020-2021学年广东省高一上学期期末数学试卷(含解析)

2020-2021学年广东省高一上学期期末数学试卷(含解析)

2020-2021学年广东省高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分)1.设集合A={x|x+2=0},集合B={x|x 2−4=0},则A∩B=().A. {−2}B. {2}C. {−2,2}D.2.设函数f(x)={2−x,x≤0x12,x>0,则f(−2)+f(1)=()A. 1B. 2C. 4D. 53.一个扇形的弧长与面积的数值都是4,这个扇形的中心角的弧度数为()A. 4B. 2C. 3D. 14.在y=2x,y=log2x,y=x2,这三个函数中,当x2>x1>1时,使f(x1+x22)>f(x1)+f(x2)2恒成立的函数的个数是()A. 0个B. 1个C. 2个D. 3个5.在内与终边相同的角是()A. B. C. D.6.在如图中,O为圆心,A,B为圆周上二点,AB弧长为4,扇形AOB面积为4,则圆心角∠AOB的弧度数为()A. 1B. 2C. 3D. 47.已知函数f(x)=√3sinwx+coswx(w>0),y=f(x)的图象与直线y=2的两个相邻交点的距离等于π,则f(x)的单调递增区间是()A. [kπ−π12,kπ+5π12],k∈Z B. [kπ+5π12,kπ+11π12],k∈ZC. [kπ−π3,kπ+π6],k∈Z D. [kπ+π6,kπ+2π3],k∈Z8.如图是某果园的平面图,实线部分DE、DF、EF游客观赏道路,其中曲线部分EF是以AB为直径的半圆上的一段弧,点O为圆心,△ABD是以AB为斜边的等腰直角三角形,其中AB=2千米,∠EOA=∠FOB=2x(0<x <π4),若游客在路线DE 、DF 上观赏所获得的“满意度”是路线长度的2倍,在路线EF上观赏所获得的“满意度”是路线的长度,假定该果园的“社会满意度”y 是游客在所有路线上观赏所获得的“满意度”之和,则下面图象中能较准确的反映y 与x 的函数关系的是( )A.B.C.D.9. 已知角α的终边经过点P(4,−3),则sinα+cosα的值是( )A. 15B. −15C. 75D. −7510. 某企业为了节能减排,决定安装一个可使用15年的太阳能供电设备接入本企业电网,安装这种供电设备的成本费(单位:万元)与太阳能电池板的面积(单位:平方米)成正比,比例系数约为,为了保证正常用电,安装后采用太阳能和电能互补供电的模式.假设在此模式下,安装后该企业每年消耗的电费C(单位:万元)与安装的这种太阳能电池板的面积x(单位:平方米)之间的函数关系是C(x)=(x >0).记该企业安装这种太阳能供电设备的费用与该企业15年共将消耗的电费之和为F(x)(万元),则F(40)等于( )A. 80B. 60C.D. 4011. 已知a ,b 是实数,关于x 的方程x 2+ax =b|x|−1有4个不同的实数根,则|a|+b 的取值范围为( )A. (2,+∞)B. (−2,2)C. (2,6)D. (−∞,2)12. 已知函数f(x)=3x−1+3−x+1−2cos(x −1),则( )A. f(log 29)>f(log 312)>f(0.5−0.5) B. f(0.5−0.5)>f(log 29)>f(log 312) C. f(0.5−0.5)>f(log 312)>f(log 29)D. f(log 29)>f(0.5−0.5)>f(log 312)二、单空题(本大题共4小题,共20.0分)13. 如图,在△ABC 中,D 为线段AB 上的点,且AB =3AD ,AC =AD ,CB =3CD ,则sin2BsinA = ______ .14. 若函数f(x)=|x −1|+m|x −2|+6|x −3|在x =2时取得最小值,则实数m 的取值范围是______.15. log 78 ______ log 89(填“>”或者“<”).16. 设函数f(x)={21−x ,x ≤0f(x −1),x >0,方程f(x)=x +a 有且只有两不相等实数根,则实数a 的取值范围为______ .三、解答题(本大题共6小题,共70.0分)17. (1)设集合A ={x|x 2−2x −3<0},B ={x|x −a >0},若A ∩B =A ,求a 的范围; (2)设集合M ={x ∈R|ax 2−3x −1=0},若集合M 中至多有一个元素,求a 的范围. 18. 当时,求证:sin α< α<tan α.19. 已知函数f(x)=2cos(x +π3)[sin(x +π3)−√3cos(x +π3)]. (1)求f(x)的值域和最小正周期;(2)方程f(x)=m 在x ∈[0,π6]内有解,求实数m 的取值范围.20. 已知函数f(x)=ax 2−x +12,函数g(x)=a +12−|x −a|,其中实数a >0. (1)当0<a <1时,log a f(x)≥0对x ∈[1,2]恒成立,求实数a 的取值范围;(2)设F(x)=max{f(x),g(x)},若不等式F(x)≤14在x ∈R 上有解,求实数a 的取值范围.21. (1)计算tan(−510°)cos(−210°)cos120°tan(−600°)⋅sin(−330°).(2)已知sinα=1213,α∈(π2,π).求cos(π6−α)的值.22. 已知函数f(x)=2x +2x −alnx ,a ∈R .(1)若函数f(x)在[1,+∞)上单调递增,求实数a的取值范围.(2)记函数g(x)=x2[f ′(x)+2x−2],若g(x)的最小值是−6,求a的值.参考答案及解析1.答案:A解析:由题意可得,A={−2},B={−2,2},∴A∩B={−2}.故选A.2.答案:D解析:解:∵函数f(x)={2−x,x≤0 x12,x>0,∴f(−2)=2−(−2)=4,f(1)=112=1,∴f(−2)+f(1)=4+1=5.故选:D.由函数性质先分别求出f(−2),f(1),由此能求出f(−2)+f(1)的值.本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.3.答案:B解析:解:∵一个扇形的弧长与面积的数值都是4,∴{l=αR=4S=12αR2=4,解得R=2,∴这个扇形的中心角的弧度数α=lR =42=2.故选:B.利用弧长公式直接求解.本题考查扇形圆心角的求法,是基础题,解题时要注意弧长公式的合理运用.4.答案:B解析:本题考查根据函数的图象判断不等式,指数函数,对数函数,幂函数的图象,属于基础题.画出图象,数形结合可得答案.解:y=log2x的图象如下:f(x1)+f(x2)2表示的是梯形中位线的长度,f(x1+x22)表示的是中点处的函数值,由图像可知y=log2x满足f(x1+x22)>f(x1)+f(x2)2恒成立,同理可以验证y=2x,y=x2不符合题意.故选B.5.答案:B解析:试题分析:因为,那么对于与终边相同的角的集合为,故可知答案为,选B.考点:终边相同的角的表示点评:解决的关键是根据终边相同的角的集合的表示来得到,属于基础题。

广东省汕头市潮南区陈店实验学校2020-2021学年上学期高一数学周测二

广东省汕头市潮南区陈店实验学校2020-2021学年上学期高一数学周测二

陈店实验学校2020-2021学年度第一学期高一数学周测(二)时间:60分钟 满分:75分一、单选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选 项中,只有一项是符合题目要求的.1. 已知集合A={4,5,6,8},B={3,5,7,8},则A ∩B=( )A.{5,6}B.{5,7}C.{5,8} D .{5,6,7,8}2. 已知集合P,Q.p:a ∈P ,q:a ∈P ∩Q.则p 是q 的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知集合A={0,1},B={x|x ∈A},则下列集合A 与B 的关系中正确的是 ( )A.B ∈AB.A ⊂≠BC.B ⊂≠ AD.A ∈B4.设集合2{|40A x x x =-=,}x R ∈,22{|2(1)10B x x a x a =+++-=,}x R ∈,若B A ⊆,则实数a 的取值范围是( )A. a <-1B.a ≤-1C.a >-1D.a ≥-1二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得4分,部分选对的得2分,有选错的得0分.5. 已知2{0,1,},{1,0,23},,A a B a A B a ==+=则等于 ( )A -1B -3C 1D 36. 下列命题中是真命题的有 ( )A .若ac=bc,则a=bB .x=1是012=-x 的充分不必要条件C .A ∪B=A 是B ⊆A 的必要不充分条件D .同旁内角互补两直线平行7.若集合A={0,1,2},则下列表述正确的有 ( )A .A ∈0B .∅A ⊆C .{(0,1)}⊂≠AD .{0,1,2}⊂≠ A8. 用C(A)表示非空集合A 中的元素个数,定义A *B=|C(A)-C(B)|.已知集合A={x|12-x =0},B={x|)2)(3(22+++ax x x ax =0},若A *B=1,则实数a 的取值可能是( )A .-22B .-1C .1D .22三、填空题:本题共3小题,每小题5分,共15分.9. 已知集合P={0,2,5},Q={1,2,6}.定义集合A={a+b|a ∈P ,b ∈Q},则A 中元素的个数为.10. 已知集合A={x|-5<x <2},集合B={x| |x+3|<3},A ∪B=.11.对于非空数集A={n a a a a ,,,,321 }(n ∈*N )其所有元素的算术平均数记为E(A),即E(A)=na a a a n ++++ 321,若非空数集B 满足下列两个条件①B ⊆A ②E(B)=E(A),则称B 为A 的一个“保均值子集”。

广东省汕头市潮阳陈店中学2021年高一数学文测试题含解析

广东省汕头市潮阳陈店中学2021年高一数学文测试题含解析

广东省汕头市潮阳陈店中学2021年高一数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数f(x)=的零点所在区间为( )A.(0,1) B.(1,2)C.(2,3) D.(3,4)参考答案:C2. (5分)在下列命题中,正确的个数是()①若||=||,=;②若=,则∥;③||=||;④若∥,∥,则∥.A. 1 B. 2 C. 3 D.4参考答案:B考点:平行向量与共线向量.专题:平面向量及应用.分析:根据向量相等的概念可以判断①②是否正确;根据相反向量可以判断③是否正确;根据向量平行的概念判断④是否正确.解答:对于①,||=||时,与的方向不一定相同,∴=不一定成立,命题错误;对于②,当=时,∥,命题正确;对于③,向量与是相反向量,∴||=||,命题正确;对于④,当∥,∥时,若=,则与的方向不能确定,∴∥不一定成立,命题错误.综上,正确的命题是②③.故选:B.点评:本题考查了平面向量的基本概念的应用问题,是基础题目.3. 四边形OABC中,,若,,则=()A.B.C.D.参考答案:B略4. 阅读下面的两个程序:对甲乙两程序和输出结果判断正确的是().A.程序不同,结果不同B.程序不同,结果相同C.程序相同,结果不同D.程序相同,结果相同参考答案:略5. 设函数f(x)=x2─2,用二分法求f(x)=0的一个近似解时,第1步确定了一个区间为(1,),到第3步时,求得的近似解所在的区间应该是( )参考答案:C6. 已知函数,则f[f(2)]=()A.3 B.2 C.1 D.0参考答案:C【考点】函数的值.【分析】由题意得f(2)=﹣2+1=﹣1,利用函数性质能求出f(f(2))=f(﹣1),由此能求出结果.【解答】解:f(2)=﹣2+1=﹣1,f(f(2))=f(﹣1)=﹣1+1=0.故选:C.7. 某单位有老年人28 人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、,中年人、青年人分别各抽取的人数是( )A.6, 12 ,18B. 7,11,19C.6,13,17D. 7,12,17参考答案:A略8. 在直角坐标系中, 如果两点在函数的图象上,那么称为函数的一组关于原点的中心对称点(与看作一组)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陈店实验学校2020-2021学年度第一学期
高一数学周测(七)B卷
时间:60分钟满分:75分
一、选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A={x|3≤x<7},B={x|2<x≤5},则A∩B=()
A.{x|2<x<7}
B.{x|2≤x≤7}
C.{x|3<x<5}
D.{x|3≤x≤5}
2.“我是汕头人”是“我是广东人”的()条件
A.充分不必要 B.必要不充分
C.充要条件 D.既不充分也不必要
3.命题“∃x∈R,2x-x+1=0”的否定是()
A.∃x∉R,2x-x+1=0
B.∃x∉R,2x-x+1≠0
C.∀x∈R,2x-x+1=0
D.∀x∈R,2x-x+1≠0 4.已知x>1,则x+
1
1
-
x
的最小值及此时的x值依次为()
A.1 ,4
B.2,3
C.3,2
D.4,1
5.使12
2-
+x
x有意义的实数x的取值范围是()
A.(-∞,-4]∪[3,+∞)
B.(-∞,-4)∪(3,+∞)
C.(-4,3)
D.[-4,3]
6.下列函数中,与函数y=x是同一函数的是()
A.2)
(x
y= B.3
3
x
y=
C.2x
y= D.
n
n
y
2
=
二、多项选择题:本题共2小题,每小题5分,共10分.在每小题给出的选项中有
多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分.
7.(多选)下列对应关系能表示函数的有()
A.f:x→y=2x B.f:x→y=|x|
C.f:x→2y= x D.f:x→y=x
x-

-1
3
8.(多选)已知函数
⎪⎩





-
=
,
5
,1
)
(
2
x
x
x
x
x
f,若)(a
f=15,则a的值为()
A .-4
B .4
C .3 D
.3
1
三、填空题:本题共3小题,每小题5分,共15分.
9.已知函数f(x)=⎩⎨⎧〈+≥+0
,30
,22x x x x ,则))1((-f f 的值为_____________.
10.已知32)12
1
(+=-x x f ,则f(x)=_____________.
11.函数32)(2+--=x x x f 的值域为_____________.
答题卡
班级: 姓名: 一 、选择题:(每小题5分,共40分) 二、填空题:(每小题5分,共15分)
9.________________ 10.________________ 11.________________ 三、解答题:本题共2小题,每小题10分,共20分.解答应写出文字说明、证明过
程或演算步骤. 12.已知函数⎩⎨
⎧≤--〉-=0
,20
|,1|)(2
x x x x x x f . (1)画出函数f(x)的图像;
(2)若方程f(x)-a=0恰有四个解,求实数a 的取值范围.
13.已知函数)
x
ax
f∈
+
=.
-
x
(,
,
b
)
(2R
a
b
(1)若方程f(x)=0的解为-1和2,求实数a,b的值;
(2)若不等式f(x)≥-ax+b-1恒成立,求实数a的取值范围.。

相关文档
最新文档