2018年-电动力学习题集答案-1

合集下载

电动力学习题集答案

电动力学习题集答案

电动力学第一章习题及其答案1、 当下列四个选项:(A 、存在磁单级, B 、导体为非等势体, C 、平方反比定律不精确成立,D 、光速为非普适常数)中的_ C ___选项成立时,则必有高斯定律不成立、 2、 若 a 为常矢量 , r= (x - x ')i + ( y - y ')j + (z -z ')k 为从源点指向场点的矢量 ,E 0 , k 为常矢量,则∇⋅(r 2 a) =∇⋅(r 2 a ) = (∇r ⋅a =2r ⋅a ,)⋅a ) = ddrr ∇r ⋅a = 2r r r2∇r = (i +j + k ) (x - x ') + (y - y ') + (z - z ') = i +j y-y' + k = rr∂ ∂x ∂ ∂y ∂ ∂z 2 2 2 x-x' r z-z' rr ⎛ ⎫ ⎪ 2(x -x ') = (x -x ') ,同理, ∂ ∂x(x -x ') 2+(y - y ') 2 +(z -z ') 2 = r 2 (x -x ')2+(y -y ')2+(z -z ')2⎝ ⎪⎪ ⎭(y -y ') (x -x ') +(y - y ') 2 +(z -z ') ∂ ∂y (x -x ') 2 +(y - y ') 2 +(z -z ') 2 = , ∂ ∂z 2 2 = (z -z ') r re e e x x x∇⋅r = ∂(x-x')∇⨯ r = + ∂(y-y') ∂y+ ∂(z-z') = 3∂z, ∂ ∂x ∂ ∂y ∂ ∂zx - x ' y - y ' z - z '= 0, ∂x∇⋅(a ⨯r )=a ⋅(∇⨯r ) = 0 ,) ⨯ r + r ∇ ⨯ r = ∇r 2r ⨯ r = ⨯ r = 0 r ∇ ⨯ rr = ∇( r1 1 3r a ,,∇ ( ⋅ ) = ∂[ a x (x -x' )]+ ∂[ a y (y - y')] j + [ a z ∂ (z -z')] = a r i k ∂x ∂y ∂z∇⋅ r =∇ ⋅ + ∇⋅ =- ⋅ + = r r r 1r 1 r r 3 r2 3 r ,∇ ⋅ (∇ ⨯ A ) = __0___、 r r∇ ⋅[E 0 sin(k ⋅r )] = k ⋅ E 0 cos(k ⋅ r )= __0__、 ∇ ⋅ (E 0 e ik ⋅r ) =, 当 r ≠ 0 时 , ∇ ⨯ = (r / r 3)ik ⋅ E 0 exp(ik ⋅r ) , ∇ ⨯ [rf (r )] = _0_、 ∇ ⋅ [ r f ( r)] 3f (r )+r df (r )drs3、 矢量场 f 的唯一性定理就是说:在以 为界面的区域V 内,若已知矢量场在V 内各点的旋度与散度,以及该矢量在边界上的切向或法向分量,则在 内唯一确定、 f V ∂ρ = 0 ,若 J为稳恒电流情况下的电流密度 ,则 J 满足4、 电荷守恒定律的微分形式为 ∇⋅ J + ∂t∇ ⋅ J = 0 、5、 场强与电势梯度的关系式为, E = -∇ϕ 、对电偶极子而言 ,如已知其在远处的电势为ϕ = P ⋅ r/(4πε 0r ⎛ 4πε 0 ⎝ ⎫ E = 1 3(P ⋅r )r- P3) ,则该点的场强为 ⎪ ⎪ 、 r 5 r 3⎭a (r > a ) 任意一点 D 的散度为 0,Q 6、 自由电荷 均匀分布于一个半径为 的球体内,则在球外内 (r < a )任意一点 D 的散度为 3Q / 4π a 3 、arbr 7、 已知空间电场为 E = + 3 (a ,b 为常数),则空间电荷分布为______、rr 2ar1 r 1 ∇ = - 3 ⇒ E = -b ∇ ⇒r r r 2 r 2 1 a ∇⋅r - 2r ⋅∇r + 4πb δ(r )]ρ = ε 0∇⋅E = ε 0(∇⋅ arr 2 -b ∇ r ) = ε 0[ r 2 r 33a 2r ⋅r + 4πb δ(r )]⇒ ρ = ε 0[ a 2 + 4πb δ(r )] = ε 0[ - r 2r 4 ra8、 电流 I 均匀分布于半径为 的无穷长直导线内,则在导线外 (r > a ) 任意一点 B 的旋度的大小为 0 , 导线内 (r < a )任意一点 B 的旋度的大小为 μ 0I / πa 2 、D ε9、 均匀电介质(介电常数为 )中 ,自由电荷体密度为 ρ f 与电位移矢量 的微分关系为∇ ⋅ D = ρ f , 束缚电荷体密度为 ρ P 与电极化矢量 的微分关系为 ∇ ⋅ P = - ρ P ,则P ρ = - ε - ε 0 ρ 、f ρ P 与 ρ f 间的关系为 P ε10、 无穷大的均匀电介质被均匀极化,极化矢量为 P ,若在σ = -(P - P )θ 21R= -(P cos θ - 0)介质中挖去半径为 R 的球形区域,设空心球的球心到球 P= - P ⋅R面某处的矢径为 R ,则该处的极化电荷面密度为R- P ⋅ R / R 、q ε 11、 电量为的点电荷处于介电常数为 的均匀介质中,则点电荷附近的极化电荷 为 (ε 0 / ε - 1)q 、H 12、 某均匀非铁磁介质中,稳恒自由电流密度为 J f ,磁化电流密度为 J M ,磁导率 ,磁场强度为 ,磁μ 化强度为M ,则∇⨯ H = Jf ,∇⨯ M =J M , JM 与J f 间的关系为J= (μ/ μ 0 - 1)J f、M13、 在 两 种 电 介 质 的 分 界 面 上 , D , E 所 满 足 的 边 值 关 系 的 形 式 为 n ⋅(D2- D1)=σf,- 1 -n ⨯(E2- E1)= 0、ε14、 介电常数为 的均匀各向同性介质中的电场为 E 、 如果在介质中沿电场方向挖一窄缝 ,则缝中电场强度大小为 E 、ε15、 介电常数为 的无限均匀的各项同性介质中的电场为 E ,在垂1 n2直于电场方向横挖一窄缝,则缝中电场强度大小为________、E⎧D 2n - D 1n = 0 ⇒ ⎧ ⎨ ⎩εE = ε 0E 缝 E 2τ = E 1 sin θ1 = 0 ⇒ E 缝 = εE / ε 0 , 、 E E⎨ E 2τ - E 1τ = 0 ⎩ 16、 在半径为 R 的球内充满介电常数为ε 的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球 心的立体角等于 2的一圆锥体介质,则锥体中的场强与介 质中的场强之比为_1:1_、Eσ1nE2ε1Rσ 2极化电荷D 2n = D 1n = 0 ⇒E 1 = E 1τ = E 2τ = E 2 ⇒ E 1 : E 2 = 1:1自由电荷17、 在半径为 R 的球内充满介电常数为ε 的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于 2 的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质 附近导体壳上的自由电荷密度之比为ε 0 / ε 、⎧ ⎨ ⎩ D 2n = D 1n = 0 E = E 1τ = E 2τ = E 2σ = σ 1D ε 0 D 2 ε 内球面上 ⇒ 1= ⇒ ε 0 2 ⇒ σ 1 :σ 2 = ε 0 :ε ε 118、 在 两 种 磁 介 质 的 分 界 面 上 , H , B 所 满 足 的 边 值 关 系 的 矢 量 形 式 为n ⨯ (H 2 - H 1)= α f ,n ⋅ B 2 - B = 0 、( ) 1I μ219、一截面半径为 b 无限长直圆柱导体,均匀地流过电流 I ,则储存在单位长度导 μ1体内的磁场能为__________________、rB ⋅ 2πr = μ 0I ππr 22⇒ B = bμ Ir2, 0 2πb22πrdr =⎰b 0 2μ0b W =⎰B μ I 2r 2 2 2πrdr =⎰ μ0I 2r 3dr4πb 4= μ0I 2b 4 16πb 4 = μ0I 216π12μ01 04π 2b 4 020、在同轴电缆中填满磁导率为 μ1,μ 2的两种磁介质,它们沿轴各占一半空间。

电动力学章节练习题第一二三章

电动力学章节练习题第一二三章

电动力学章节练习题第一二三章电动力学章节练习题第一、二、三章电动力学第一章练习一、填空题1.一个半径为a的带电球,其介电常数为ε,电荷在球内均匀分布,总电荷为q,则球内电场满足e?____________,球外电场满足用户??e?____________。

2.一个半径为a的带电导体球处于静电平衡状态,所带总电荷为q,其介电常数为ε0,则球内电场满足用户??e?____________,球外电场满足用户??e?____________。

3.一个半径为a的带电球,其介电常数为ε,电荷在球内均匀分布,总电荷为q,则球内电场满足e?____________,球外电场满足用户??e?____________。

4.电流i均匀分布于半径为a的无穷长直导线内,导线外为真空,则导线内磁场??b=__________,导线外磁场??b=_________。

5.电流i均匀分布于半径为a的无穷长直导线内,导线外为真空,则导线内磁场??b=__________,导线外磁场??b=_________。

6.位移电流的实质是。

介质中位移电流密度等于。

7.在两种导电介质分界面上,优点和原产?。

通常情况下,电流密度满足用户的边值关系就是。

8.坡印亭矢量叙述。

9.场强与电势梯度的关系式为.。

10.电量为q的点电荷处在介电常数为?的光滑介质中,则点电荷附近的极化电荷为.11.某均匀非铁磁介质中,稳恒自由电流密度为jf,磁化电流密度为jm,磁导率?,磁场强度为h,磁化强度为m,则??h?,??m?.12.介电常数为?的光滑各向同性介质中的电场为电场强度大小为。

e.如果在介质中沿电场方向挖一窄缝,则缝中二、挑选1.在带自由面电流的磁介质界面上,两边介质的介电常数不同,这时候边值关系为:a.磁感应强度法向不连续,磁场强度切向连续。

b.磁感应强度切向连续,磁场强度法向不连续。

c.磁感应强度法向连续,磁场强度切向不连续。

d.磁感应强度切向不连续,磁场强度法向连续。

郭硕鸿《电动力学》习题解答完全版(章)

郭硕鸿《电动力学》习题解答完全版(章)

= (µµ −1)∇× Hr = ( µ −1)rj f ,(r1 < r < r2)
0
µ0
αrM = nr× (Mr 2 − Mr 1),(n从介质1指向介质2

r3
= − ε −ε 0 ρ f (3− 0) = −(ε −ε 0 )ρ f

ε
σ P = P1n − P2n
考虑外球壳时 r r2 n从介质 1指向介质 2 介质指向真空 P2n = 0
-5-
电动力学习题解答
第一章 电磁现象的普遍规律
σ P = P1n = (ε −ε 0)
r 3 − r13 ρ f rr r=r2 3εr 3
= cos(kr ⋅rr)(kxerx + k yery + kzerz )Er0 = cos(kr ⋅rr)(kr ⋅ Er) ∇×[Er0 sin(kr ⋅rr)] = [∇sin(kr ⋅rr)]×Er 0+sin(kr ⋅rr)∇× Er0
4. 应用高斯定理证明
∫ dV∇× fr = ∫S dSr× fr
V
应用斯托克斯 Stokes 定理证明
∫S dSr×∇φ = ∫Ldlrφ
证明 1)由高斯定理
dV∇⋅ gr = ∫S dSr ⋅ gr

∫ ∫ 即
V
(∂ g x ∂x V
+ ∂g y ∂y
+ ∂g zz )dV = ∂
g
S
xdS x + g ydS y + g zdS z
而 ∇× frdV = [(∂ f z − ∂∂z f y )ir ∂+ ( f x − ∂∂x f z )rj∂+ ( f y − ∂∂y f x )kr]dV

电动力学习题集答案-1

电动力学习题集答案-1

电动力学第一章习题及其答案1. 当下列四个选项:(A.存在磁单级, B.导体为非等势体, C.平方反比定律不精确成立,D.光速为非普适常数)中的_ C ___选项成立时,则必有高斯定律不成立.2. 若a为常矢量, k z z j y y i x x r )'()'()'(-+-+-=为从源点指向场点的矢量,k E,0为常矢量,则)(2a r ⋅∇=a r a r a r a r a r r r dr dr ⋅=⋅=⋅∇=⋅∇=⋅∇22))()(222,()r r r r r zy x k j i z z y y x x k j i r=++=-+-+-++=∇∂∂∂∂∂∂z'-z y'-y x'-x 222)'()'()'(⎪⎪⎪⎭⎫ ⎝⎛=-+-+-=-+-+-==-+-+--∂∂-∂∂--+-+--∂∂r z z z r y y yr x x z z y y x x x x x z z y y x x z z y y x x z z y y x x )'(222)'(222)'()'()'()'(2)'(2222)'()'()'(,)'()'()'(,)'()'()'(222同理,=⨯∇r 0'''=---∂∂∂∂∂∂z z y y x x e e e z y x xx x , 3)z'-(z )y'-(y )x'-(x =++=⋅∇∂∂∂∂∂∂z y x r ,)()(=⨯∇⋅=⨯⋅∇r a r a ,0)(3211=⨯=⨯=⨯∇+⨯∇=⨯∇∇r r r r r r r r r rrr,a k j i r a za ya xa z y x =++=⋅∇∂∂∂∂∂∂)]z'-(z [)]y'-(y [)]x'-(x [)(,r r rr r rrr r r r 23113=+⋅-=⋅∇+⋅∇=⋅∇ ,=⨯∇⋅∇)(A __0___. =⋅⋅∇)]sin([0r k E )cos(0r k E k ⋅⋅, 当0≠r 时,=⨯∇)/(3r r __0__. =⋅∇⋅)(0r k i e E )exp(0r k i E k i ⋅⋅, =⨯∇)]([r f r _0_. =⋅∇)]([r f r dr r df r r f )()(3+3. 矢量场f的唯一性定理是说:在以s 为界面的区域V 内,若已知矢量场在V 内各点的旋度和散度,以及该矢量在边界上的切向或法向分量,则f在V内唯一确定.4. 电荷守恒定律的微分形式为0=∂∂+⋅∇tJ ρ,若J为稳恒电流情况下的电流密度,则J满足0=⋅∇J.5. 场强与电势梯度的关系式为,ϕ-∇=E.对电偶极子而言,如已知其在远处的电势为)4/(30r r P πεϕ ⋅=,则该点的场强为()⎪⎪⎭⎫ ⎝⎛-⋅=350341r P rr r P Eπε.6. 自由电荷Q 均匀分布于一个半径为a 的球体内,则在球外)(a r >任意一点D的散度为 0,内)(a r <任意一点D的散度为 34/3a Q π.7. 已知空间电场为b a rrb r r a E ,(32 +=为常数),则空间电荷分布为______.)](4[)](423[)](42[)1(1120420320220023r b rar b r r r r a r b rrr r r a r b r r a E r b rr a E r r r δπερδπεδπεεερ+=⇒+⋅-=+∇⋅-⋅∇=∇-⋅∇=⋅∇=⇒∇-=⇒-=∇ 8. 电流I 均匀分布于半径为a 的无穷长直导线内,则在导线外)(a r >任意一点B的旋度的大小为 0 , 导线内)(a r <任意一点B的旋度的大小为20/a Iπμ.9. 均匀电介质(介电常数为ε)中,自由电荷体密度为f ρ与电位移矢量D的微分关系为f D ρ=⋅∇ , 束缚电荷体密度为Pρ与电极化矢量P 的微分关系为P P ρ-=⋅∇,则P ρ与f ρ间的关系为fP ρρεεε0--=.10. 无穷大的均匀电介质被均匀极化,极化矢量为P,若在介质中挖去半径为R 的球形区域,设空心球的球心到球面某处的矢径为R,则该处的极化电荷面密度为R R P /⋅-.11. 电量为q的点电荷处于介电常数为ε的均匀介质中,则点电荷附近的极化电荷为q )1/(0-εε.12. 某均匀非铁磁介质中,稳恒自由电流密度为f J,磁化电流密度为M J ,磁导率μ,磁场强度为H ,磁化强度为M ,则=⨯∇H f J ,=⨯∇M M J ,M J 与f J 间的关系为()f M J J1/0-=μμ.13. 在两种电介质的分界面上,E D ,所满足的边值关系的形式为()f D D n σ=-⋅12,RR P P P P n n P ⋅-=--=--=)0cos ()(12θ()012=-⨯E E n.14. 介电常数为ε的均匀各向同性介质中的电场为E . 如果在介质中沿电场方向挖一窄缝,则缝中电场强度大小为E . 15. 介电常数为ε的无限均匀的各项同性介质中的电场为E ,在垂直于电场方向横挖一窄缝,则缝中电场强度大小为,/0sin 00011201212εεθεετττE E E E E E E E D D n n =⇒⎩⎨⎧===⇒⎩⎨⎧=-=-缝缝. 16. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,则锥体中的场强与介质中的场强之比为_1:1_.1:1:021221112=⇒===⇒==E E E E E E D D n n ττ17. 在半径为R 的球内充满介电常数为ε的均匀介质,球心处放一点电荷,球面为接地导体球壳,如果挖去顶点在球心的立体角等于2的一圆锥体介质,锥体处导体壳上的自由电荷密度与介质附近导体壳上的自由电荷密度之比为εε/0.εεσσεσεσεεττ::0021201201221112=⇒=⇒=⇒⎩⎨⎧=====D D E E E E D D n n 内球面上 18. 在两种磁介质的分界面上, B H,所满足的边值关系的矢量形式为()fH H n α=-⨯12,()012=-⋅B B n.19. 一截面半径为b 无限长直圆柱导体,均匀地流过电流I ,则储存在单位长度导体内的磁场能为__________________.,2202220b Ir b r B I r B πμππμπ=⇒=⋅ πμπμπμπμμμππ161640402122120442043204222200022I b b I b dr r I b br I b rdr rdr B W =====⎰⎰⎰20. 在同轴电缆中填满磁导率为21,μμ的两种磁介质,它们沿轴各占一半空间。

电动力学-选择题填空题判断题和问答题2018

电动力学-选择题填空题判断题和问答题2018

《电动力学1》随教材复习题目一、章节内容:第0章 矢量分析第一章 电磁现象的普遍规律第二章 静电场第三章 静磁场第四章 电磁波的传播第五章 电磁波的辐射二、题型1. 选择题,填空题,判断题、问答题2. 计算题(见教材例题和作业题)2018年5月第0章 矢量分析一、选择题0.1=⨯⋅∇)(B A ( C )A. )()(A B B A ⨯∇⋅+⨯∇⋅B. )()(A B B A ⨯∇⋅-⨯∇⋅C. )()(B A A B ⨯∇⋅-⨯∇⋅D. B A ⨯⋅∇)(0.2下列不是恒等式的为 ( C )A. 0=∇⨯∇ϕB. 0f ∇⋅∇⨯=C. 0=∇⋅∇ϕD. ϕϕ2∇=∇⋅∇0.3设222)()()(z z y y x x r '-+'-+'-=为源点到场点的距离,r 的方向规定为从源点指向场点,则有 ( B )A. 0=∇rB. r r r ∇=C. 0=∇'rD. r r r'∇= 0.4位置矢量r 的散度等于 ( B )A .0 B.3 C.r 1 D. r 0.5位置矢量r 的旋度等于 ( A ) A.0 B.3 C.r r D.3rr 0.6位置矢量大小r 的梯度等于 ( C ) A.0 B .r 1 C. r r D.3rr 0.7r 1∇= ( B ) A. 0 B.3r r - C. r r D .r 0.8⨯∇ 3r r =? ( A ) A. 0 B .r r C. r D.r 1 0.9⋅∇ 3rr =(其中r ≠0) ( A ) A.0 B.1 C. r D.r1 二、填空题0.1位置矢量r 的散度等于( 3 )。

0.2位置矢量r 的旋度等于( 0 )。

0.3位置矢量大小r r r 。

0.4无旋矢量场可以引入(标)势来处理,无源矢量场可以引入(矢)势来处理。

0.5(无旋)矢量场可以引入标势来处理,(无源)矢量场可以引入矢势来处理。

0.6 a 、k 及0E 为常矢量,则(a ·▽)r =(a ), ▽·0()E Sin k r ⎡⎤⋅⎣⎦=0cos()k E k r ⋅⋅。

电动力学课后习题解答(参考)

电动力学课后习题解答(参考)

∂ ∂y
∂ ∂z
=
(
∂Az ∂y

∂Ay ∂z
)ex
+
(
∂Ax ∂z

∂Az ∂x
)ey
+
(
∂Ay ∂x

∂Ax ∂y
)ez
Ax(u) Ay(u) Az(u)
=
(
∂Az du
∂u ∂y

∂Ay du
∂u ∂z
)ex
+
(
∂Ax du
∂u ∂z

∂Az du
∂ ∂
u x
)ey
+
(
∂Ay du
∂u ∂x

(dl2
·
dl1)
11、平行板电容器内有两层介质,它们的厚度分别为l1和l2,电容率为ε1和ε2,今在两板接上电 动势为E的的电池,求
(1)电容器两板上的自由电荷密度ωf (2)介质分界面上的自由电荷密度ωf 若介质是漏电的,电导率分别为σ1和σ2,当电流达到恒定时,上述问题的结果如何? 解:在相同介质中电场是均匀的,并且都有相同指向,
[∇
1 r
·
∇]m
=
−(m
·
∇)∇
1 r
∴ ∇ × A = −∇ϕ
7、有一个内外半径分别为r1和r2的空心介质球,介质的电容率为ε,使介质内均匀带静止自由 电荷ρf ,求 (1)空间各点的电场 (2)极化体电荷和极化面电荷分布 解:1) S D · dS = ρf dV ,(r2 > r > r1)
R
)
=
(∇
·
m)∇
1 r
+(m源自·m)∇1 r

电动力学习题解答

电动力学习题解答

第二章静电场1.一个半径为 R 的电介质球,极化强度为 PKr / r 2 ,电容率为。

( 1)计算约束电荷的体密度和面密度:( 2)计算自由电荷体密度;( 3)计算球外和球内的电势;( 4)求该带电介质球产生的静电场总能量。

解:( 1) p P K(r / r 2 )K [(1/ r 2 ) r r (1/ r 2 )]K / r 2pn ( P 2P 1 ) e rPr RK / R( 2) D 内0 E P P/()fD 内P /()K /(0 )r2( 3) E 内D 内 / P /()E 外 D 外f dVKR e r4 0 r 2 e r(20 )r外E 外 drKR(0 )rrRE 外 drK(ln R )内E 内 drrrR( 4) W1 1K 2R4 r 2 dr12K 2 R 24 r 2drD E dV222 R422 ()r 2( 0)r2 R(1)( K) 22.在平均外电场中置入半径为R 0 的导体球,试用分别变量法求以下两种状况的电势: ( 1)导体球上接有电池,使球与地保持电势差 0 ;( 2)导体球上带总电荷 Q解:( 1)该问题拥有轴对称性, 对称轴为经过球心沿外电场E 0 方向的轴线, 取该轴线为极轴,球心为原点成立球坐标系。

当 RR 0 时,电势知足拉普拉斯方程,通解为(a n R nb n 1 )P n (cos )n R n因为无量远处 E E 0 ,E 0 R cosE 0 RP 1 (cos )所以a 00 , a1E 0 , a n0, (n 2)当RR 0 时,所以E 0 R 0 P 1 (cos )b nP n (cos )n 1nR 0即: 0b 0 / R 0 0,b 1 / R 02 E 0 R 0所以b 0 R 0 (0 ), b 1 E 0 R 03, b n 0, (n 2)0 E 0 R cos R 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )(2)设球体待定电势为0 ,同理可得0 E 0 R cosR 0 (0 0 ) / RE 0 R 03 cos / R 2(RR 0 )(RR 0 )当RR 0 时,由题意,金属球带电量Qn R RdS2Q(E 0 cosR 02E 0 cos ) R 0 sin d d4R 0 ()所以 (0 ) Q / 4R0 E 0 R cos Q / 4 0 R(E 0 R 03 / R 2 ) cos (RR 0 )Q / 4 0 R ( R R 0 )3. 平均介质球的中心置一点电荷Q f ,球的电容率为,球外为真空, 试用分别变量法求空间电势,把结果与使用高斯定理所得结果比较。

电动力学作业及参考解答

电动力学作业及参考解答

习题与参考答案第1章 电动力学的数学基础与基本理论1.1 A 类练习题1.1.1 利用∇算符的双重性质,证明(1)()A A A ϕϕϕ∇×=∇×+∇×r r r(2)2()()A A A ∇×∇×=∇∇⋅−∇r r r1.1.2 证明以下几个常用等式,其中()x r x x e ′=−r r ()()y z y y e z z e ′′+−+−r r ,a r为常矢量,(,,)u u x y z =。

(1)3r r ′∇⋅=−∇⋅=r r ,(2)0r ∇×=r,(3)r r r r ′∇=−∇=r ,(4)31r r r ∇=−r ,(5)30r r∇×=r, (6)330r r r r ⋅⋅′∇=−∇=r r (0)r ≠,(7)()a r a ∇⋅=r r r,(8)()dA A u u du∇×=∇×r r 。

1.1.3 从真空麦克斯韦方程出发,导出电荷守恒定律的微分形式和真空中的波动方程。

1.1.4证明均匀介质中的极化电荷密度与自由电荷密度满足关系式0(1/)p f ρεερ=−−。

1.1.5 已知电偶极子电势304p R R ϕπε⋅=r r ,试证明电场强度53013()[4p R R p E R Rπε⋅=−r r r r r 。

1.1.6 假设存在孤立磁荷(即磁单极),试改写真空中的麦克斯韦方程组以包括磁荷密度m ρ和磁流密度m J r的贡献。

答案:D ρ∇⋅=ur , m B ρ∇⋅=u r , m B E J t ∂∇×=−−∂u r u r u r , D H J t∂∇×=+∂ur uu r ur 。

1.1.7 从麦克斯韦方程出发导出洛伦茨规范下的达朗贝尔方程,并证明洛伦茨规范中的ψ满足齐次波动方程,即222210c tψψ∂∇−=∂。

1.1.8 证明:(1)在静电情况下,导体外侧的电场总是与表面垂直;(2)在稳恒电流的情况下,导体内侧的电场总是平行于导体表面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电动力学习题及答案第0章 绪论及数学准备练习一1、设,,i j k为直角坐标系的三个单位矢量,计算下列各式:解:(1) ()()()2A B A B A B B A B A +⨯-=-⨯+⨯=⨯,(2) ()(),()0a a b a a b a a b ⋅⨯=-⋅⨯∴⋅⨯=, (3) 2()()()()a b a a a b a b a a b a a b ⨯⨯=⋅-⋅=-⋅ , (4) ()1j i k k k ⨯⋅=-⋅=-, (5) ()1k i j j j ⨯⋅=⋅=(6) 若()()M b a c a b c =⋅-⋅ ,则M c ⋅=,解:()()()()0M c b c a c a c b c ⋅=⋅⋅-⋅⋅=(7) ()()[()][()()]()()()()a b c d c a b d c a d b b d a a c b d a d b c ⨯⋅⨯=-⋅⨯⨯=-⋅⋅-⋅=⋅⋅-⋅⋅(8) ()()()()()()()()()0a b c b c a c a b a c b a b c b a c b c a c b a c a b ⨯⨯+⨯⨯+⨯⨯=⋅-⋅+⋅-⋅+⋅-⋅=(9) ():()AB CD =解:():()()()A B C D B C A D =⋅⋅2、利用矢量A B 、的分量式,证明C AB BA C ⋅=⋅证明:(1) 333111,,,i ij j k k i j k A Ae B B e C C e ======∑∑∑33333331111111,,i j i j k k j i j ii j j i i j k m n m n AB A B e e C C e BA B Ae e A B e e ===========∑∑∑∑∑∑∑3,,1,,,33,,1,,1,()(),()(),k i j k i j k i j ki ji j k i j ki i j j i i j j i j j ij i k j i k j i k j kii j k i j k j i i j i i j j i jjiC AB C A B e e e C A B e C A B e C A B e C A B BA C B AC e e e B AC e B AC e C A B e C A B δδ===⋅=⋅====⋅⋅=⋅====⋅∑∑∑∑∑∑∑∑∑∑(注:这里01= j ij δ≠⎧=⎨⎩当i j时当i 时)}练习二1、设(')(')(')x y z r x x e y y e z z e =-+-+-为从源点指向场点的矢量, r k E ,0为常矢量, ,,,,u v A g f是,,'''x y z x y z 以及,,的函数。

则(1) (y-y'x-x'z-z'r xyzxyzxyzrrr r r e e e e e e ∂∂∂∂∂∂∇=++=++=')',x x r y y z z r r ---⎛⎫= ⎪⎪⎪==⎭同理,;(2) (y-y'x-x'z-z'''''r xyzx y zx y z r rr rr e e e e e e ∂∂∂∂∂∂∇=++=---=-(3) 23111'()'(d r rr r dr r r r r∇=∇=--=(4) ()()()()()()()f u f u f u u u u x y z x y z df u df u f u i j k i j k udu du∂∂∂∂∂∂∂∂∂∂∂∂∇=++=++=∇ (5) ()()[(')(')(')]x y z x y z x y z k r e e e k x x k y y k z z ∂∂∂∂∂∂∇⋅=++-+-+-(')(')(')x x y y z z x xy yz zxyze k e k e k k ∂-∂-∂-∂∂∂=++=(6) (')(')(')3x x y y z z x y z r ∂-∂-∂-∂∂∂∇⋅=++=(7)22()22r k r k r r k r k ∇⋅=∇⋅=∇⋅=⋅(8) ()a r ⋅∇=1()(')(')(')][(')(')(')][(')(')(')][(')(')(')].x y z x y z x y z x x y z y x y z x y z x y z x x y y z z z a r a a a x x e y y e z z e a x x e y y e z z e a x x e y y e z z e a x x e y y e z z e a e a e a e a ∂∂∂∂∂∂∂∂∂∂∂∂⋅∇=++-+-+-=-+-+-+-+-+-+-+-+-=++=法:()[(')(')(')][(')(')(')][(')(')(')][(')(')(')](x y y x y z x y z x x y z y x y z x y z x y z x x y y z z z r e e e x x e y y e z z e e x x e y y e z z e e x x e y y e z z e e x x e y y e z z e e e e e e e ∂∂∂∂∂∂∂∂∂∂∂∂∇=++-+-+-=-+-+-+-+-+-+-+-+-=++法2:单位张)()()()()().x x y y z z x x y y z zx x y y z z a r a r a e e e e e e a e e a e e a e e a e a e a e a ∴⋅∇=⋅∇=⋅++=⋅+⋅+⋅=++= 量 (9) ()()()()()()()()y y x x z z A u dA u A u dA u A u dA u dA u u uuxyzdu xdu ydu zduA u u ∂∂∂∂∂∂∂∂∂∂∂∂∇⋅=++=++=∇⋅(10) 30,?r r when r ≠∇⋅=()3334353333311(0r r r r r r r r r r r r r r ⋅∇⋅=∇⋅+∇⋅=-∇⋅+=-+=(11) [sin()]0000()[sin()][sin()]()cos()d k r d k r E k r k r E k r E k E k r ⋅⋅∇⋅⋅=∇⋅⋅=∇⋅⋅=⋅⋅[cos()]0000()[cos()][cos()]()sin()d k r d k r E k r k r E k r E k E k r ⋅⋅∇⋅⋅=∇⋅⋅=∇⋅⋅=-⋅⋅(12) 0000()()()ikr ik r ik rik r de d ik r E e e E ik r E ik E e ⋅⋅⋅⋅⋅∇⋅=∇⋅=∇⋅⋅=⋅(13) ()()()[()]()()()3()3()3()df r df r df r r dr dr r drrf r r f r f r r f r r r f r r f r r ∇⋅=∇⋅+∇⋅=+∇⋅=+⋅=+(14) ()?A ∇⋅∇⨯=1()]0()()()0y y x x z z x y z xyzxy z A A A A A A x yx zy zy xz xz yA A A A A A A ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∇⋅∇⨯==-+-+-=∇⋅∇⨯=-∇⋅∇⨯∴∇⋅∇⨯=法:法2: ,(15) =⨯∇r0'''xyzxyze e e x x y y z z ∂∂∂∂∂∂=---(16) 证明 ()dAA u u du∇⨯=∇⨯()()()()()()()((()()()()y y x x z z xyzA u A u A u A u A u A u x y z xyzy zz x x y x y z e e e A u e e e A u A u A u ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∇⨯==-+-+-()()()()()()()()()y y x x z z dA u dA u dA u dA u dA u dA u uuu u u u x y z du ydu zduzdu xduxdu ye e e ∂∂∂∂∂∂∂∂∂∂∂∂=-+-+-()()()()()()()()()(((y y x x z z y x z x yzdA u dA u dA u dA u dA u dA u uu u u u u u u u x y z xy zy du zduz du x du x du y du dA u dA u dA u du dudue e e dA u e e e du∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∇⨯==-+-+-()dAA u u du∴∇⨯=∇⨯(17) 2311(00r r r r r r r r r r r r∇∇⨯=∇⨯+∇⨯=-⨯+=-⨯=(18) 333453311(00r rr r r r r r r r r r ∇∇⨯=∇⨯+∇⨯=-⨯+=-⨯= , (19) ()a r ∇⋅⨯=?1()()0a r a r ∇⋅⨯=-⋅∇⨯=法:()'''[(')(')][(')(')][(')(')]0xyzxy zy z z x x y x y z a r a a a x x y y z z a z z a y y a x x a z z a y y a x x ∂∂∂∂∂∂∂∂∂∂∂∂∇⋅⨯=---=---+---+---=法2:(20) ()A ∇⋅∇⨯=?1()0()()()0y y x x z z x y z A A A A A A xyzx yx zy zy xz xz yx y zA A A A A A A ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∇⋅∇⨯==-+-+-=∇⋅∇⨯=-∇⋅∇⨯∴∇⋅∇⨯=法: 法2:(21) [sin()]0000()[sin()][sin()]()cos()d k r d k r E k r k r E k r E k E k r ⋅⋅∇⨯⋅=∇⋅⨯=∇⋅⨯=⨯⋅(22) ()()[()]()()()00df r df r r drdr rrf r r f r f r r r r r ∇⨯=∇⨯+∇⨯=+∇⨯=⨯=(23) 222222((()0u u u u u u x y z y zz yz xx z x yy xu u u xyzijku i j k ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∇⨯∇==-+-+-=(24) 0000()()()ikr ik r ik rik r de d ik r E e e E ik r E ik E e ⋅⋅⋅⋅⋅∇⨯=∇⨯=∇⋅⨯=⨯(25) 试证明 ()ug u g u g ∇⨯=∇⨯+∇⨯方法1: ()()()c c c c ug u g ug u g u g u g u g ∇⨯=∇⨯+∇⨯=∇⨯+∇⨯=∇⨯+∇⨯;方法2:()()()()()()()[)(([(((]()()(y x x x z z y y x x z z xyzug ug ug ug ug ug x y zxyzy zz x x y x yzg g g g g g u ux y z z y x y z z x x y y zu u ux z y z xe e e ug e e e ug ug ug u e e e g g e g g e ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∇⨯==-+-+-=-+-+-+-+-+ )u y x z x y g g e u g u g ∂∂∂-=∇⨯+∇⨯(26) 试证明 21-4(')x x rπδ∇=-。

相关文档
最新文档