磁学性能

合集下载

材料物理性能-_磁学性能

材料物理性能-_磁学性能
磁化率,反映材料磁化的难易程度,无量纲, 可正可负,是物质磁性分类的主要依据。
7
4. 磁感应强度和磁导率(P133) 材料在磁场强度为 H 的外加磁场(直流、交变或脉冲磁 场)作用下,会在材料内部产生一定的磁通量密度,称其为 磁感应强度B,即在强度为H的磁场中被磁化后,物质内磁场 强度的大小。 在真空中,磁感应强度为:
26
二、技术磁化(P154)
对未经外磁场磁化的 ( 或处于退磁状态的 ) 铁磁体,它们 在宏观上并不显示磁性,这说明物质内部各部分的自发磁化 强度的取向是杂乱的。因而物质的磁畴决不会是单畴,而是
由许多小磁畴组成的。
技术磁化:在外磁场作用下,铁磁体从完全退磁状态磁化到 饱和的内部变化过程。
27
铁磁体在外磁场中的磁化过程主要为畴壁的 移动和磁畴内磁矩的转向。
因而自发磁化强度降低,铁磁性消失。这一温度称为居里 点Tc。在居里点以上,材料表现为顺磁性。
23
4. 反铁磁性和亚铁磁性(P132、P144) 如果交换积分 A<0时,则原于磁矩取反向平行排列能量最 低。如果相邻原子磁矩相等,由于原子磁矩反平行排列,原
子磁矩相互抵消,自发磁化强度等于零。这样一种特性称为
9
磁学与电学基本物理量的比较 电学物理量 (单位) 磁学物理量 (单位)
J E P 0E
电流强度 I (A)
磁通量 Ф (Wb)
电流密度 J (A/m2)
电场强度 E (V/m)
磁通密度 B (Wb/m2)
磁场强度 H (A/m)
B H M H
r 1
电导率σ (Ω-1· m-1)
B0 0 H
式中μ0为真空磁导率
0 4 107 H / m

第二章 磁学性能

第二章 磁学性能
23 1 B
电子的自旋运动产生自旋磁矩,电子自旋磁矩大小为
eh s s 2s B 2mc
式中,s为电子自旋磁矩角动量。
电子自旋磁矩在外磁场方向上的分量恰为一个玻 尔磁子,即 sz=B
式中,符号取决于电子自旋方向,一般取与外磁 场方向z一致的为正,反之为负。
原子中电子的轨道磁矩和电子的自旋磁矩构成了 原子固有磁矩,即本征磁矩。理论计算证明,如
反映磁化强度随磁场变化的速率。 量纲为1,其值可正、 可负,它表征物质本身的磁化特性。
将磁矩p放入磁感应强度为B的磁场中,它将受到磁场力的 作用而产生转矩,其所受力矩为L=p×B
此转矩力图使磁矩 p处于势能最低的方向。磁矩与外加磁场 的作用能称为静磁能。处于磁场中某方向的磁矩,所具有的 静磁能为 E= -p · B 在讨论材料的磁化过程和微观磁结构时,经常要考虑磁 体中存在的几种物理作用及其所对应的 能量,其中包括静磁 能。单位体积中的静磁能,即静磁能密度EH EH = -M· B = -MHcos 式中,为磁化强度M与磁场强度H的夹角。通常静磁能密度 EH在习惯上简称为静磁能。
抗磁体的磁化率与温度无关或变化极小。
凡是电子壳层被填满了的物质都属于抗磁性物质。 惰性气体,离子型固体(如氯化钠)等; 共价键的碳、硅、锗、硫、磷等通过共有电子而填满了 电子层,故也属于抗磁性物质; 大部分有机物质属于抗磁性物质。 金属中属于抗磁性物质的有铋、铅、铜、银等。
三、顺磁性
• 材料的顺磁性来源于原子的固有磁矩。
磁滞:从饱和磁化状态A点降低磁 场H时,磁感应强度B将不沿着原 磁化曲线下降而是沿AC缓慢下降。 剩余磁感应强度:当外磁场降为0 时,得到不为零的磁感应强度Br 矫顽力:将B减小到零,必须加的 反向磁场-Hc

第三章;磁学性能(铁磁性及其物理本质)

第三章;磁学性能(铁磁性及其物理本质)

根据键合理论可知,原子相互接近形成分子时,电 子云要相互重叠,电子要相互交换位置。 对于过渡族金属,原子的3d的状态与4s态能量相 差不大,因此它们的电子云也将重叠,引起s、d状 态电子的再分配。 即发生了交换作用。交换作用产 生的静电作用力称为交换力。
Байду номын сангаас
交换力的作用迫使相邻原子的自旋磁矩产生有序 排列。其作用就像强磁场一样,外斯“分子场”即 来源于此。
Hd= - NM
N为退磁因子,与材料的几何形状、尺寸有关; M 磁化强度。
退磁场作用在铁磁体上的退磁能为: M 1 Ed 0 H d dM 0 NM 0 2
3.7
磁畴的形成与磁畴结构
3.7.1 磁畴与磁畴壁
磁畴 未加磁场时铁磁体内部已经磁化到饱和状态的小区 域。 形成原因:
由于原子磁矩间的相互作用,晶体中相邻原子的 磁偶极子会在一个较小的区域内排成一致的方向。
(A﹤0,θ=180°)时,则反向平行排列,呈反铁磁性。
交换能积分常数A不仅与电子运动状态的波函数有关, 还强烈依赖于原子核间的距离和未填满壳层半径有关。
当 Rab/r ﹥3, A﹥0 ,满足自发磁 化的条件,为铁磁性
当 Rab/r 太大, 原子之间的距离太 大,电子云不重叠或重叠太少,不能满 足自发磁化的条件,为顺磁性。 当 Rab/r ﹤ 3, A﹤0,则反向 排列, 为反铁磁性 铁磁性产生的充要条件: 原子内要有为填满的电子壳层,满足 Rab/r ﹥3使A﹥0。 前者指的是原子本征(固有)磁矩不为 零;后者指的是要有一定的晶体结构。
简述磁畴的形成过程
• 答:磁畴的形成符合能量最小条件,使系统能量降低到最低, 以维持系统的能量平衡。磁畴的形成过程如下: • (1)假设在磁晶体中存在一个自发的磁化区,磁化区的两极 则会产生以较高的退磁场。如图a所示 • (2)如果将上述磁化区分割成两个区域,则退磁场将会降低, 如继续分割,则会一直减小,有减小到零的趋势。如图b所示 • (3)如果形成封闭的结构,则退磁场减小为零,没有自由磁 极。闭合磁畴的形成使磁致伸缩不同而产生弹性能和磁晶能。 如图c所示 • (4)为了降低磁弹性能,磁畴将沿基本磁化方向分割为更小 磁畴,但磁畴的分割又增加了畴壁能,当两者能量平衡时,即 形成能量最小的稳定的闭合磁畴。如图d所示 • 单晶体磁畴结构示意图

材料磁学性能(材料科学基础)

材料磁学性能(材料科学基础)
➢ 在外磁场中,这类磁化了的介质内部,B小于真空中的B0 ➢ 抗磁性物质的抗磁性一般很微弱,磁化率一般为-10-5 磁化率χ <0,相对磁导率μr <1,磁感应强度B < B0 ➢ 周期表中前18个元素主要表现为抗磁性,这些元素构成了陶 瓷材料中几乎所有的阴离子,如O2-、F-、Cl-、S2-等。
h
2
(3)磁感应强度
真空
B。=。H 。
B 磁感强度(Wb·m-2) (magnetic flux density)
H 磁场强度(A·m-1)(magnetic field strength)
0 真空磁导率,4×l0-7(H/m) (亨/米)
介质 B0(HM )HM: 磁化强度
h
3
(4)磁化率 χ(magnetic susceptibility)
➢ 不具“永久磁矩” :原子各层都充满电子(电子自旋磁矩相互抵消)
如锌(3d104s2),具有各层都充满电子的原子结构,其电子磁矩相互 抵消,因而不显磁性。
h
5
(2)“交换”作用
铁具有很强的磁性,这种磁性称为铁磁性。铁磁性除与电子结构有关外, 还决定于晶体结构。
处于不同原子间的、未被填满壳层上的电子发生特殊的相互作用,这种 相互作用称为“交换”作用。这是因为在晶体内,参与这种相互作用的电子 已不再局限于原来的原子,而是“公有化”了,原子间好象在交换电子,故 称为“交换”作用。
由这种“交换”作用所产生的“交换能”J与晶格的原子间距有密切关系。 当距离很大时,J接近于零,随着距离的减小,相互作用有所增加。 J为正值,就呈现出铁磁性,J为负值,就呈现出反铁磁性。
a:原子间距 D:未被填满的电子壳层直h 径
a/D >3时 交换能为正值, 为铁磁性 a/D <3时 交换能为负值, 为反铁磁性

第03章 磁学性能

第03章 磁学性能
37
不变,故ω ,2 K = mr ω m和r不变,故ω
增大,使P 增大,即产生的附加磁矩△ 的方向与外H 增大,使Pl 增大,即产生的附加磁矩△P的方向与外H方
K = mr ω m和r不变,故ω 不变,故ω ,2
减小,使P 减小,也等于产生的附加磁矩△ 减小,使Pl 减小,也等于产生的附加磁矩△P的方向与外
7
磁场中某方向的磁矩所具有的静磁能为
上式是分析磁体相互作用, 上式是分析磁体相互作用,以及在磁场中所处状 态是否稳定的依据。 态是否稳定的依据。
8
二、磁化强度(magnetization)和磁化率(magnetic
susceptibility)
一个物体在外磁场中被磁化的程度, 一个物体在外磁场中被磁化的程度,用单位体积 内磁矩的多少来衡量, 内磁矩的多少来衡量,称之为磁化强度
10
磁化率三种表示形式: 表示单位体积的磁化率, χV表示单位体积的磁化率, 表示每摩尔的磁化率, χA表示每摩尔的磁化率, 表示单位质量(每克)的磁化率。 χg表示单位质量(每克)的磁化率。 不同磁介质其磁化曲线不同,曲线上任意一点都 对应着材料的某种磁化状态,它与坐标原点连线 对应着材料的某种磁化状态,它与坐标原点连线 的斜率即表示材料在该磁场下的磁化率。 的斜率即表示材料在该磁场下的磁化率。
2
根据磁质被磁化后产生的附加磁场 磁质分为三类: 磁质分为三类:
的大小和方向, 的大小和方向,可将
(1) 抗磁质 凡是附加磁场 相反, 相反, 强度略微地减弱的磁质。 强度略微地减弱的磁质。 (2) 顺磁质 凡是附加磁场 向相同, 向相同, (3) 铁磁质 凡是附加磁场 向相同, 向相同,
与外磁场
32
33
当原子中某一电子层被电子填满时, 当原子中某一电子层被电子填满时,该电子层的电子 云在空间的分布呈球形对称, 云在空间的分布呈球形对称,这时其电子循轨磁矩互 相抵消,其电子自旋磁矩也互相抵消, 相抵消,其电子自旋磁矩也互相抵消,即该层的电子 磁矩对原子磁矩没有贡献。 磁矩对原子磁矩没有贡献。 若原子中的所有电子层全被电子填满, 若原子中的所有电子层全被电子填满,如惰性元素则 不呈现原子磁矩,即该原子不存在固有磁矩。 不呈现原子磁矩,即该原子不存在固有磁矩。 Ar以及某些 以及某些离 He, Ne, Ar以及某些离子材料

第三章;磁学性能(材料的磁化特征及其基本参数)

第三章;磁学性能(材料的磁化特征及其基本参数)
强度的比值。 μr称为相对磁导率
四、磁化曲线和磁滞回线
磁导率和磁场的关系
磁滞:指铁磁材料的磁性状态变化时,磁化 强度滞后于磁场强度,它的磁通密度B与磁场 强度 H之间呈现磁滞回线关系 剩磁Br:磁滞回线中,外磁场 减小为零时, 铁磁质所具有的磁感应强度 矫顽力Hc:为使剩磁降低为零而施加的反向 外磁场强度 磁致损耗:铁磁材料在磁化过程中由磁滞现 象引起的能量损耗。经一次循环,磁滞损耗 等于磁滞回线的面积
一个环形电流的磁矩:Pm=ΙS Ι环形电流的强度, S是环形所包围的面积。
当有外加磁场后,环形电流的磁矩沿磁场规律排 列,在宏观上显示磁性。用磁化强度衡量物质磁 性强弱及磁化状态
磁化强度
磁化强度:单位体积的总磁矩
磁极化强度
材料受磁化后呈规律排列,宏观上显示磁极 (南北极),把微观的磁分子称为磁偶极 子,宏观所表示出的磁矩称为磁偶极矩jm
第三章 材料的磁学性能
材料的磁化特征及其基本参数
一、磁化现象及磁化强度 磁性与物质的微观结构相关,决定于原子
结构、原子间的相互作用,例如:键结合和 晶体结构等。 磁性是微观结构表现出来的一种宏观现象。 研究磁性也是研究材料物质内部微观结构 的方法。
磁化现象及磁化强度
一切物质都具有磁性,任何空间都存在磁场,只是强弱不同而已。 根本原因:
• 磁----电 • 磁现象的本质是由于带电物体运动的结果。 • 原子中电子的绕核运动、电子本身的自旋,都会产生磁场。 • 一个分子内部全部电子运动产生的磁场的总和叫做分子磁
场。 • 物质在磁场中,由于受到磁作用而呈现一定磁性称为磁化 • 凡是能被磁场磁化的物质称为磁介质(磁质)。
当物质处于磁场中时,会使磁场发生变化,不 同的物质所引起的磁场变化不一样。

材料性能----磁学性能


e 2 m l 0.5er 2 i F m r 2 e 2r He r 2 2 F F m r( ) F H m l er H 4m
2 2
将左手掌摊平,让磁力线穿过手掌心,四 指表示正电荷运动方向,则和四指垂直的 大拇指所指方向即为洛伦兹力的方向。 运动电荷受到磁场的作用力,叫做洛伦兹力Δ F
基本磁学性能
Tc,居里温度 TN,奈尔温度
第一节
三 抗磁性与顺磁性
基本磁学性能
材料被磁化后,磁化矢量与外加磁场方向相反 的称为抗磁性 材料被磁化后,磁化矢量与外加磁场方向相同的 称为顺磁性 磁化曲线 磁化强度与磁场强度之间均呈直线关系 存在磁化可逆性
第一节
抗磁性
基本磁学性能
材料的抗磁性来源于电子循轨运动时受外加磁场作用所产生的抗磁矩 (1) 电子作轨道运动
程度可以用原子固有磁矩(矢量)的总和表示。单位体积磁矩称为磁化
强度M
P M
V
m
磁化强度M(附加磁场强度H’)不仅与外加磁场强度有关,也与物质本
性,磁化率(χ
)有关,
即:
M H B (H M) ( )H 0 r H H 01 0
第一节
二 物质磁性的分类
第一节
顺磁性
基本磁学性能
产生条件:原子的固有磁矩不为零
顺磁物质磁化率是抗磁物质磁化率的1-1000倍,顺磁物质中抗磁性被掩盖了。
第一节
居里定律
基本磁学性能
少数物质原子的磁化率与温度成反比(即服从居里定律)

C T
相当一部分固体顺磁物质,原子的磁化率与温度的关系由居里-外斯 (Curie-Weiss)定律表示
180o畴壁:一个易磁化轴上有两个相反的磁化方向 90o 畴壁:易磁化轴互相垂直

第二章 磁学性能 第一讲


U m B
磁场强度
根据产生磁场的方式,有两种表达式:
电流产生的磁场
一个每米有N匝线圈,通以电流强度为i (A)的无线 长螺线管轴线中央的磁场强度。
H Ni
( A/m)
磁铁在其周围产生的磁场
极强为m1的磁极,在距离 r 处产生的磁场强度是 单位极强 (m2=1wb) 在该处所受到的作用力 m1 F H k 2 ( A/m) m2 r
Ek K 0 K1 ( 2 2 2 2 2 2 ) K 2 2 2 2
(6.24)
K1、K2为晶体各向异性能常数。 铁在20℃时的值约为4.2×104J/m3,钴的值 为4.1×105J/m3,镍的值为-0.34×104J/m3。
磁性基本量总结
1.磁学基本量:
2.磁性参数与介电参数的比较
A/m
磁 感 应 强 度
特斯拉:T
1)H(A/m) ---E (V/m) : 导致极化的外部驱动力的量度; 2)B ( VS/m2) ----P (C/m2):材料对外部作用场的响应的量度; 3) X() ----------- Xe 无量纲,描述材料对外部作用场的响应; 4) μ0---------------ε0 建立材料的相应参数和尺度参比量
TN
T
四、铁磁性 (1)很容易被磁化到饱和(只 需要很小的磁场) (2) f > 0,且为101~106 (3)也存在一个临界温度TC
(4)M-H呈非线性关系
代表性物质:11种金属元素和 众多的化合物和合金
铁磁性
X>>1, 在较低的温度下,铁磁物质中相邻原子磁偶极矩之间的交 换作用,其强度可以克服热起伏的影响,结果没有外部磁场的作用下, 相邻的偶极子也彼此整齐的排列。 例:纯铁--- B0=10-6T时,其磁化强度M=104A/m FeSO4(顺磁性), B0=10-6T时,其磁化强度M=0.001A/m

材料物理性能-第6章-磁学性能

1) 正常顺磁体,其 随温度变化符合 l/T关系,
如,金属铂、钯、奥氏体不锈钢、稀土金属等。
2) 与温度无关的顺磁体,例如锂、钠、钾、铷
等金属。
铁磁体 在较弱的磁场作用下,就能产生很大的磁化强度。
是很大的正数,且与外磁场呈非线性关系变化。
具体金属有铁、钴、镍等。 铁磁体在温度高于某临界温度后变成顺磁体。 此临界温度称为居里温度或居里点,常用Tc表示。
式中 m 称为磁化率。
2. 磁学物理量和电学物理量的对比记忆
一、电极化:在外电场作用下,介质内的质点(原子、分子、 离子)正负电荷重心的分离,使其转变成偶极子的过程。
或在外电场作用下,正、负电荷尽管可以逆向移动,但它们 并不能挣脱彼此的束缚而形成电流,只能产生微观尺度的相 对位移并使其转变成偶极子的过程。
设铁磁体原来的尺寸为l0 ,放在磁场中磁化时,其尺寸变 为 l ,长度的相对变化为,
原子的磁矩
《材料物理性能》——材料的磁性能 原子的磁矩
原子的磁矩
《材料物理性能》——材料的磁性能 原子的磁矩
《材料物理性能》——材料的磁性能 原子的磁矩
《材料物理性能》——材料的磁性能
抗磁性来源 理论研究证明,在外磁场作用下,一个电子的轨
道运动和自旋运动以及原子核的自旋运动都会发生变 化,产生一附加磁矩m。
二、磁化:是指在物质中形成了成对的N、S磁极。
三、电荷——磁极,电荷量——磁极强度
两个磁极间的相互作用力与两个电荷间的相互作用力表达式 相似。所不同的是公式中一个有真空介电常数o ,一个为真 空磁导率 o
偶极子:构成质点的正负电荷沿 电场方向在有限范围内短程移动, 形成一个偶极子
E -q
电偶极矩 :=ql

材料的磁学性能

材料的磁学性能
材料的磁学性能是指材料在外加磁场下的磁化特性,包括磁化强度、磁导率、磁化曲线等。

磁学性能对于材料的应用具有重要的意义,尤其是在电子、通信、医疗等领域。

本文将从磁性材料的基本概念、磁性材料的分类、磁性材料的应用等方面进行介绍和分析。

磁性材料是指在外加磁场下会产生磁化现象的材料。

根据材料在外加磁场下的磁化特性,可以将磁性材料分为铁磁性材料、铁素磁性材料、铁氧体材料和软磁性材料等几类。

铁磁性材料在外加磁场下会产生明显的磁化现象,具有较高的磁导率和磁化强度,主要用于制造电机、变压器等电器设备。

铁素磁性材料具有较高的电阻率和磁导率,主要用于制造电感元件、磁芯等。

铁氧体材料具有较高的磁导率和磁化强度,主要用于制造微波器件、磁记录材料等。

软磁性材料具有较低的矫顽力和磁导率,主要用于制造变压器、电感器等。

磁性材料在电子、通信、医疗等领域具有广泛的应用。

在电子领域,磁性材料主要用于制造电感元件、变压器、磁芯等,用于电源、通信、计算机等设备中。

在通信领域,磁性材料主要用于制造微波器件、天线等,用于无线通信、卫星通信等设备中。

在医疗领域,磁性材料主要用于制造医疗设备、磁共振成像设备等,用于诊断、治疗等用途。

总之,磁性材料的磁学性能对于材料的应用具有重要的意义。

通过对磁性材料的基本概念、分类和应用的介绍和分析,可以更好地了解磁性材料的特性和用途,为相关领域的科研和生产提供参考和指导。

希望本文能够对读者有所帮助,谢谢阅读。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 材料的磁学性能
第1节 材料的磁化及有关参数
1.磁化现象与磁化强度 磁化:物质在磁场中受磁场的作用呈现一定磁性的现象。 物质在磁场中被磁化,它所占据的空间磁场强度是否变化(为什么?) 不同的物质所引起的磁场变化不同,如空气会使磁场略有增强,而铁会
使磁场强烈增强(磁铁吸引铁块),铜则会使磁场减弱(微弱排斥)。
4.铁磁性材料的磁化曲线和磁滞回线
3)铁磁性材料的退磁: 磁滞回线的起点不是饱和点,而在饱和点以下时,H减小时,Mr和Hc 减小,即磁滞回线变得短而窄,若施加的交变磁场幅值H趋于0时,则回 线将成为趋于坐标原点的螺线,直至交变磁场的H =0,铁磁体将完全退 磁。
χ称为物质的磁化率,即单位外磁场强度下材料的磁化强度。它的大小
反映了物质磁化的难易程度,是材料的一个重要的磁参数。同时,它也是 物质磁性分类的主要依据。
基本磁化曲线:不同磁介质其磁化曲线不同,曲线上任意一点都对应
着材料的某种磁化状态,它与坐标原点连线的斜率即表示材料在该磁场下 的磁化率。
磁化率三种表示形式: χV表示单位体积的磁化率, χA表示每摩尔的磁
4. 铁磁性材料的磁化曲线和磁滞回线
2)铁磁性材料的磁滞回线: 铁磁性材料从饱和磁化状态逐渐降低H时,M不再沿原来的基本磁化 曲线降低,而是降低的慢得多,当H降至0时,M≠0,而保留一定的值Mr, Mr称为剩余磁化强度,这种现象称为剩磁现象。要使M降至0,必须施加 一反向磁场-Hc, Hc称为磁矫顽力。继续增加反向磁场至-Hs,磁化强 度达到-Ms。从- Ms改为正向磁场,随H的增加,M沿另一曲线逐渐增 大至Ms。 可见,整个过程中M的变化总是落后于H的变化,这种现象称为磁滞效 应。 由于磁滞效应的存在,磁化一周,得到一关于原点对称的闭合曲线, 称为磁滞回线。是铁磁性材料的重要特征之一。 磁滞现象表明,铁磁性材料的磁化过程存在着不可逆过程,磁化过程 要消耗能量。磁滞回线包围的面积相当于磁化一周所产生的损耗,称为磁 滞损耗。
4. 铁磁性材料的磁化曲线和磁滞回线
1)磁化曲线 对原先不存在宏观磁性的材料,施加一由0逐渐增大的磁场,所得到的 M-H曲线,即材料磁化强度随外磁场变化的曲线。 铁磁性材料的磁化曲线: M、 B、 μ随 H变化曲线。 微弱H阶段:B、M随H的增大缓慢增加,M与H近似呈直线关系,磁化 可逆。 H继续增大: B、M随H急剧增加,μ增加很快并出现极大值,即达到最 大磁导率μmax ,过程不可逆(去掉H后,仍保持部分磁化)。 H再进一步增大: B、M随H增加变缓,磁化进行越来越困难, 当H达 到Hs时, μ逐渐趋近于μ0,M达到饱和值Ms。Ms称为饱和磁化强度,对 应的磁感应强度称为饱和磁感应强度Bs。 H> Hs时,M不变,B继续缓慢 增大。 所有铁磁性材料的磁化曲线都有以上规律,只是各阶段区间、Ms大小 及上升的陡度不同。 铁磁性材料从完全退磁状态到饱和之前的磁化过程称为技术磁化。 起始磁导率μi : H=0时的磁导率。
χ为很大的正变数,约在10~106数量级,且不大的H就能产生很大的M,在磁场 中被强烈磁化,受强大的吸力,如铁、钴、镍等。其M-H 、 χ-H曲线? 5)亚铁磁体
类似铁磁体,但χ值没有铁磁体大,如磁铁矿(Fe3O4)等。
3. 磁导率
磁感应强度(B):通过磁场中某点,垂直于磁场方向单位面积的磁
力线数。单位:特斯拉。
磁极化强度(J):单位体积的磁偶极矩的矢量和(∑jm/V)。
材料内一个磁矩为Pm的电流环可看成是一个偶极矩为jm=μ 0Pm的磁偶
极子,故有:J=μ0M μ0-真空磁导率(
)。
2. 磁化率与物质磁性的分类
研究材料磁性的最基本的任务是确定材料的磁化强度M与外磁场强度H
和温度T的关系,在一定温度下,定义:M=χH
化率,χg表示单位质量(每克)的磁化率。
M
铁磁性材料
根据磁化率符号和大小,可把磁介质分为五类。
亚铁磁性材料
顺磁性材料
反铁磁性材料
0
H 抗磁性材料
2. 磁化率与物质磁性的分类
1)抗磁体 χ为甚小负常数,约在10-6数量级,即M与H方向相反,在磁场中使磁场稍减弱,
受微弱斥力,约有一半的简单金属是抗磁体。分为: (1)“经典”抗磁体,χ 不随T变化,如铜、银、金、汞、锌等。 (2)反常抗磁体,χ 随T变化,为前者10~100倍,如铋、镓、锑、锡等。 2)顺磁体
磁介质(或磁质):能被磁场磁化的物质。 实际上,所有的物质都是磁介质。 磁化强度:磁介质内磁矩矢量和与ΔV 之比。 物质磁化理论有两种观点:分子电流观点和等效磁荷观点。
●分子电流观点: 物质中的每个分子中都存在环形电流(分子中原子、离子核外电子循
规、自旋运动,核子自旋运动),每个环形电流都将产生磁场。 无外磁场时,各分子环流取向杂乱无章,作用抵消,不显磁性; 施加外磁场后,分子电流的磁矩在磁场场作用下趋于定向排列,而呈
在真空中:
-真空磁导率。
磁场中有磁介质时(非真空):磁介质被磁化,使该处的磁场发生变 化,则,总磁感应强度:
称为附加磁场强度,其值等于磁化强度M。令来自称为相对磁导率,无纲量。
称为介质的磁导率(绝对磁导率),反应磁感应强度随 外磁场的变化速率,单位与 相同,为亨/米 。其大小与磁介质和外加 磁场强度有关。
现出宏观磁性。 磁化强度(M):磁介质磁化单位体积产生的总磁矩(单位体积内环电
流磁矩矢量和∑Pm/V)。衡量物质的磁化强弱和状态(强度和方向)。
●等效磁荷观点:
把材料的磁分子看成磁偶极子,末磁化时各磁偶极子取向呈无序状态,
其偶极矩的矢量和为0,不显磁性;当施加外磁场后,偶极子受外磁场
作用而转向外场方向,使材料呈现宏观磁性。
χ为正常数,约为10-3~10-6数量级,即M与H方向相同,在磁场中使磁场稍增 强,受微弱引力,分为:
(l)正常顺磁体,χ 随T变化,且符合与T反比关系,如铂、钯、奥氏体不锈钢、 稀土金属等。
(2)χ 与T无关的顺磁体,如锂、钠、钾、铷等。 3)反铁磁体
χ是甚小的正常数,当T高于某个温度时(尼尔温度TN),转换为顺磁体,T- χ曲线?如α-Mn、铬、氧化镍、氧化锰等。 4)铁磁体
相关文档
最新文档