管道局部阻力损失

合集下载

管道阻力损失计算

管道阻力损失计算

管道的阻力计算风管内空气流动的阻力有两种,一种是由于空气本身的粘滞性及其与管壁间的摩擦而产生的沿程能量损失,称为摩擦阻力或沿程阻力;另一种是空气流经风管中的管件及设备时,由于流速的大小和方向变化以及产生涡流造成比较集中的能量损失,称为局部阻力。

通常直管中以摩擦阻力为主,而弯管以局部阻力阻力为主(图6-1-1)。

图6-1-1 直管与弯管(一)摩擦阻力1.圆形管道摩擦阻力的计算根据流体力学原理,空气在横断面形状不变的管道内流动时的摩擦阻力按下式计算:(6-1-1)对于圆形风管,摩擦阻力计算公式可改为:(6-1-2)圆形风管单位长度的摩擦阻力(又称比摩阻)为:(6-1-3)以上各式中λ——摩擦阻力系数;v——风秘内空气的平均流速,m/s;ρ——空气的密度,kg/m3;l——风管长度,m;Rs——风管的水力半径,m;f——管道中充满流体部分的横断面积,m2;P——湿周,在通风、空调系统中即为风管的周长,m;D——圆形风管直径,m。

摩擦阻力系数λ与空气在风管内的流动状态和风管管壁的粗糙度有关。

在通风和空调系统中,薄钢板风管的空气流动状态大多数属于紊流光滑区到粗糙区之间的过渡区。

通常,高速风管的流动状态也处于过渡区。

只有流速很高、表面粗糙的砖、混凝土风管流动状态才属于粗糙区。

计算过渡区摩擦阻力系数的公式很多,下面列出的公式适用范围较大,在目前得到较广泛的采用:(6-1-4)式中K——风管内壁粗糙度,mm;D——风管直径,mm。

进行通风管道的设计时,为了避免烦琐的计算,可根据公式(6-1-3)和(6-1-4)制成各种形式的计算表或线解图,供计算管道阻力时使用。

只要已知流量、管径、流速、阻力四个参数中的任意两个,即可利用线解图求得其余的两个参数。

线解图是按过渡区的λ值,在压力B0=101.3kPa、温度t0=20℃、宽气密度ρ0=1.204kg/m3、运动粘度v0=15.06×10-6m2/s、管壁粗糙度K=0.15mm、圆形风管等条件下得出的。

尼古拉兹实验、工业管道方程、局部阻力损失

尼古拉兹实验、工业管道方程、局部阻力损失

工业管道紊流阻力系数的计算公式
管流的沿程损失
`
在层流区: 在层流区:
64 λ= Re
当2000<Re<4000时称为临界区或临界过度区: 2000<Re<4000时称为临界区或临界过度区: <Re<4000时称为临界区或临界过度区
λ = 0.0025 3 Re
紊流区包括水力光滑区,过渡区(又称紊流过渡区)和阻力平 紊流区包括水力光滑区,过渡区(又称紊流过渡区) 方区: 方区:
p1 p2 α1V1 α 2V2 h j = ( z1 + ) ( z2 + )+ ρg ρg 2g 2g
2 2
V2 α V α 2V2 h j = β (V2 V1 ) + g 2g 2g
2 1 1
2
V2 α V α 2V2 h j = β (V2 V1 ) + g 2g 2g
2 1 1
1
2.51 K = 2 lg + λ 3.71d Re λ
工程中,还常采用适合于一定管材,一定阻力区的专用公式: 工程中,还常采用适合于一定管材,一定阻力区的专用公式:
1.阿里特苏里公式: 1.阿里特苏里公式: 阿里特苏里公式 2.谢维列夫公式 2.谢维列夫公式 对于新钢管: 对于新钢管: 水力光滑区 过渡区( 过渡区(
V
V
6
)
λ = K1
0.77 Re0.284
过渡区( ν 过渡区(
< 2.7 ×106
)
0.75 ν 6 λ = K1 0.284 0.55 ×10 + Re V
)
λ = K1
0.0134 d 0.284
0.284

通风管道局部损失(WK).

通风管道局部损失(WK).

当合流三通内直管的气流速度大于 支管的气流速度时,会发生直管气流引 射支管气流的作用,有时支管的局部阻 力出现负值,同样直管的局部阻力也会 出现负值,但不可能同时出现负值。为 避免引射时的能量损失,减小局部阻力, 如图5.12,应使
v1≈v2≈v3, 即F1+ F2 =F3,以避 免出现这种现象。
图5.6 矩形弯管
图5.7 内外弧型矩形弯管 导流片的设置
国家标准设计图集各种导流叶片做法
表5.2 内外弧型矩形弯管导流片片数及设置位置
图5.8 内弧、内斜线外直角和内外直角矩形弯管导流片的设置 表5.3 单弧形或双弧形导流片圆弧半径及片距( mm)
2.变径尽量用渐扩、渐缩。(图5.9)
3.管道 与风机接管 处避免局部 涡流。(图 5.10)
图5.12 合流三通
5.风管的进、出口:气流流出时将 流出前的能量全部损失掉,损失值等于 出口动压,因此可采用渐扩管(扩压管) 来降低出口动压损失。图5.13所示,空
气进入风管会产生涡流而 造成局部阻力,可采取措施 减少涡流,降低其局部阻力。
图5.14 风管渐扩进口实物
图5.13 风管进口
局部损失
α=8~10 °(<45°)
图5.9 渐扩管内的空气流动
D叶轮直径
图5.10 风机进出口的管道连接
4.三通的局部阻力大小与断面形 状、两支管夹角、支管与总管的截面比 有关,为减小三通的局部阻力,应尽量 使支管与干管连接的夹角不超过30°, 如图5.12所示。
图5.11 三通支管和干管的连接
图5.12 合流三通
三通、变径、风帽、阀门等。
局部损失计算公式
式中
Pj

v 2
2
Pa

管道压力损失计算

管道压力损失计算

管道总阻力损失hw=∑hf+∑hj,hw—管道的总阻力损失(Pa);∑hf—管路中各管段的沿程阻力损失之和(Pa);∑hj—管路中各处局部阻力损失之和(Pa)。

hf=RL、hf—管段的沿程损失(Pa);R—每米管长的沿程阻力损失,又称比摩阻(Pa/m);L—管段长度(m),R的值可在水力计算表中查得。

也可以用下式计算,hf=[λ×(L/d)×γ ×(v^2)]÷(2×g),L—管段长度(m);d—管径(m);λ—沿程阻力因数;γ—介质重度(N/m2);v—断面平均流速(m/s);g—重力加速度(m/s2)。

管段中各处局部阻力损失hj=[ζ×γ ×(v^2)]÷(2×g),hj—管段中各处局部阻力损失(Pa);ζ—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。

(引自《简明管道工手册》.P.56—57)管道压力损失怎么计算其实就是计算管道阻力损失之总和。

管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。

局阻系数可以根据附件种类,开度大小通过查手册得出,动压和流速的平方成正比。

2、沿程阻力是比摩阻乘以管道长度,比摩阻由管道的管径,内壁粗糙度,流体流速确定总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。

它的计算复杂、分类繁多,误差也大。

如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启著的“化工工艺算图手册”查取。

管道主要损失分为沿程损失和局部损失。

Δh=ΣλL/d*(v²/2g)+Σξv²/2g。

其中的λ和ξ都是系数,这个是需要在手册上查询的。

L-------管路长度。

d-------管道内径。

v-------有效断面上的平均流速,一般v=Q/s,其中Q是流量,S是管道的内截面积。

(完整版)管道内的局部阻力及损失计算

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。

此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。

这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。

因此一般的管路系统中,既有沿程损失,又有局部损失。

4.4.1 局部损失的产生的原因及计算一、产生局部损失的原因产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。

这里结合几种常见的管道来说明。

()()图4.9 局部损失的原因对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。

进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。

在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。

另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。

局部损失就发生在旋涡开始到消失的一段距离上。

图4.9()给出了弯曲管道的流动。

由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。

在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。

综上所述,碰撞和旋涡是产生局部损失的主要原因。

当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。

(完整版)管道内的局部阻力及损失计算

(完整版)管道内的局部阻力及损失计算

第四节管道内的局部阻力及损失计算在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。

此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。

这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。

因此一般的管路系统中,既有沿程损失,又有局部损失。

4.4.1 局部损失的产生的原因及计算一、产生局部损失的原因产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。

这里结合几种常见的管道来说明。

()()图4.9 局部损失的原因对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。

进一步随着流体流动截面面积的不断的扩张,直到 2 截面处流体充满了整个管截面。

在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。

另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。

局部损失就发生在旋涡开始到消失的一段距离上。

图4.9()给出了弯曲管道的流动。

由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。

在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。

综上所述,碰撞和旋涡是产生局部损失的主要原因。

当然在 1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。

管道压力损失计算

管道压力损失计算

管道压力损失计算管道总阻力损失hw=∑hf+∑hj,hw—管道的总阻力损失(Pa);∑hf—管路中各管段的沿程阻力损失之和(Pa);∑hj—管路中各处局部阻力损失之和(Pa)。

hf=RL、hf—管段的沿程损失(Pa);R—每米管长的沿程阻力损失,又称比摩阻(Pa/m);L—管段长度(m),R的值可在水力计算表中查得。

也可以用下式计算,hf=[λ×(L/d)×γ ×(v^2)]÷(2×g),L—管段长度(m);d—管径(m);λ—沿程阻力因数;γ—介质重度(N/m2);v—断面平均流速(m/s);g—重力加速度(m/s2)。

管段中各处局部阻力损失hj=[ζ×γ ×(v^2)]÷(2×g),hj—管段中各处局部阻力损失(Pa);ζ—管段中各管件的局部阻力因数,可在管件的局部阻力因数表中查得。

(引自《简明管道工手册》.P.56—57)管道压力损失怎么计算其实就是计算管道阻力损失之总和。

管道分为局部阻力和沿程阻力:1、局部阻力是由管道附件(弯头,三通,阀等)形成的,它和局阻系数,动压成正比。

局阻系数可以根据附件种类,开度大小通过查手册得出,动压和流速的平方成正比。

2、沿程阻力是比摩阻乘以管道长度,比摩阻由管道的管径,内壁粗糙度,流体流速确定总之,管道阻力的大小与流体的平均速度、流体的粘度、管道的大小、管道的长度、流体的气液态、管道内壁的光滑度相关。

它的计算复杂、分类繁多,误差也大。

如要弄清它,应学“流体力学”,如难以学懂它,你也可用刘光启著的“化工工艺算图手册”查取。

管道主要损失分为沿程损失和局部损失。

Δh=ΣλL/d*(v²/2g)+Σξv²/2g。

其中的λ和ξ都是系数,这个是需要在手册上查询的。

L-------管路长度。

d-------管道内径。

v-------有效断面上的平均流速,一般v=Q/s,其中Q是流量,S是管道的内截面积。

给水管道阻力损失估算

给水管道阻力损失估算

给水管道阻力损失估算
给水管道阻力损失的估算是工程设计中非常重要的一项计算。

管道的阻力损失取决于多个因素,包括管道的直径、长度、流体的流速、流体的性质以及管道内壁的粗糙度等。

下面我将从不同角度来回答这个问题。

首先,管道的阻力损失可以通过达西-魏布努斯公式来估算,该公式为h_f = f (L/D) (V^2/2g),其中h_f为单位长度管道的阻力损失,f为摩擦阻力系数,L为管道长度,D为管道直径,V为流体流速,g为重力加速度。

摩擦阻力系数f可以通过经验公式或图表查得,而流速V可以根据设计流量和管道截面积计算得出。

其次,对于复杂的管道系统,可以使用计算机辅助设计软件进行模拟计算。

这些软件可以考虑更多的因素,如管道的布局、管道材质、流体的温度和压力等,从而更准确地估算阻力损失。

此外,还可以通过实验测定的方法来估算管道的阻力损失。

通过在实验室或现场设置实验装置,测量流体在管道中的压力损失,从而得出阻力损失的数据。

最后,需要指出的是,在进行阻力损失估算时,需要充分考虑管道系统的实际工况,如流体的变化流速、流量以及管道的局部阻力等因素,以保证估算结果的准确性和可靠性。

综上所述,给水管道阻力损失的估算涉及多个方面,需要综合考虑各种因素,通过理论计算、软件模拟、实验测定等方法来获得准确的结果,以保证管道系统的安全稳定运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章管道内的粘性流动与管路计算基础上一节下一节第四节管道内的局部阻力及损失计算在实际的管路系统中,不但存在上一节所讲的在等截面直管中的沿程损失,而且也存在有各种各样的其它管件,如弯管、流道突然扩大或缩小、阀门、三通等,当流体流过这些管道的局部区域时,流速大小和方向被迫急剧地发生改变,因而出现流体质点的撞击,产生旋涡、二次流以及流动的分离及再附壁现象。

此时由于粘性的作用,流体质点间发生剧烈的摩擦和动量交换,从而阻碍着流体的运动。

这种在局部障碍物处产生的损失称为局部损失,其阻力称为局部阻力。

因此一般的管路系统中,既有沿程损失,..又有局部损失。

4.4.1 局部损失的产生的原因及计算一、产生局部损失的原因产生局部损失的原因多种多样,而且十分复杂,因此很难概括全面。

这里结合几种常见的管道来说明。

( ) ( )图4.9 局部损失的原因. 对于突然扩张的管道,由于流体从小管道突然进入大管道如图 4.9 ()所示,而且由于流体惯性的作用,流体质点在突然扩张处不可能马上贴附于壁面,而是在拐角的尖点处离开了壁面,出现了一系列的旋涡。

进一步随着流体流动截面面积的不断的扩张,直到2 截面处流体充满了整个管截面。

在拐角处由于流体微团相互之间的摩擦作用,使得一部分机械能不可逆的转换成热能,在流动过程中,不断地有微团被主流带走,同时也有微团补充到拐角区,这种流体微团的不断补充和带走,必然产生撞击、摩擦和质量交换,从而消耗一部分机械能。

另一方面,进入大管流体的流速必然重新分配,增加了流体的相对运动,并导致流体的进一步的摩擦和撞击。

局部损失就发生在旋涡开始到消失的一段距离上。

图4.9()给出了弯曲管道的流动。

由于管道弯曲,流线会发生弯曲,流体在受到向心力的作用下,管壁外侧的压力高于内侧的压力。

在管壁的外侧,压强先增加而后减小,同时内侧的压强先减小后增加,这样流体在管内形成螺旋状的交替流动。

综上所述,碰撞和旋涡是产生局部损失的主要原因。

当然在1-2之间也存在沿程损失,一般来说,局部损失比沿程损失要大得多。

在测量局部损失的实验中,实际上也包括了沿程损失。

二、局部损失的计算如前所述,单位重量流体的局部能量损失以表示.式中,—局部损失(阻力)系数,是一个无量纲的系数,它的大小与局部障碍物的结构形式有关,由实验确定。

—管中的平均速度(通常指局部损失之后的速度)。

局部压强损失为式中,—流经局部障碍物前后的压强差(或总压差)。

1.突然扩张管道的局部损失计算由于产生局部损失的情况多种多样以及其流动情况的复杂性,所以对于大多数情况局部损失只能通过实验来确定。

只有极少数情况下的局部损失可以进行理论计算。

对于突然扩大的情况,可以通过理论推导得到局部损失的计算公式。

流体在如图 4.9 ()所示的突然扩张的管道内流动,由于流体的碰撞、惯性和附面层的影响,在拐角区形成了旋涡,引起能量损.失。

由图可见,流体到2截面充满整个管道。

取1-1和2-2截面以及侧表面为控制体,并设截面1处的面积为,参数为;截面2处的面积为,参数为,则根据柏努力方程,有于是局部损失为对1-1和2-2截面运用连续方程,即对所取得控制面应用动量方程,考虑到1-1和2-2截面之间的距离比较短,通常可以不计侧表面上的表面力,于是动量方程可写为.将动量方程和连续方程代入的表达式得令,,则局部损失可写为(4.35)式中,分别表示局部损失(阻力)系数。

式(4.35)表明,用公式计算局部损失时,采用的速度可以是损失前的也可以是损失后的,但局部损失系数也不同。

由式(4.35)及局部损失系数的表达式可以看出,突然扩大的局部损失系数仅与管道的面积比有关而与雷诺数无关,实际上根据实验结果可知,在雷诺.数不很大时,局部损失系数随着雷诺数的增大而减小,只有当雷诺数足够大(流动进入阻力平方区)后,局部损失系数才与雷诺数无关。

下面给出的几种比较常见的局部损失系数的计算,且一般情况下,局部损失系数均指对应发生损失后的速度给出的。

2.渐扩管流体流过逐渐扩张的管道时,由于管道截面积的逐渐扩大,使得流速沿流向减小,压强增高,且由于粘性的影响,在靠近壁面处,由于流速小,以至于动量不足以克服逆压的倒推作用,因而在靠近壁面处出现倒流现象从而引起旋涡,产生能量损失。

渐扩管的扩散角越大,旋涡产生的能量损失也越大,.越小,要达到一定的面积比所需要的管道也越长,因而产生的摩擦损失也越大。

所以存在着一个最佳的扩散角。

在工程中,一般取,其能量损失最小。

在左右损失最大。

渐扩管的局部损失系数为(4.36)3.突然缩小管道..图4.10 突然缩小的管道流体在突然缩小的管道中流动如图 4.10 所示,当管道的截面积突然收缩时,流体首先在大管的拐角处发生分离,形成分离区,然后在小管内也形成一个分离区。

最后才占据管道的整个截面。

局部损失系数的确定可以根据实验确定。

对于不可压缩流动,实验结果为(4.37)在特殊情况下,,即流体从一个大容器进入管道且进口处具有尖锐的边缘时,局部损失系数为。

若将进口处的尖锐边缘改成圆角后,则局部损失系数随着进口的圆滑程度而大大降低,对于圆形匀滑的边缘;入口极圆滑时。

4.渐缩管为了减小突然缩小的流动损失,通常采用渐缩管。

在渐缩管中,流线不会脱离壁面,因此流动阻力主要是沿流程的摩擦引起的。

对应于缩小后的流速的局部损失系数为,由此可见,在渐缩管中的流动损失很小。

5.弯管.图4.11 流体在弯管内的流动在弯管内的流动由于流体的惯性,流体在流过弯管时内外壁面的压力分布不同而流线发生弯曲,流体受到向心力的作用,这样,弯管外侧的压强就高于内侧的压强如图4.11 所示。

图中区域内,流体压强升高,点以后,流体的压强渐渐降低。

与此同时,在弯管内侧的区域内,流体作增速降压的流动,区域内是增压减速流动。

在和这两个区域内,由于流动是减速增压的,会引起流体脱离壁面,形成漩涡区,造成损失。

此外,由于粘性的作用,管壁附近的流体速度小,在内外压力差的作用下,会沿管壁从外侧向内侧流动。

同时,由于连续性,管中心流体会向外侧壁面流去。

从而形成一个双旋涡形状的横向流动,整个流动呈螺旋状。

横向流动的出现,也会引起流体能量的损失。

弯管的局部损失系数可按下列经验公式计算:(4.38a)系数的计算式为.(4.38b)式中,是弯管中线的曲率半径,为管径。

4.4.2减小和利用局部损失在各种管道的设计中,应尽量减小局部损失。

为了减小局部损失,应尽量避免流通截面积发生突然的变化,在截面积有较大变化的地方常采用锥形过渡,在要求比较高的管道中应采用光滑的流线型壁面。

以下举几个例子来说明减小局部损失的方法。

.1、弯曲管道由弯管的局部损失计算公式可知,弯管的局部损失取决于管道的直径、曲率半径和管道的弯曲角。

因此在设计管道时,为了减小局部损失,应尽量避免采用弯转角过大的死弯。

对于直径较小的热力设备管道,通常采用。

对于直径较大的排烟风道来说,横向的二次流动比较突出。

为了减小二次流动损失,一方面可以适当的加大管道的曲率半径,以减小流体转弯时的离心力,另一方面通常在弯管内安装导流叶片如图4.12 所示。

这样既可减小弯道两侧的压强差,又可以减小二次流影响的范围。

根据实验,在没有安装导流叶片的情况下,直角弯管的;安装簿板弯成的导流叶片后,;当导流叶片呈流线月牙形时,。

可见当安装导流叶片后,并适当选择导流叶片的形状,对减小局部损失有明显的效果。

2、流通截面的变化将突然扩张的管道改为渐扩管,由于涡流区的大小和涡流强度的减小,其局部损失有很大的改善。

但是当扩张(或收缩)的面积比一定时,渐变管的长度相应地加长,使得沿程损失有所增加,所以设计时.应取最佳值。

管长的增加会增加管道设计的成本或带来制造上的困难。

有些情况下,还要受到几何空间的限制,因此在管道设计中,应根据具体问题、具体情况全面折衷考虑。

在设计渐扩管时,当面积比较大时,可用隔板或用几个同心扩张管来达到正常的扩张角。

扩张角一般控制在的范围内。

图4.12 装有导流片的弯管.. (a)渐扩管的扩张角(b)具有隔板的渐扩管图4.13 渐扩管的扩张角3、三通工程中有各种各样的三通接头,其局部阻力系数也各不相同,使用时可查阅流体力学手册。

这里说的是为了减少流体流过三通的能量损失,可以在总管中根据支管的流量安装分流板和合流板如图4.15所示。

从减小局部损失的角度来讲,应尽量避免采用直角三通。

. 图4.14三通管道中的合流板和分流板4、局部损失的利用在日常生活中,局部损失还可以被利用。

阀门就是利用局部损失来控制流量的一个例子。

在航空发动机上,为了防止燃烧室出口的高温高压燃气进入滑油腔内,可以利用如图4.16 所示的封严装置将燃气和滑油腔隔开。

封严装置的原理是根据燃气每经过一个密封齿,压强就有所降低,经过几个密封齿后,压强就降低到与滑油腔内的压强基本相等。

这样最后一个齿的前后的压强差很小,达到阻隔燃气流入滑油腔的目的,起到密封的作用。

图4.15 封严装置4.4.3流动损失叠加及当量长度法一、流动损失的计算一般情况下,流体在管路系统中的流动必将存在若干沿程损失和局部损失,总的能量损失符合叠.加原理,在不考虑其相互干扰的情况下,单位重量流体沿流程的总损失为式4.6二、当量长度法由上面的沿程损失和局部损失计算公式可知,这两种损失均与流速的平方成正比。

假定能够找出在流速相同的条件下,某段长度的管件能产生同样长度的沿程损失,这段长度就叫做该管件的当量长度。

它能在流动损失等效的条件下,以某段等经直管的沿程损失代替局部损失,这种当量长度法对于管路系统的计算是非常方便的。

这种当量关系为即( 4.39).式中称为该管件的当量长度,或者称为此局部损失的等价管长。

如果管路系统的管径和沿程阻力损失系数处处相等,则有于是( 4.40)引用了当量长度的概念,可方便地估算出局部损失所占的比例,为复杂管路系统的能量损失的计算提供了简便的分析方法。

4.4.4 进口起始段内的流动..图4.16 进口起始段内的流动在各种管道计算中,会遇到管道起始段的流动问题,本节讨论进口起始段的沿程能量损失。

在这段管流中,流体质点的运动与完全发展的管内流动完全不同,流体质点的速度在不断的变化。

图4.17 给出了进口比较圆滑的圆管进口段内的流动。

流体从进口几乎均匀地流入管内,由于粘性的影响,在壁面上速度为零,然后沿法线方向流速逐步增加到中心线上的速度。

另一方面,随着流体的不断流入,管壁对流动的影响加大,但因在流动中要满足连续方程,即流量保持不变,因此,管轴附近的流体将相应加速。

在这个过程中,流体质点存在着从管壁到管轴的横向运动,且横截面上的速度分布也发生了变化,直到轴线上的速度达到该流量下的完全发展的最大速度为止,此时即可认为进口初始段的流动过程结束。

下面分别讨论进口起始段长度的计算方法和能量损失。

相关文档
最新文档