高分子物理和高分子化学复习要点
高分子材料物理化学实验复习

一、热塑性高聚物熔融指数的测定熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压力下,10min 内高聚物熔体通过规定尺寸毛细管的重量值,其单位为g 。
min)10/(600g tW MI ⨯=影响高聚物熔体流动性的因素有内因和外因两个方面。
内因主要指分子链的结构、分子量及其分布等;外因则主要指温度、压力、毛细管的内径与长度为了使MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。
在本实验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。
因为各种高聚物的粘度对温度与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。
一般说来,熔融指数小,即在12、 34测定取向度的方法有X 射线衍射法、双折射法、二色性法和声速法等。
其中,声速法是通过对声波在纤维中传播速度的测定,来计算纤维的取向度。
其原理是基于在纤维材料中因大分子链的取向而导致声波传播的各向异性。
几个重要公式:①传播速度C=)/(10)(1063s km t T L L ⨯∆-⨯- 单位:C-km/s ;L-m ;T L -?s ;△t-?s ②模量关系式 2C E ρ= ③声速取向因子 221CC f u a -= ④?t(ms)=2t 20-t 40(解释原因)Cu 值(km/s ):PET= 1.35,PP=1.45,PAN=2.1,CEL=2.0 (可能出选择题)测定纤维的C u 值一般有两种方法:一种是将聚合物制成基本无取向的薄膜,然后测定其声速值;另一种是反推法,即先通过拉伸试验,绘出某种纤维在不同拉伸倍率下的声速曲线,然后将曲线反推到拉伸倍率为零处,该点的声速值即可看做该纤维的无规取向声速值C u (见图1)。
思考题:1、影响实验数据精确性的关键问题是什么?答:对纤维的拉伸会改变纤维的取向。
所以为保证测试的精确性,每种纤维试样至少取3根以上迸行测定。
2、比较声速法与双折射法,两者各有什么特点?三、光学解偏振法测聚合物的结晶速度(无计算题,最好知道公式。
高分子材料物理化学实验复习资料整理

Huggins式: sp K H C C
2
ln 2 Kramer式: K K C C
外推至 C→0, 两直线相交于一点此截距即为[]。 两条直线的斜率
4 / 11
{
图2
lg C
sp
ln 对 C和 对C 的关系图 C C
3 / 11
图 1 DSC 法测定结晶速率 (a)等温结晶 DSC 曲线 (b)结晶分数与时间关系
高材物化实验复习资料
4
放热峰。当曲线回到基线时,表明结晶过程已完成。记放热峰总面积为 A0,从结晶起始时刻(t0)到任一时 刻 t 的放热峰面积 At 与 A0 之比记为结晶分数 X(t): Avrami 指数 n=空间维数+时间维数(空间维数:球晶:1;片晶:2;针状:3;时间维数:均相成核:1, 异相成核:0; ) DSC: (纵坐标:放热峰朝下,吸热峰朝上) 图:Tg,冷结晶峰,熔融峰。 如何去除冷结晶峰? 升温一次,去除热历史。
二、声速法测定纤维的取向度和模量
测定取向度的方法有 X 射线衍射法、双折射法、二色性法和声速法等。其中,声速法是通过对声波在纤 维中传播速度的测定,来计算纤维的取向度。其原理是基于在纤维材料中因大分子链的取向而导致声波传播 的各向异性。 几个重要公式: ①传播速度 C=
L 10 3 (km / s) (TL t ) 10 6
N2。
注意:定要掌握三张图的含义。
五、粘度法测定高聚物分子量
1、测定高聚物分子量的方法有多种,如端基测定法、渗透法、光散射法、超速离心法和粘度法等。 2、马克(Mark)公式: KM 。该式实用性很广,式中 K、值主要依赖于大分子在溶液中的形态。
高分子物理和化学复习要点

第一章绪论1、高分子:也叫聚合物分子或大分子,具有高的相对分子量(104~106) ,其结构必须是由多个重复单元所组成,并且这些重复单元实际上或概念上是由相应的小分子衍生而来。
2、高分子的分类:根据高分子受热后的形态变化:热塑性高分子热塑性高分子在受热后会从固体状态逐步转变为流动状态。
这种转变理论上可重复无穷多次。
或者说,热塑性高分子是可以再生的。
聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯和涤纶树脂等均为热塑性高分子。
热固性高分子热固性高分子在受热后先转变为流动状态,进一步加热则转变为固体状态。
这种转变是不可逆的。
换言之,热固性高分子是不可再生的。
通过加入固化剂使流体状转变为固体状的高分子,也称为热固性高分子。
典型的热固性高分子如:酚醛树脂、环氧树脂、氨基树脂、不饱和聚酯、聚氨酯、硫化橡胶等。
第二章逐步聚合1、逐步聚合反应的种类2、官能度:分子中能参加反应的官能团数3、缩聚反应的特点4、官能团等活性概念逐步聚合中的官能团的活性不随分子量的增加而降低。
实验表明,二元官能度单体在分子量很小(n=1-3)时,活性随分子量增加而降低,但达到一定分子量后活性趋于恒定。
因此官能团等活性概念成立。
5、逐步聚合实施方法(1)熔融缩聚聚合体系中只加单体和少量的催化剂,不加入任何溶剂,聚合过程在生成聚合物熔点以上温度进行,聚合物处于熔融状态。
特点:产物纯净,分离简单;通常以釜式聚合,生产设备简单;反应温度高,一般比生成的聚合物的熔点高10~20 ℃;一般不适合生产高熔点的聚合物;反应时间长,一般都在几个小时以上;为避免高温时缩聚产物的氧化降解,常需在惰性气体中进行。
用途:主要用于平衡缩聚反应,如聚酯、聚酰胺等的生产。
(3)界面缩聚界面缩聚是将两种单体分别溶于两种不互溶的溶剂中,再将这两种溶液倒在一起,在两液相的界面上进行缩聚反应,聚合产物不溶于溶剂,在界面析出。
第三章自由基聚合逐步聚合反应:无活性中心,单体官能团间相互反应而逐步增长大部分缩聚属逐步机理,大多数烯类加聚属连锁机理3、烯类单体的聚合反应性能电子效应的影响:(1) X为供电子基团带供电子基团的烯类单体易进行阳离子聚合。
高分子物理期复习要点

高物复习基本概念第一章平均分子量(数均分子量,重均分子量,粘均分子量)分子量分布宽度指数:分子量分布宽度指数是指试样中各个分子量与平均分子量之间的差值的平方平均值多分散性指数:重均分子量与数均分子量之比.第二维利系数的物理意义:高分子链段与链段之间以及高分子与溶剂分子间相互作用的一种量度,它与溶剂化作用和高分子在溶液里的形态有密切关系。
相对粘度: 增比粘度:对数粘数: 极限粘数(特性粘数: 第二章无规共聚物,交替共聚物,嵌段共聚物,接枝共聚物(两种单体单元反应生成的二元共聚物,其结构记书上的图)无规立构,全同立构,间同立构(是针对结构单元为聚丙烯型的高分子而言的) 全同立构:高分子全部由一种旋光异构体键连接而成间同立构:两种旋光异构单元交替键接而成无规立构:两种旋光异构单元完全无规健接而成等规度:高聚物中含有全同立构和间同立构的总的百分数支化高分子:如果在缩聚过程中有三个或三个以上官能度的单体存在或在加聚过程中,有自由基的链转移反应,或双烯类单体中第二双键的活化等,都能生成支化或交联的高分子 支化度:两相邻支化点间链的平均分子量交联度:两相邻交联点间链的平均分子量构象:由于单键内旋转而产生的分子在空间的不同形态称为构象构型:包括单体单元的键合顺序,空间构型的规整性,支化度,交联度以及共聚物的组成及序列结构链段:高分子链能够独立运动的单元均方末端距:平均末端距的平方的平均自由结合链:n 是一个很大的数,每个键不占体积,内旋转没有键角限制并可以自由取向 自由旋转链:假定分子链中每个键可以在键角允许的方向自由转动,称为自由旋转链 等效自由结合链:以链段作为独立运动的单元自由结合组成的高分子链柔顺性:高分子链能够改变其构象的性质高斯链:等效自由结合链的链段分布符合高斯分布函数,故这种链又称为“高斯链”均方回转半径,用(Rg 2)表示,它的定义是:假定高分子链中包含许多链单元,每个链单元0ηηη=r 100-=-=r sp ηηηηη()C C sp r ηη+=1ln ln []CC r C sp C ηηηln lim lim 00→→==的质量为m ,设从高分子链的质心到第i 个链单元的距离为r i ,它是一个矢量,取全部链单元的r i 2对质量m i 的平均,就是链的均方回转半径第三章高聚物溶解:是一个缓慢过程,包括溶胀和溶解两阶段溶度参数:内聚能密度的平方根定义为溶度参数θ条件:通过选择溶剂和温度使高分子溶液符合理想溶液的条件,这种条件称θ条件,所用的溶剂称为θ溶剂,所处的温度称为θ温度无扰链:当T=θ时,A 2=0, u=0, 即此时的排斥体积等于0,高分子在溶液中处于无干扰状态,这种状态的尺寸称为无扰尺寸,这时的高分子链称为无扰链亚浓溶液:高分子线团互相穿插交叠,链段分布趋于均一的溶液增塑剂:添加到线型高聚物中使其塑性增大的物质称为增塑剂溶胀比:交联高聚物在溶胀平衡时的体积与溶胀前体积之比称为溶胀比聚电解质:在聚合物分子中有许多可电离的离子性基团的高分子称为聚电解质平移扩散:高分子在溶液中由于局部浓度或温度不同,引起高分子向某一方向的迁移,这种现象称为扩散或平移扩散非牛顿流体:高分子熔体或高分子浓溶液不符合牛顿粘度定律,称为非牛顿流体第五章聚合物的力学三态(玻璃态,高弹态,粘流态,记住非晶态聚合物的那个温度形变曲线就好理解了)玻璃态:由于温度较低,链段处于被冻结状态,受力形变小高弹态:随着温度升高,链段可以运动或滑移,形变增加粘流态:当温度再升高,整个高分子链可以产生滑移,形变增大,试样变为粘性流体 玻璃化温度:从玻璃态到高弹态的转变称为玻璃化转变,对应的温度称为玻璃化转变温度(Tg )WLF 方程:牛顿流体:粘度不随剪切应力和剪切速率的大小而改变,始终保持常数的流体,低分子流体和高分子的稀溶液属于牛顿流体非牛顿流体:凡是不符合牛顿流体公式的流体,即粘度有剪切速率依赖性,聚合物熔体和浓溶液属于非牛顿流体零切粘度:剪切速率趋于零时的粘度 表观粘度:稠度(微分粘度): 取向:在外力作用下,分子链沿外力方向平行排列。
高分子物理复习笔记(考研复习重点)

高分子物理复习重点(考研自己整理)第一章高分子的链结构 (1)1.1 高分子结构的特点和内容 (1)1.2 高分子的近程结构 (1)1.3 高分子的远程结构 (1)1.4 高分子链的柔顺性 (2)第二章高分子的聚集态结构 (2)2.1 高聚物的非晶态 (2)2.2 高聚物的晶态 (3)2.3 高聚物的取向结构 (5)2.4 高分子液晶及高分子合金 (5)第三章高聚物的分子运动 (6)3.1 高聚物的分子热运动 (6)1. 高分子热运动的特点 (6)2. 高聚物的力学状态和热转变 (6)3. 高聚物的松驰转变及其分子机理 (7)3.2 玻璃化转变 (7)3.3 玻璃化转变与链结构的关系 (8)3.4晶态高聚物的分子运动 (10)第四章高聚物的力学性质 (10)4.1 玻璃态和结晶态高聚物的力学性质 (10)1 力学性质的基本物理量. (10)2 应力-应变曲线 (12)(1)玻璃态高聚物的拉伸 (12)(2) 玻璃态高聚物的强迫高弹形变 (13)(3) 非晶态聚合物的应力-应变曲线 (13)(4)结晶态聚合物的应力-应变曲线 (14)(5) 特殊的应为-应变曲线 (15)3 屈服 (15)4 断裂 (16)5影响高聚物实际强度的因素 (16)4.2 高弹性 (17)1 橡胶的使用温度范围 (17)2 高弹性的特点和热力学分析 (18)1) 高弹性的特点 (18)2) 橡胶弹性的热力学分析 (18)4.3 粘弹性 (19)1 聚合物的力学松驰现象 (19)(1)静态粘弹性现象 (19)(2)动态粘弹性现象 (20)2 粘弹性的力学模型 (21)3 时温等效原理 (22)4 Boltzmann叠加原理 (23)5 粘弹性的实验方法 (23)6. 蛇行理论 (24)第五章高聚物的流变性 (24)5.1牛顿流体与非牛顿流体 (24)5.2高聚物粘性流动的主要特点 (25)5.3影响粘流温度的因素 (25)5.4高聚物熔体的切粘度 (25)1. 高聚物的流动性表征 (25)2. 剪切粘度的测量方法 (25)3. 高聚物熔体的流动曲线 (26)4. 影响高聚物熔体切粘度的因素 (26)5. 高聚物熔体的弹性表现 (27)第六章高聚物的电、热、光性能 (27)6.1 聚合物的介电性能 (27)6.2 介电损耗 (28)6.3 聚合物的导电性 (29)6.4 介电击穿 (29)6.5 聚合物的静电现象 (30)第七章高分子溶液性质 (30)第八章高分子的分子量及其分布 (33)第一章 高分子的链结构1.1 高分子结构的特点和内容高聚物结构的特点:1. 是由多价原子彼此以主价键结合而成的长链状分子,相对分子质量大,相对分子质量往往存着分布。
高分子物理复习提要

高分子物理复习提要1’ 高分子化学组成,高分子链接键接方式、序列,分子构造,分子链构型2‘ 分子链大小(分子量,均方末端距,均方半径)分子链在空间的形态(构象、柔顺性)3’ 晶态,非晶态,液晶态,取向结构4‘ 多组分分子链体系,高分子生物体结构一级与二级结构统称为链结构,四级结构为高级结构,三级与四级结构统称聚集态结构1.碳碳PE PS PP PVC 可塑性好,键能低,强度低,化学性质差,耐热性差,不易水解2.杂链高分子PI PSU PEO 易水解,化学稳定性差,芳香族用于工程塑料3.元素高分子PDMS 可塑性和弹性好,热稳定性优良,但强度低4.三维网状结构的交联高分子受热不能熔融,加入溶剂不可以溶解,只能溶胀——热固性材料(①对线型高分子硫化或过氧化物交联②使用多官能团单体③具有一定分子量的齐聚物端基交联)交联度高弹性变差。
两交联点间平均分子量越小,交联密度越高。
5.梯形高分子热稳定性好,高强度高模量使用交联剂可以提高性能(1)一级结构(近程结构)1.线型高分子:柔顺性好,易结晶,高密度——热塑性高分子2.支链短的高分子规整度差,不易结晶;长支链的高分子流动黏度大。
整体结晶度密度强度降低。
3.无规支化高分子规整性差,不易结晶,强度弱(低密度聚乙烯LDPE:软塑料制品和薄膜);几乎无支化链高分子规整性好,易结晶,强度好(高密度聚乙烯HDPE:硬塑料制品、管、板材和包装容器)4.构型:几何异构(反式结构规整度好,易结晶;天然橡胶以顺式结构为主)光学异构(全同立构和间同立构规整性好,易于结晶,通常不具有旋光性,配位聚合可得到;自由基聚合多为无规立构)(2)二级结构(远程结构)1.高分子链构象:低温大部分以全反式构象(锯齿状)为主(聚丙烯PP为旁式构象和全反式构象交替的螺旋结构,一个晶胞中有单体单元12个,单斜晶系)高温时柔性高分子成为无规线团(全反式和左旁式构象和右旁式构象均有)刚性大分子以伸展的棒状构象存在(单键内旋转不易发生)2.柔顺性:热力学平衡下高分子卷曲程度越高,静态柔顺性越好;构象转变越容易越快动态柔顺性越好。
高分子物理和高分子化学复习要点

⾼分⼦物理和⾼分⼦化学复习要点构型(Configuration):分⼦中由化学键所固定的原⼦在空间的⼏何排列。
⾼分⼦的构型:旋光异构⼏何异构键接异构全同⽴构间同⽴构⽆规⽴构反式构型顺式构型头-头结构头-尾结构键接异构体:因结构单元在⾼分⼦链中的连接⽅式不同引起的异构体。
1)在缩聚和开环聚合中,结构单元的键接⽅式是确定的。
2)在加聚过程中,会出现键接异构现象。
共聚物的序列、平均序列长度与嵌段数序列:由同类单体直接相连的嵌段。
平均序列长度:n= (单元A的数⽬)/(A的序列数)= 9/5嵌段数R:指在100个单体单元中出现的各种嵌段的总和。
R=200 /(n+ n)R=100时,为交替共聚;R=0时,为嵌段共聚;R愈⼤愈有交替性,R愈⼩愈有嵌段性。
SBS树脂:⽤阴离⼦聚合法制得的苯⼄烯和丁⼆烯的三嵌段共聚物。
其分⼦链的中段是聚丁⼆烯(70%),两端是聚苯⼄烯(30%),SBS具有两相结构,橡胶相PB连续相,PS形成微区分散在橡胶相中,起物理交联作⽤。
SBS是⼀种热塑性弹性体,连续相PB具有柔性链段的软区,分散相PS具有刚性链段的硬区,起物理交联作⽤。
构象:由于单键内旋转⽽产⽣的分⼦在空间的不同形态。
⾼分⼦链的构象有微构象与宏构象之分:1)微构象:指⾼分⼦主链键构象(⾼分⼦主链中⼀个键的构象)。
2)宏构象:指整个⾼分⼦链的形状。
构象的改变并不需要化学键的断裂,只要化学键的旋转就可实现。
链段:可以把由若⼲个键组成的⼀段链作为⼀个独⽴运动的单元,称为“链段”。
⾼分⼦的链段之间可以⾃由旋转,⽆规取向。
链段是⾼分⼦链中能够独⽴运动的最⼩单元。
实际的⾼分⼦链为受阻旋转链。
⾼分⼦链的柔顺性取决于分⼦内旋转的受阻程度。
⾼分⼦链能够改变其构象的性能称为⾼分⼦链的柔顺性。
⾼分⼦链是通过单键的内旋转改变其构象的,因此单键的内旋转是⾼分⼦链具有柔顺性的原因。
影响⾼分⼦链的柔顺性的因素内在因素(结构因素)主链结构:主链全由单键组成的,⼀般柔性较好;不同的单键,柔顺不同(考虑⾮近邻原⼦距离、键长和键⾓):-Si-O-> -C-O-> -C-C-;含有芳杂环,由于芳杂环不能内旋转,所以主链中含有芳杂环结构的⾼分⼦链柔顺性较差;主链含有孤⽴双键,柔顺性较好;带有共轭双键的⾼分⼦链不能内旋转,柔性差;侧基(或取代基):极性取代基:极性取代基将增加分⼦内的相互作⽤,使内旋转困难, 柔性下降; 极性越⼤, 柔性越差;⾮极性取代基(主要考虑其体积),取代基的体积越⼤, 内旋转越困难, 柔性越差;取代基的对称性,聚偏氯⼄烯>PVC,前者对称,分⼦偶极矩⼩,内旋转容易.聚异丁烯(PIB)的每个链节上,有对称的甲基,使主链间距离增⼤,键间作⽤⼒减少,内旋转容易其它结构因素:⽀化与交联:⽀链很长时,阻碍链的内旋转起主导作⽤,柔性下降;低交联(如含硫2%~3%橡胶),柔顺性影响不⼤,但含硫30%以上影响链柔顺性;⾼分⼦链的长度:分⼦链越长,分⼦构象数⽬越多,链的柔顺性越好;分⼦间作⽤⼒:分⼦间作⽤⼒⼤,柔顺性差。
高分子物理重点知识点

高分子考试重点:
高分子的定义,可以分成几类
高分子链的结构形状有几种? 它们的物理、化学性质有何不同?
乳液聚合的定义,特点和主要组分
溶液聚合的定义,特点和主要组分
悬浮聚合的定义,特点和主要组分
本体聚合的定义,特点和主要组分
本体聚合的优缺点
连锁聚合按机理的分类
自由基聚合的特点以及所用的引发剂,以及其基元反应有哪些,链终止反应过程自由基聚合反应动力学研究中作了那些基本假定
自由基聚合的反应机理。
热塑性塑料和热固性塑料的定义,哪些高分子属于热塑性,哪些属于热固性?掌握缩聚反应的定义和特点
掌握聚合度的定义
什么是单体?
掌握加聚反应的定义
什么是分子量分布指数?
什么是共聚物?
掌握反应程度的定义
什么是凝胶化现象?
什么是自动加速现象?
掌握何种结构的烯类单体可以发生何种聚合反应。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
构型(Configuration):分子中由化学键所固定的原子在空间的几何排列。
高分子的构型:旋光异构几何异构键接异构全同立构间同立构无规立构反式构型顺式构型头-头结构头-尾结构键接异构体:因结构单元在高分子链中的连接方式不同引起的异构体。
1)在缩聚和开环聚合中,结构单元的键接方式是确定的。
2)在加聚过程中,会出现键接异构现象。
共聚物的序列、平均序列长度与嵌段数序列:由同类单体直接相连的嵌段。
平均序列长度:<LA>n= (单元A的数目)/(A的序列数)= 9/5嵌段数R:指在100个单体单元中出现的各种嵌段的总和。
R=200 /(<LA>n+ <LB>n)R=100时,为交替共聚;R=0时,为嵌段共聚;R愈大愈有交替性,R愈小愈有嵌段性。
SBS树脂:用阴离子聚合法制得的苯乙烯和丁二烯的三嵌段共聚物。
其分子链的中段是聚丁二烯(70%),两端是聚苯乙烯(30%),SBS具有两相结构,橡胶相PB连续相,PS形成微区分散在橡胶相中,起物理交联作用。
SBS是一种热塑性弹性体,连续相PB具有柔性链段的软区,分散相PS具有刚性链段的硬区,起物理交联作用。
构象:由于单键内旋转而产生的分子在空间的不同形态。
高分子链的构象有微构象与宏构象之分:1)微构象:指高分子主链键构象(高分子主链中一个键的构象)。
2)宏构象:指整个高分子链的形状。
构象的改变并不需要化学键的断裂,只要化学键的旋转就可实现。
链段:可以把由若干个键组成的一段链作为一个独立运动的单元,称为“链段”。
高分子的链段之间可以自由旋转,无规取向。
链段是高分子链中能够独立运动的最小单元。
实际的高分子链为受阻旋转链。
高分子链的柔顺性取决于分子内旋转的受阻程度。
高分子链能够改变其构象的性能称为高分子链的柔顺性。
高分子链是通过单键的内旋转改变其构象的,因此单键的内旋转是高分子链具有柔顺性的原因。
影响高分子链的柔顺性的因素内在因素(结构因素)主链结构:主链全由单键组成的,一般柔性较好;不同的单键,柔顺不同(考虑非近邻原子距离、键长和键角):-Si-O-> -C-O-> -C-C-;含有芳杂环,由于芳杂环不能内旋转,所以主链中含有芳杂环结构的高分子链柔顺性较差;主链含有孤立双键,柔顺性较好;带有共轭双键的高分子链不能内旋转,柔性差;侧基(或取代基):极性取代基:极性取代基将增加分子内的相互作用,使内旋转困难, 柔性下降; 极性越大, 柔性越差;非极性取代基(主要考虑其体积),取代基的体积越大, 内旋转越困难, 柔性越差;取代基的对称性,聚偏氯乙烯>PVC,前者对称,分子偶极矩小,内旋转容易.聚异丁烯(PIB)的每个链节上,有对称的甲基,使主链间距离增大,键间作用力减少,内旋转容易其它结构因素:支化与交联:支链很长时,阻碍链的内旋转起主导作用,柔性下降;低交联(如含硫2%~3%橡胶),柔顺性影响不大,但含硫30%以上影响链柔顺性;高分子链的长度:分子链越长,分子构象数目越多,链的柔顺性越好;分子间作用力:分子间作用力大,柔顺性差。
单个分子链柔性相近时,可形成氢键者(刚性大)< 极性主链< 非极性主链(柔性大);分子链的规整性:如PE,易结晶,柔性表现不出来,呈现刚性。
高分子链的柔顺性与实际材料的刚柔性不能混为一谈,需同时考虑分子内与分子间相互作用。
如聚异于烯>PE 外界因素:(1)温度:温度升高,内旋转容易,柔顺性增加。
(2)外力作用速度:速度缓慢时,柔性容易显示;速度作用快,高分子链来不及通过内旋转而改变构象,柔性无法显示,分子链显得僵硬。
(3)溶剂:影响高分子的形态。
末端距:指线型高分子链的一端至另一端的直线距离。
用一向量h(orr)表示,末端距具有统计性。
常用“均方末端距(h2)”或“根均方末端距[( h2)0.5]”来表示高分子的尺寸。
自由连接(结合)链:freely jointed chain假设高分子链由足够多(n ∞)的不占体积的化学键自由结合而成,单键内旋转不受键角的限制,也无位垒障碍,化学键在空间任何方向上取向的几率相等。
(由于每个键无规取向无规链或无规线团:最柔顺的链,理想的柔顺链)。
自由旋转链:freely rotating chain假设高分子链的每一个化学键都可以在键角所允许的方向自由旋转,不考虑空间位阻对转动的影响。
受阻旋转链:chain with restricted rotation实际高分子链中,单键的内旋转既有键角的限制,还有位垒障碍,称为受阻旋转链。
等效自由结合链的均方末端距:h02= Zb2等效自由结合链的伸直链长度:Lmax= ZbZ = Lmax2 / h02 b = h02/Lmaxh02:无扰状态下高分子链的均方末端距(无扰均方末端距).假定聚乙烯的聚合度为2000,键角为109.5°,求伸直链的长度Lmax与自由旋转链的根均方末端距之比值。
并由分子运动观点解释某些高分子材料在外力作用下可以产生很大变形的原因。
高分子的聚集态结构高分子的聚集态结构:是指高分子材料本体内部高分子链之间的几何排列和堆砌状态。
依据高分子材料内高分子链之间的排列、堆砌方式不同,高分子的聚集态结构可分为:晶态结构、非晶态结构、取向态结构、液晶态结构与织态结构。
聚集态:物质的宏观物理状态, 是根据物质的分子运动在宏观力学性能上的表现来区分的。
通常包括固体、液体、气体(称为物质三态)。
相态:物质的热力学状态,是根据物质的结构特征和热力学性质来区分的,包括晶态(相)、液态(相)、气态和液晶态等。
聚乙烯为正交晶系,每个晶胞有Z=2个链节。
等规聚丙烯(PP)属单斜晶系,每个晶胞含12个链节。
晶胞密度的计算:Z—单位晶胞中所含链结构单元数;V—晶胞的体积;M—结构单元分子量;NA—阿佛加德罗常数(6.02 x l023/摩尔)常见聚合物晶体形态包括:片晶(单晶)、球晶、树枝状晶、伸直链片晶、纤维晶与串晶等。
影响聚合物晶体形态的因素是晶体生长的外部条件和晶体的内部结构。
外部条件包括溶液的成分、温度、黏度、所受作用力的方式和作用力的大小等。
聚合物单晶是由溶液中生长的片状晶体的总称。
实际上它并不是结晶学意义上的真正单晶。
它们大多是多重孪晶。
孪晶:习惯上指在孪生片晶的不同部分具有结晶学上的不同取向的晶胞的一类晶体。
影响聚合物单晶生长的因素溶液的浓度必须足够稀,以避免分子链的缠结;结晶速度足够慢,以保证分子链的规整排列和堆砌。
一般过冷程度20-30K时,可形成单层片晶;在同一温度下,高分子倾向于按分子量从大到小顺序先后结晶出来。
球晶的形成条件:从浓溶液析出,或从熔体冷结晶时,在不存在应力或流动的情况下形成。
球晶大小影响聚合物的力学性能,影响透明性。
球晶大透明性差、力学性能差,球晶小透明性和力学性能好。
控制球晶大小的方法:1)控制形成速度:将熔体急速冷却(在较低的温度范围),生成较小的球晶;缓慢冷却,则生成较大的球晶。
2)采用共聚的方法,破坏链的均一性和规整性,生成较小球晶.3)外加成核剂:可获得小甚至微小的球晶。
非晶态聚合物通常指完全不结晶的聚合物,包括玻璃体,高弹体和熔体。
高聚物的非晶态结构模型无规线团模型的要点: 在非晶态聚合物中,高分子链的构象与在溶液中一样,呈无规线团状,线团之间是无规缠结的,因而非晶态高聚物在聚集态结构上是均相的。
该模型是橡胶的弹性理论和溶液的流体力学理论的基础。
Yeh的局部有序模型:非晶态高聚物存在着一定程度的局部有序。
其中包含粒子相和粒间相两部分,而粒子又分为有序区和粒界区两部分。
在有序区中,分子链相互平行排列。
其尺寸为2-4 nm。
有序区周围有1-2 nm大小的粒界区,由折叠链的弯曲部分、链端、缠结点和连接链组成。
粒间相则由无规线团、低分子物、分子链末端和连接链组成,尺寸约1-5 nm。
模型认为,一根分子链可通过几个粒子和粒间相。
高分子结晶包括:晶核的形成与晶粒的生长两个步骤。
高分子的结晶速度包括:成核速度、结晶生长速度以及由它们共同决定的结晶总速度。
伴随高聚物的等温结晶过程,会发生热力学与物理性质的变化。
可利用它们可测定结晶速度:1)成核速度:用偏光显微镜POM与电镜直接观察单位时间内形成晶核的数目。
2)结晶生长速度:用POM与小角激光光散射法测定球晶半径随时间的增大速度,即球晶的径向增长速度。
3)结晶总速度:用膨胀计、光学解偏振法等测定结晶过程进行到一半所需的时间t1/2的倒数作为结晶总速度。
例1:聚三氟氯乙烯(Tm= 210℃,fmax: 90%)a) 缓慢结晶,结晶度可达85~90% b) 淬火结晶,结晶度可达35~40%两种结晶方式,冲击强度:a<b;伸长率:a<b;比重:a>b。
120℃是个重要的温度界限(该温以下,结晶速度很小,反之,则大大增加)。
长期在120℃以下工作时,结晶度低的聚三氟氯乙烯的零件韧性好,不会变脆,因此对韧性要求高的聚三氟氯乙烯零件不能高于120℃以上长期工作。
请给出结晶聚合物的结晶温度范围,结晶最大速度与聚合物的玻璃化温度和熔点的关系,并分析结晶速度-温度关系为单峰曲线的原因。
▲结晶高聚物的熔点和熔限与结晶形成的温度有关。
一般结晶温度愈低,熔点愈低且熔限愈宽;相反,在较高的温度下结晶,则熔点愈高,熔限愈窄。
▲结晶聚合物的熔点随晶片厚度的增加而增加Tm与Tm0分别表示晶片厚度为l和∞时的结晶熔点取向的概念:在某些外场作用下,大分子链、链段或微晶可以沿着外场方向有序排列,这种有序的平行排列称为取向,所形成的聚集态结构,称为取向结构。
取向过程是分子在外力作用下的有序化过程。
外力除去后,分子热运动使分子趋向于无序化,即称为解取向过程。
f取向度液晶态是物质的一种存在形态, 它具有晶体的光学各向异性, 又具有液体的流动性质, 又称之为介晶态。
按形成条件不同,分为热致液晶与溶致液晶。
按照分子排列的形式和有序性不同,液晶有三种不同的结构类型:近晶型、向列型(显示器)与胆甾型。
液晶纺丝:液晶纺丝可以解决通常情况下高浓度必然伴随高粘度的问题,可获得高强度、高模量、综合性能好的纤维。
高分子-高分子混合物又称“高分子合金”,在该体系中存在两种或两种以上不同的聚合物,不论组分是否以化学键相连接。
按照共混高分子相容性的好坏,可分为:(1)宏观相分离体系(相容性很差)。
(2)(亚)微观相分离体系(相容性较好)。
(3)均相体系(分子水平上完全相容)。
通常,具有(亚)微观相分离结构的共混高聚物才具有较大的使用价值,呈现突出的优异性能。
增容作用:(1)在物理共混种,加入第三组分增容剂,是改善两组分间相容性的有效途径。
(2)在不同聚合物的分子之间引入各种特殊的相互作用(包括分子间氢键、强的偶极-偶极作用、电荷转移与酸碱作用等)、络合等,可以使不相容的体系变为分子水平的部分相容、甚至完全相容的均相体系(ΔHM<0)高分子溶液:高聚物以分子状态分散在溶液中所形成的均相体系。