文理04-18年天津高考数学圆锥曲线专题
专题19 圆锥曲线的几何性质及其综合应用-2018年高考数学(理)母题题源系列(天津专版)

母题十九 圆锥曲线的几何性质及其综合应用【母题原题1】【2018天津,理19】设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B A 的坐标为(,0)b ,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若sin 4AQ AOQ PQ=∠(O 为原点),求k 的值. 【考点分析】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.【答案】(I )22194x y +=;(II )12或1128.试题解析:(Ⅰ)设椭圆的焦距为2c ,由已知有2259c a =,又由222a b c =+,可得23a b =.由已知可得,FB a =,AB =,由FB AB ⋅=6ab =,从而,32a b ==,∴椭圆的方程为22194x y +=.(Ⅱ)设点P 的坐标为()11,x y ,点Q 的坐标为()22,x y .易知直线AB 的方程为20x y +-=,由方程组{ 20y kx x y =+-=,,消去x ,可得221ky k =+.由1259y y =,可得()15k +=25650110k k -+=,解得12k =,或1128k =,k ∴的值为12或1128. 【名师点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.【母题原题2】【2017天津,理19】设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为2AP 的方程.【答案】(1)22413y x +=,24y x =;(2)330x -=,或330x -=. 【解析】试题分析:由于A 为抛物线焦点,F 到抛物线的准线l 的距离为12,则12a c -=,又椭圆的离心率为12,求出,,c a b ,得出椭圆的标准方程和抛物线方程;则(1,0)A ,设直线AP 方程为设1(0)x my m =+≠,解出P Q 、两点的坐标,把直线AP 方程和椭圆方程联立解出B 点坐标,写出BQ 所在直线方程,求出点D 的坐标,最后根据APD △m ,得出直线AP 的方程.或2634m y m -=+.由点B 异于点A,可得点222346(,)3434m m B m m -+-++.由2(1,)Q m -,可得直线BQ 的方程为22262342()(1)(1)()03434m m x y m m m m --+-+-+-=++,令0y =,解得222332m x m -=+,故2223(,0)32m D m -+.∴2222236||13232m m AD m m -=-=++.又∵APD△的面积为,故221626232||2m m m ⨯⨯=+,整理得23||20m m -+=,解得||3m =,∴3m =±.∴直线AP 的方程为330x -=,或330x -=.解法二:设()1,,P t -则()1,,Q t --从而直线AP 的方程为()12t y x =--,代入椭圆方程22413y x +=,整理得()22223230t x t x t +-+-=.两根之积为22122233.1,.33A B t t x x x x t t --==∴=++代入()12ty x =--,得22233,33t t B t t ⎛⎫- ⎪++⎝⎭.∴直线BQ 的方程为:()222331313tt t y t x t t +++=+-++,即()2612t y t x t ++=+.令0y =,得()2612t t x t +=+,解得222226612,1666t t x AD t t t --=∴=-=+++.2112,,26APD S t t ∆=∴⨯⨯=+解得t =∴直线AP的方程为)1y x =-或)1y x =-,即330x -=,或330x -=.【考点】直线与椭圆综合问题【名师点睛】圆锥曲线问题在历年高考都是较有难度的压轴题,不论第一步利用椭圆的离心率及椭圆与抛物线的位置关系的特点,列方程组,求出椭圆和抛物线方程,还是第二步联立方程组求出点的坐标,写直线方程,利用面积求直线方程,都是一种思想,就是利用大熟地方法解决几何问题,坐标化,方程化,代数化是解题的关键.【母题原题3】【2016天津,理19】设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若HF BF ⊥,且MOA MAO ∠≤∠,求直线的l 斜率的取值范围.【答案】(Ⅰ)22143x y +=;(Ⅱ)),46[]46,(+∞--∞ . 【解析】试题分析:(Ⅰ)求椭圆标准方程,只需确定量,由113||||||c OF OA FA +=,得113()cc a a a c +=-,又2223a c b -==,所以21c =,因此24a =,所以椭圆的方程为22143x y +=. (Ⅱ)解:设直线l 的斜率为k (0≠k ),则直线l 的方程为)2(-=x k y .设),(B B y x B ,由方程组⎪⎩⎪⎨⎧-==+)2(13422x k y y x ,消去y ,整理得0121616)34(2222=-+-+k x k x k .解得2=x ,或346822+-=k k x ,由题⎪⎩⎪⎨⎧-=-+-=)2(124912x k y k k x k y 消去y ,解得)1(1292022++=k k x M .在MAO ∆中,||||MO MA MAO MOA ≤⇔∠≤∠,即2222)2(MMMM y x y x +≤+-,化简得1≥M x ,即1)1(1292022≥++k k ,解得46-≤k 或46≥k .所以直线l 的斜率的取值范围为),46[]46,(+∞--∞ . 考点:椭圆的标准方程和几何性质,直线方程【名师点睛】在利用代数法解决最值与范围问题时常从以下五个方面考虑: (1)利用判别式来构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系; (3)利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5)利用函数的值域的求法,确定参数的取值范围. 【母题原题4】【2015天津,理19】已知椭圆2222+=1(0)x y a b a b >>的左焦点为F -c (,0),点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c,(I )求直线FM 的斜率; (II )求椭圆的方程;(III )设动点P 在椭圆上,若直线FP,求直线OP (O 为原点)的斜率的取值范围.【答案】(I ) ; (II ) 22132x y += ;(III)22,,⎛⎛-∞ ⎝. 【解析】试题分析:(I ) 由椭圆知识先求出,,a b c 的关系,设直线直线FM 的方程为()y k x c =+,求出圆心到直线的距离,由勾股定理可求斜率k 的值; (II )由(I )设椭圆方程为2222132x y c c+=,直线与椭圆方程联立,求出点M 的坐标,由FM =可求出c ,从而可求椭圆方程.(III)设出直线FP :(1)y t x =+,与椭圆方程联立,求得t =>x 的范围,即可求直线OP 的斜率的取值范围. 试题解析:(I ) 由已知有2213c a =,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有22222c b ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得k = (II )由(I )得椭圆方程为2222132x y c c+=,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,得312x -<<-或10x -<<,设直线OP 的斜率为m ,得ym x=,即(0)y mx x =≠,与椭圆方程联立,整理可得22223m x =-.①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+<,因此0m >,于是m =,得m ∈②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是m =,m ⎛∈-∞ ⎝综上,直线OP 的斜率的取值范围是22,,⎛⎛-∞ ⎝.【命题意图】本类题通常主要考查对椭圆的离心率、椭圆的几何性质、双曲线的离心率、双曲线的几何性质、双曲线的渐近线、抛物线的几何性质等基本知识的理解,以及对直线与圆锥曲线间的交点问题(含切线问题)、与圆锥曲线定义有关的问题、与曲线有关的最值问题(含三角形和四边形面积)等知识的理解与简单的应用. 【命题规律】这类试题在考查题型上,通常基本以选择题与填空题的形式出现,也会出现在解答题中第一问,难度一般中等,有时中等偏上,一般不会作为把关题,在考查内容上一般以求离心率,求双曲线的渐近线,求最值,求范围,利用性质求曲线方程等,着重考查对基本概念和基本性质的理解与应用,题型稳定,中规中矩,不偏不怪,内容及位置也很稳定,计算量比过去减少,但思考量增大,思维层次的要求并没有降低.若再按以前的“解几套路”解题显然难以成功.【答题模板】以2017年高考题为例,求取椭圆或双曲线离心率,一般可由下面三个方面着手: (1)根据已知条件确定,,a b c 的等量关系,然后把b 用,a c 代换,求ca的值; (2)已知条件构造出,,a b c 的等式或不等式,结合222a b c =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.(3)求离心率的范围问题关键是确立一个关于,,a b c 的不等式,再根据,,a b c 的关系消掉b 得到关于,a c 的不等式,由这个不等式确定,a c 的关系.总体来说,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出,a c ,然后根据离心率的定义式求解;二是根据已知条件构造关于,a c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数. 【方法总结】1.圆锥曲线的定义反映了它们的基本特征,理解定义是掌握其性质的基础.因此,对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求1212PF PF F F +>,双曲线的定义中要求1212PF PF F F -<,抛物线的定义的实质可归结为“一动三定”:一个动点M ;一个定点F (抛物线的焦点);一条定直线l (抛物线的准线);一个定值1(点M 与定点F 的距离和它到定直线l 的距离之比等于1),常常利用抛物线的定义将抛物线上一点到焦点的焦半径问题与焦点到准线的距离问题互相转化.2.求圆锥曲线标准方程常用的方法:(1)定义法;(2)待定系数法,若顶点在原点,对称轴为坐标轴的抛物线,可设为22y ax =或22x ay = (0a ≠),避开对焦点在哪个半轴上的分类讨论,此时a 不具有p 的几何意义.若椭圆的焦点位置不确定,椭圆的标准方程可设为221(0,0)x y m n m n+=>>,也可设椭圆方程为221(0,0)Ax By A B +=>>,若双曲线的焦点位置不确定,双曲线的标准方程可设为221(0)x y mn m n-=>,也可设双曲线的方程为221Ax By +=,其中,A B 异号且都不为0,若已知双曲线的渐近线方程为0ax bx ±=,则可设双曲线的标准方程为ax bx λ±=(0λ≠)可避免分类讨论,这样可以避免讨论和繁琐的计算.3.求解与二次曲线性质有关的问题时要结合图像进行分析,即使不画图形,思考时也要联想到图像.对椭圆当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.对双曲线应围绕双曲线中的“六点”(两个顶点、两个焦点、虚轴的两个端点),“四线”(两条对称轴,两条渐近线),“两形”(中心、焦点、虚轴端点构成的特征三角形,双曲线上一点与两个交点构成的三角形),研究它们之间的关系,挖掘出它们之间的内在联系.4.椭圆取值范围实质实质是椭圆上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用,椭圆上一点到椭圆一个焦点的距离的取值范围为[,a c a c -+].在椭圆中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在椭圆上,称该三角形为焦点三角形,则三角形12F PF 的周长为定值等于22a c +,面积等于212tan2F PF b ∠,其中b 是短半轴的长;过焦点垂直于对称轴的弦长即通径长为22b a.双曲线取值范围实质实质是双曲线上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用,双曲线上一点到双曲线一个焦点的距离的取值范围为[,c a -+∞).在双曲线中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在双曲线上,称该三角形为焦点三角形,则面积等于212tan2b F PF ∠,其中b 是虚半轴的长;过焦点垂直于对称轴的弦长即通径长为22b a .抛物线中:抛物线上一点11(,)P x y ,F 为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p >0):22112:;2:22pp y px PF x y px PF x ==+=-=-+ 22112:;2:22ppx py PF y x py PF y ==+=-=-+.焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式.设过抛物线y2=2px (p >O )的焦点F 的弦为AB ,A 11(,)x y ,B 22(,)x y ,AB 的倾斜角为α,则有12AB x x p =++或22sin pAB α=,以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求.在抛物线中,以抛物线的焦点弦为直径的圆与该抛物的对应准线相切. 5.求椭圆、双曲线的离心率,关键是根据已知条件确定,,a b c 的等量关系,然后把b 用,a c 代换,求ca的值;椭圆求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合222a b c =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.离心率e 与,a b 的关系为:222222c a b e a a -===221b a -⇒b a=.双曲线求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合222c b a =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e的值或范围.离心率e 与,a b 的关系为:222222c a b e a a +===221b a +⇒b a=,在双曲线中由于221b e a ⎛⎫=+ ⎪⎝⎭,故双曲线的渐近线与离心率密切相关.求离心率的范围问题关键是确立一个关于,,a b c 的不等式,再根据,,a b c 的关系消掉b 得到关于,a c 的不等式,由这个不等式确定,a c 的关系.求解圆锥曲线的离心率,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出,a c ,然后根据离心率的定义式求解;二是根据已知条件构造关于,a c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数.6.抛物线22y px =(0p >)上点的坐标可设为(200,2y y p),在计算时,可以降低计算量. 7. 焦点三角形问题的求解技巧(1)所谓焦点三角形,就是以椭圆或双曲线的焦点为顶点,另一个顶点在椭圆或双曲线上的三角形. (2)解决此类问题要注意应用三个方面的知识: ①椭圆或双曲线的定义; ②勾股定理或余弦定理;③基本不等式与三角形的面积公式.1.【2018天津部分区二模】已知抛物线的焦点与椭圆:的一个顶点重合,且这个顶点与椭圆的两个焦点构成的三角形面积为.(1)求椭圆的方程;(2)若椭圆的上顶点为,过作斜率为的直线交椭圆于另一点,线段的中点为,为坐标原点,连接并延长交椭圆于点,的面积为,求的值.【答案】(1);(2).又椭圆的顶点与其两个焦点构成的三角形的面积为,∴,∴,故椭圆的方程是.(2)由题意设直线的方程为,设点,由得,解得,∴,∴直线斜率,直线的方程为,∴的值为.【名师点睛】本题考查椭圆方程、椭圆性质、直线方程、理、弦长公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.2.【2018天津河东区二模】已知椭圆的一个焦点为,且离心率为.(1)求椭圆方程;(2)斜率为k的直线l过点F,且与椭圆交于A,B两点,P为直线x=3上的一点,若△ABP为等边三角形,求直线l的方程.【答案】(1) .(2) 或.【解析】分析:(1)列方程组求出a和b即得椭圆的方程.(2) 设直线的方程为,根据△ABP为等边三角形求出k的值,即得直线的方程.详解:(1)由已知,,可得,,所以椭圆的方程为.(2)设直线的方程为,直线与椭圆交点坐标为,,整理为,所以所以.【名师点睛】(1)本题主要考查椭圆方程的求法,考查直线和椭圆的位置关系,意在考查学生对这些基础知识的掌握能力、分析推理能力和计算能力.(2)解答本题的关键是求k,本题是根据等边三角形得到找到k的方程的,当然先要求出|AB|和|MP|.计算量比较大.3.【2018天津河北区二模】设椭圆C:的左、右焦点分别为、,上顶点为A,在x轴负半轴上有一点B,满足为线段的中点,且AB⊥.(I)求椭圆C的离心率;(II)若过A、B、三点的圆与直线:相切,求椭圆C的方程;(III)在(I)的条件下,过右焦点作斜率为k的直线与椭圆C交于M,N两点,在x轴上是否存在点P(m,0)使得以PM,PN为邻边的平行四边形是菱形?如果存在,求出m的取值范围;如果不存在,说明理由.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】分析:(Ⅰ)由题意可得在在直角三角形中有,即,整理可得.(Ⅱ)由题意可得过A、B、F2三点的圆的圆心为F1(-c,0),半径r==2c,根据直线与圆相切可得,解得c=1,从而,,可得椭圆的方程.(Ⅲ)由条件可设直线MN的方程为,与椭圆方程联立消元后得到一元二次方程,结合根据系数的关系可得MN的中点Q的坐标为,若以PM,PN为邻边的平行四边形是菱形,则,由此得到,整理得,最后可求得.(III)由(I)知,F2(1,0),直线MN的方程为,由消去y整理得∵直线与椭圆C交于M,N两点,∴.设M(,),N(,),则,∴,∴MN的中点Q的坐标为,若以PM,PN为邻边的平行四边形是菱形,则,∴整理得,∵,∴,∴.∴.故存在满足题意的点P,且m的取值范围是(.【名师点睛】(1)存在性问题通常采用“肯定顺推法”,将不确定性问题明朗化.其步骤为:假设满足条件的元素(点或参数)存在,并用待定系数法设出,根据题意列出关于待定系数的方程(方程组),若方程(组)有实数解,则元素(点或参数)存在;否则元素(点或参数)不存在.(2)解析几何中求范围或最值时,首先建立关于某一参数为为变量的目标函数,再根据函数的特征求出范围或最值.4.【2018天津十二校二模】已知椭圆的两个焦点分别为和,过点的直线与椭圆交于轴上方的,两点,且.(Ⅰ)求椭圆的离心率;(Ⅱ)(ⅰ)求直线的斜率;(ⅱ)设点与点关于坐标原点对称,直线上有一点在的外接圆上,求的值.【答案】(I)离心率;(II).当时,得,由已知得,求出外接圆方程与直线的方程,联立可得结果.详解:(I)由得,从而,整理,得,故离心率.(II)解法一:(I)由(I)得,所以椭圆的方程可写设直线AB的方程为,即.由已知设,则它们的坐标满足方程组消去y整理,得.依题意,而①②w由题设知,点B为线段AE的中点,所以③(II)由(I)可知当时,得,由已知得.线段的垂直平分线l的方程为直线l与x轴的交点是外接圆的圆心,因此外接圆的方程为.直线的方程为,于是点H(m,n)的坐标满足方程组,由解得故【名师点睛】本题主要考查椭圆与直线的位置关系以及椭圆离心率,属于难题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.5.【2018天津9校联考】已知过点的椭圆的左右焦点分别为、,为椭圆上的任意一点,且,,成等差数列.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线交椭圆于,两点,若点始终在以为直径的圆外,求实数的取值范围.【答案】(I).(2)或.由方程的根与系数关系求得x2、y2,由点A在以PQ为直径的圆外,得∠PAQ为锐角,•>0;由此列不等式求出k的取值范围.试题解析:(1)∵,,成等差数列,∴,由椭圆定义得,∴;又椭圆:()过点,∴;∴,解得,;可得;③由①②③,解得,; 由点在以为直径的圆外,得为锐角,即;由,,∴;即,整理得,,解得:或.∴实数的取值范围是或.【名师点睛】在圆锥曲线中研究范围,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时,常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围;④利用基本不等式求出参数的取值范围;⑤利用函数的值域的求法,确定参数的取值范围.6.【2018天津滨海新区七校联考】已知()0,2A -,椭圆2222:1(0)x y E a b a b+=>>的离心率2,F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点.(1)求椭圆的方程;(2)设过点A 的动直线l 与椭圆E 相交于P ,Q 两点,当OPQ ∆的面积最大时,求直线l 的方程.【答案】(1)22182x y +=;(2)2y x =-或2y x =- 【解析】试题分析:(1)由离心率与斜率可求得a ,b ,c .(II )设:2l y kx =-,与椭圆组方程组,由弦长()22222,{ 1416801,82y kx k x kx x y =-⇒+-+=+=, ()221164104k k ∆=->⇒>, 设()11,P x y ,()22,Q x y ,121222168,1414k x x x x k k +==++,PQ == 又点O 到直线l 的距离d =∴△OPQ的面积21241OPQS PQ d k ∆==+,t =,则0t >,∴2222OPQ S t t t∆==≤++,【名师点睛】弦长公式:(已知直线上的两点距离)设直线:l y kx m =+,l 上两点()()1122,,,A x y B x y,所以12AB x =-或12AB y =-.7.【2018天津十二校联考一】如图,已知椭圆22221(0)x y a b a b+=>>的左右顶点分别是,A B,离心率为2,设点()(,P a t t ≥,连接PA 交椭圆于点C ,坐标原点是O .(1)证明: OP BC ⊥;(2)设三角形ABC 的面积为1S ,四边形OBPC 的面积为2S ,若21S S 的最小值为1,求椭圆的标准方程. 【答案】(1)证明见解析;(2)2212x y +=. 【解析】试题分析:(1,可得22b c =,联立直线AP 与椭圆的方程即可求出点C 的坐标,从而可得直线BC 的斜率,再根据直线OP 的斜率,即可证明OP BC ⊥;(2)由(1)知,()3223122222222142444ABP AOC t tc tc S S S S t c t c t c ∆∆+=⨯⨯==-=+++,,根据21S S 的最小值为1,即可求出c的值,从而求出椭圆的标准方程.试题解析:(1)由cea=得,2212ca=,∴22212a bc-=,即22b c=.∴椭圆的方程为2222+12x yc c=,由)222212{x yc cy x+==+,整理得:()22222244280c t x x t c c+++-=,由Ax=可得∴椭圆方程为2212xy+=.8.【2018天津静海一中模拟】设椭圆C:22221(0)x ya ba b+=>>的一个顶点与抛物线2x=的焦点重合,12F F,分别是椭圆的左、右焦点,且离心率12e=,过椭圆右焦点2F的直线l与椭圆C交于M N,两点.(I)求椭圆C的方程;(2)若•2OM ON=-,求直线l的方程;(3)若AB是椭圆C经过原点O的弦,//MN AB,求证:2||ABMN为定值.【答案】(I)22143x y+=;(II)y(x-1)或y(x-1);(3)见解析.【解析】试题分析:(1)由题意,椭圆的标准方程为+=1;(2)设直线l的方程为y=k(x-1)(k≠0),·=x1x2+y1y2=-2,利用韦达定理,解得答案;(3)|MN|=|x1-x2|,|AB|=|x3-x4|,代入韦达定理计算,得到答案.试题解析:(I)椭圆的顶点为(0,),即b=,e==,∴a=2,∴椭圆的标准方程为+=1.(2)由题可知,直线l与椭圆必相交.①当直线斜率不存在时,经检验不合题意.由(2)可得|MN|=|x1-x2|===,由消去y并整理得x2=,|AB|=|x3-x4|=4,∴==4,为定值.9.【2018天津一中月考五】已知椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上,直线与椭圆交于,两点,与轴、轴分别相交于点和点,且,点是点关于轴的对称点,的延长线交椭圆于点,过点、分别做轴的垂线,垂足分别为、.(1)求椭圆的方程;(2)是否存在直线,使得点平分线段,?若存在,求出直线的方程;若不存在,请说明理由.【答案】(I);(2)答案见解析.【解析】试题分析:(I)由正三角形的高与边长的关系可求出,再由点在椭圆上,可求出的值,从而求出椭圆方程;(2)假设存在,由直线方程可求出点的坐标,由已知条件可求出点的坐标,设联立直线与椭圆的方程,消去,得到关于的一元二次方程,所以椭圆方程为.(2)存在设,∵∴∴①∴,联立∴②∴∴【名师点睛】本题主要考查了椭圆的方程以及直线与椭圆的位置关系,属于中档题.第一问求椭圆方程很容易,大部分学生能做对; 在第二问中,假设存在,当点平分线段点为的中点,利用中点坐标公式,求出的值,得出直线方程.注意本题涉及的点线位置关系比较复杂,容易弄错.10.【2018天津静海一中期末考】设椭圆C : 22221(0)x y a b a b+=>>的左、右焦点分别为12F F ,,上顶点为A ,过点A与2AF 垂直的直线交x 轴负半轴于点Q ,且1222F F QF =,若过A ,Q ,2F 三点的圆恰好与直线:30l x -=相切.过定点(02M ,)的直线1l 与椭圆C 交于G ,H 两点(点G 在点M ,H 之间). (Ⅰ)求椭圆C 的方程; (Ⅱ)若实数λ满足MG MH λ=,求的取值范围.【答案】(Ⅰ)22143x y += ;(Ⅱ))7⎡-⎣.【解析】试题分析:(1)由题意,得椭圆方程为.;(2)设直线方程为,,所以,利用韦达定理,就出的取值范围.(Ⅱ)①当直线斜率存在时, 设直线方程为,代入椭圆方程得.由,得. 设,,则,.又,所以.所以.所以,. 所以. 所以.整理得.因为,所以,即.所以.所以,即所求的取值范围是【名师点睛】本题考查直线和椭圆的位置关系.圆锥曲线问题关键是分析解题思路,逻辑思维要清晰.本题中要求线段长的比值,转化为横坐标的比值关系,则需要韦达定理,所以通过设直线,得到整个题目的思路.11.【2018天津静海一中模拟】设椭圆C : 22221(0)x y a b a b +=>>,定义椭圆C 的“相关圆”方程为22222b a b x y a b+=+,若抛物线24y x =的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和其两个焦点构成直角三角形.(I )求椭圆C 的方程和“相关圆”E 的方程;(II )过“相关圆”E 上任意一点P 作“相关圆”E 的切线l 与椭圆C 交于A ,B 两点,O 为坐标原点. (i )证明∠AOB 为定值;(ii )连接PO 并延长交“相关圆”E 于点Q ,求△ABQ 面积的取值范围.【答案】(I ) 222221,23x y x y +=+= (II )(i )见解析(ii )43⎡⎢⎣ 【解析】试题分析:(Ⅰ)由抛物线24y x =的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和两个焦点构成直角三角形,得到1b c ==, 由此能求出椭圆C 的方程. 进而求出“相关圆”E 的方程.(Ⅱ)当直线l 的斜率不存在时,直线AB 方程为2x AOB π=∠= ;当直线l 的斜率存在时,设其方程为y kx m =+,代入椭圆方程,得2222x kx m ++=(), 由此利用根的判别式、韦达定理、直线与圆相切,结合已知条件推导出2AOB π∠=为定值.(ii )要求ABQ 的面积的取值范围,只需求弦长AB 的范围,由此利用椭圆弦长公式能求出ABQ 面积的取值范围.当直线的斜率存在时,设其方程设为,设联立方程组得,即,△=,即因为直线与相关圆相切,所以为定值(ii )由于是“相关圆”的直径,所以,所以要求面积的取值范围,所以,所以当且仅当时取”=”②当时,.|AB |的取值范围为面积的取值范围是.【点睛】本题考查椭圆及圆的方程的求法,考查角为定值及三角形面积的求法,解题时要认真审题,注意根的判别式、韦达定理、直线与圆相切、椭圆弦长公式的合理运用.12.【2018天津一中期末考试】已知点,M N 分别是椭圆()2222:10x y C a b a b +=>>的左右顶点,F 为其右焦点,MF 与FN 12.(I )求椭圆C 的方程;(2)设不过原点O 的直线l 与该轨迹交于,A B 两点,若直线,,OA AB OB 的斜率依次成等比数列,求OAB 的面积的取值范围.【答案】(I ) 22143x y +=;(II)(.表示出三角形面积,求解范围即可.试题解析:(I ) MF a c =+,BN a c =-MF 与FN 的等比中项,∴()()3a c a c +-=,∴2223b a c =-=,又12c e a ==,解得2,1a c ==,∴椭圆C 的方程为22143x y +=. (2)由题意可知,直线l 的斜率存在且不为0,故可设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y ,联立直线和椭圆2234120{ x y y kx m+-==+,消去y 得,()2223484120k x kmx m +++-=,由题意可知,()()()22226444341248430km k m k m ∆=-+-=-+>,即2243k m +>,且122834kmx x k+=-+,212241234m x x k -=+, 又直线OA ,AB ,OB 的斜率依次成等比数列,所以21212y y k x x ⋅=, 将1y ,2y 代入并整理得()22430m k -=,因为0m ≠,k =,206m <<,且23m ≠, 设d 为点O 到直线l的距离,则有d =12AB x =-=,。
2018年高考天津卷数学试题答案解析(文理)

2018年高考天津卷数学试题详解1. 设集合,,,则A. B.C. D.【答案】C【详解】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:,结合交集的定义可知:.本题选择C选项.2. 设变量满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45【答案】C【详解】分析:由题意首先画出可行域,然后结合目标函数的详解式整理计算即可求得最终结果.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.3. 设,则“”是“” 的A. 充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【详解】分析:求解三次不等式和绝对值不等式,据此即可确定两条件的充分性和必要性是否成立即可.详解:求解不等式可得,求解绝对值不等式可得或,据此可知:“”是“” 的充分而不必要条件.本题选择A选项.4. 阅读如图所示的程序框图,运行相应的程序,若输入的值为20,则输出的值为A. 1B. 2C. 3D. 4【答案】B【详解】分析:由题意结合流程图运行程序即可求得输出的数值.详解:结合流程图运行程序如下:首先初始化数据:,,结果为整数,执行,,此时不满足;,结果不为整数,执行,此时不满足;,结果为整数,执行,,此时满足;跳出循环,输出.本题选择B选项.拓展:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.5. 已知,则的大小关系为A. B. C. D.【答案】D【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,,即,,即,综上可得:.本题选择D选项.拓展:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.6. 将函数的图象向右平移个单位长度,所得图象对应的函数A. 在区间上单调递增B. 在区间上单调递减C. 在区间上单调递增D. 在区间上单调递减【答案】A【详解】分析:首先确定平移之后的对应函数的详解式,然后逐一考查所给的选项是否符合题意即可.详解:由函数图象平移变换的性质可知:将的图象向右平移个单位长度之后的详解式为:.则函数的单调递增区间满足:,即,令可得函数的一个单调递增区间为,选项A正确,B错误;函数的单调递减区间满足:,即,令可得函数的一个单调递减区间为,选项C,D错误;本题选择A选项.拓展:本题主要考查三角函数的平移变换,三角函数的单调区间等知识,意在考查学生的转化能力和计算求解能力.7. 已知双曲线的离心率为2,过右焦点且垂直于轴的直线与双曲线交于两点.设到双曲线的同一条渐近线的距离分别为和,且则双曲线的方程为A. B.C. D.【答案】A【详解】分析:由题意首先求得A,B的坐标,然后利用点到直线距离公式求得b的值,之后求解a的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择A选项.拓展:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.8. 在如图的平面图形中,已知,则的值为A. B.C. D. 0【答案】C【详解】分析:连结MN,结合几何性质和平面向量的运算法则整理计算即可求得最终结果. 详解:如图所示,连结MN,由可知点分别为线段上靠近点的三等分点,则,由题意可知:,,结合数量积的运算法则可得:.本题选择C选项.拓展:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.9. i是虚数单位,复数___________.【答案】4–i【详解】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则得:.拓展:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.10. 已知函数f(x)=e x ln x,为f(x)的导函数,则的值为__________.【答案】e【详解】分析:首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果. 详解:由函数的详解式可得:,则:.即的值为e.拓展:本题主要考查导数的运算法则,基本初等函数的导数公式等知识,意在考查学生的转化能力和计算求解能力.11. 如图,已知正方体ABCD–A1B1C1D1的棱长为1,则四棱柱A1–BB1D1D的体积为__________.【答案】【详解】分析:由题意分别求得底面积和高,然后求解其体积即可.详解:如图所示,连结,交于点,很明显平面,则是四棱锥的高,且,,结合四棱锥体积公式可得其体积为:.拓展:本题主要考查棱锥体积的计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.12. 在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】【详解】分析:由题意利用待定系数法求解圆的方程即可.详解:设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.拓展:求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.13. 已知a,b∈R,且a–3b+6=0,则2a+的最小值为__________.【答案】【详解】分析:由题意首先求得a-3b的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.详解:由可知,且:,因为对于任意x,恒成立,结合均值不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.拓展:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14. 已知a∈R,函数若对任意x∈[–3,+),f(x)≤恒成立,则a的取值范围是__________.【答案】[,2]【详解】分析:由题意分类讨论和两种情况,结合恒成立的条件整理计算即可求得最终结果.详解:分类讨论:①当时,即:,整理可得:,由恒成立的条件可知:,结合二次函数的性质可知:当时,,则;②当时,即:,整理可得:,由恒成立的条件可知:,结合二次函数的性质可知:当或时,,则;综合①②可得的取值范围是.拓展:对于恒成立问题,常用到以下两个结论:(1)a≥f(x)恒成立⇔a≥f(x)max;(2)a≤f(x)恒成立⇔a≤f(x)min.有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.15. 已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.【答案】(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人;(Ⅱ)(i)答案见详解;(ii).【详解】分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)由题意列出所有可能的结果即可,共有21种.(ii)由题意结合(i)中的结果和古典概型计算公式可得事件M发生的概率为P(M)=.详解:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.(Ⅱ)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.(ii)由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.所以,事件M发生的概率为P(M)=.拓展:本小题主要考查随机抽样、用列举法计算随机事件所含的基本事件数、古典概型及其概率计算公式等基本知识.考查运用概率知识解决简单实际问题的能力.16. 在△ABC中,内角A,B,C所对的边分别为a,b,c.已知b sin A=a cos(B–).(Ⅰ)求角B的大小;(Ⅱ)设a=2,c=3,求b和sin(2A–B)的值.【答案】(Ⅰ)B=;(Ⅱ)b=,【详解】分析:(Ⅰ)由正弦定理有,结合,可得.则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.则..结合两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,拓展:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.17. 如图,在四面体ABCD中,△ABC是等边三角形,平面ABC⊥平面ABD,点M为棱AB 的中点,AB=2,AD=,∠BAD=90°.(Ⅰ)求证:AD⊥BC;(Ⅱ)求异面直线BC与MD所成角的余弦值;(Ⅲ)求直线CD与平面ABD所成角的正弦值.【答案】(Ⅰ)证明见详解;(Ⅱ);(Ⅲ).【详解】分析:(Ⅰ)由面面垂直的性质定理可得AD⊥平面ABC,则AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.由几何关系可知∠DMN(或其补角)为异面直线BC与MD所成的角.计算可得.则异面直线BC与MD所成角的余弦值为.(Ⅲ)连接CM.由题意可知CM⊥平面ABD.则∠CDM为直线CD与平面ABD所成的角.计算可得.即直线CD与平面ABD所成角的正弦值为.详解:(Ⅰ)由平面ABC⊥平面ABD,平面ABC∩平面ABD=AB,AD⊥AB,可得AD⊥平面ABC,故AD⊥BC.(Ⅱ)取棱AC的中点N,连接MN,ND.又因为M为棱AB的中点,故MN∥BC.所以∠DMN (或其补角)为异面直线BC与MD所成的角.在Rt△DAM中,AM=1,故DM=.因为AD⊥平面ABC,故AD⊥AC.在Rt△DAN中,AN=1,故DN=.在等腰三角形DMN中,MN=1,可得.所以,异面直线BC与MD所成角的余弦值为.(Ⅲ)连接CM.因为△ABC为等边三角形,M为边AB的中点,故CM⊥AB,CM=.又因为平面ABC⊥平面ABD,而CM平面ABC,故CM⊥平面ABD.所以,∠CDM为直线CD与平面ABD所成的角.在Rt△CAD中,CD==4.在Rt△CMD中,.所以,直线CD与平面ABD所成角的正弦值为.拓展:本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.18. 设{a n}是等差数列,其前n项和为S n(n∈N*);{b n}是等比数列,公比大于0,其前n 项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.【答案】(Ⅰ),;(Ⅱ)4.【详解】分析:(I)由题意得到关于q的方程,解方程可得,则.结合题意可得等差数列的首项和公差为,则其前n项和.(II)由(I),知据此可得解得(舍),或.则n的值为4.详解:(I)设等比数列的公比为q,由b1=1,b3=b2+2,可得.因为,可得,故.所以,.设等差数列的公差为.由,可得.由,可得从而,故,所以,.(II)由(I),有由可得,整理得解得(舍),或.所以n的值为4.拓展:本小题主要考查等差数列、等比数列的通项公式及前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.19. 设椭圆的右顶点为A,上顶点为B.已知椭圆的离心率为,.(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值.【答案】(Ⅰ);(Ⅱ).【详解】分析:(I)由题意结合几何关系可求得.则椭圆的方程为. (II)设点P的坐标为,点M的坐标为,由题意可得.易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.详解:(I)设椭圆的焦距为2c,由已知得,又由,可得.由,从而.所以,椭圆的方程为.(II)设点P的坐标为,点M的坐标为,由题意,,点的坐标为.由的面积是面积的2倍,可得,从而,即.当时,,不合题意,舍去;当时,,,符合题意.所以,的值为.拓展:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.20. 设函数,其中,且是公差为的等差数列.(I)若求曲线在点处的切线方程;(II)若,求的极值;(III)若曲线与直线有三个互异的公共点,求d的取值范围. 【答案】(Ⅰ)x+y=0;(Ⅱ)极大值为6;极小值为−6;(Ⅲ)【详解】分析:(Ⅰ)由题意可得f(x)=x3−x,=3x2−1,结合f(0)=0,=−1,可得切线方程为x+y=0.(Ⅱ)由已知可得:f(x)=x3−3t2x2+(3t22−9)x− t23+9t2.则= 3x2−6t2x+3t22−9.令=0,解得x=t2−,或x= t2+.据此可得函数f(x)的极大值为f(t2−)=6;函数极小值为f(t2+)=−6. (III)原问题等价于关于x的方程(x−t2+d) (x−t2) (x−t2−d)+ (x−t2)+ 6=0有三个互异的实数解,令u= x−t2,可得u3+(1−d2)u+6=0.设函数g(x)= x3+(1−d2)x+6,则y=g(x)有三个零点.利用导函数研究g(x)的性质可得的取值范围是详解:(Ⅰ)由已知,可得f(x)=x(x−1)(x+1)=x3−x,故=3x2−1,因此f(0)=0,=−1,又因为曲线y=f(x)在点(0,f(0))处的切线方程为y−f(0)=(x−0),故所求切线方程为x+y=0.(Ⅱ)由已知可得f(x)=(x−t2+3)(x−t2)(x−t2−3)=(x−t2)3−9(x−t2)=x3−3t2x2+(3t22−9)x−t23+9t2.故=3x2−6t2x+3t22−9.令=0,解得x=t2−,或x=t2+.当x变化时,,f(x)的变化如下表:+所以函数f(x)的极大值为f(t2−)=(−)3−9×(−)=6;函数f(x)的极小值为f(t2+)=()3−9×()=−6.(Ⅲ)曲线y=f(x)与直线y=−(x−t2)−6有三个互异的公共点等价于关于x的方程(x−t2+d)(x−t2)(x−t2−d)+(x−t2)+ 6=0有三个互异的实数解,令u=x−t2,可得u3+(1−d2)u+6=0.设函数g(x)=x3+(1−d2)x+6,则曲线y=f(x)与直线y=−(x−t2)−6有三个互异的公共点等价于函数y=g(x)有三个零点.=3x3+(1−d2).当d2≤1时,≥0,这时在R上单调递增,不合题意.当d2>1时,=0,解得x1=,x2=.易得,g(x)在(−∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增.g(x)的极大值g(x1)=g()=>0.g(x)的极小值g(x2)=g()=−.若g(x2)≥0,由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.若即,也就是,此时,且,从而由的单调性,可知函数在区间内各有一个零点,符合题意.所以,的取值范围是.1. 设全集为R,集合,,则A. B. C. D.【答案】B【详解】分析:由题意首先求得,然后进行交集运算即可求得最终结果.详解:由题意可得:,结合交集的定义可得:.本题选择B选项.拓展:本题主要考查交集的运算法则,补集的运算法则等知识,意在考查学生的转化能力和计算求解能力.2. 设变量x,y满足约束条件则目标函数的最大值为A. 6B. 19C. 21D. 45【答案】C【详解】分析:首先画出可行域,然后结合目标目标函数的几何意义确定函数取得最大值的点,最后求解最大值即可.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A的坐标为:,据此可知目标函数的最大值为:.本题选择C选项.拓展:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.3. 阅读右边的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为A. 1B. 2C. 3D. 4【答案】B【详解】分析:由题意结合流程图运行程序即可求得输出的数值.详解:结合流程图运行程序如下:首先初始化数据:,,结果为整数,执行,,此时不满足;,结果不为整数,执行,此时不满足;,结果为整数,执行,,此时满足;跳出循环,输出.本题选择B选项.拓展:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.4. 设,则“”是“”的A. 充分而不必要条件B. 必要而不重复条件C. 充要条件D. 既不充分也不必要条件【答案】A【详解】分析:首先求解绝对值不等式,然后求解三次不等式即可确定两者之间的关系.详解:绝对值不等式,由.据此可知是的充分而不必要条件.本题选择A选项.拓展:本题主要考查绝对值不等式的解法,充分不必要条件的判断等知识,意在考查学生的转化能力和计算求解能力.5. 已知,,,则a,b,c的大小关系为A. B. C. D.【答案】D【详解】分析:由题意结合对数函数的性质整理计算即可求得最终结果.详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.拓展:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.6. 将函数的图象向右平移个单位长度,所得图象对应的函数 A. 在区间上单调递增 B. 在区间上单调递减 C. 在区间上单调递增 D. 在区间上单调递减【答案】A【详解】分析:由题意首先求得平移之后的函数详解式,然后确定函数的单调区间即可. 详解:由函数图象平移变换的性质可知: 将的图象向右平移个单位长度之后的详解式为:.则函数的单调递增区间满足:,即,令可得一个单调递增区间为:.函数的单调递减区间满足:, 即,令可得一个单调递减区间为:.本题选择A 选项.拓展:本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能力和计算求解能力. 7. 已知双曲线的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为A. B.C.D.【答案】C【详解】分析:由题意首先求得A ,B 的坐标,然后利用点到直线距离公式求得b 的值,之后求解a 的值即可确定双曲线方程.详解:设双曲线的右焦点坐标为(c>0),则,由可得:,不妨设:,双曲线的一条渐近线方程为:,据此可得:,,则,则,双曲线的离心率:,据此可得:,则双曲线的方程为.本题选择C选项.拓展:求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a,b,c,e及渐近线之间的关系,求出a,b的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为,再由条件求出λ的值即可.8. 如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为A. B. C. D.【答案】A【详解】分析:由题意建立平面直角坐标系,然后结合点的坐标得到数量积的坐标表示,最后结合二次函数的性质整理计算即可求得最终结果.详解:建立如图所示的平面直角坐标系,则,,,,点在上,则,设,则:,即,据此可得:,且:,,由数量积的坐标运算法则可得:,整理可得:,结合二次函数的性质可知,当时,取得最小值.本题选择A选项.拓展:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.9. i是虚数单位,复数___________.【答案】4–i【详解】分析:由题意结合复数的运算法则整理计算即可求得最终结果.详解:由复数的运算法则得:.拓展:本题主要考查复数的运算法则及其应用,意在考查学生的转化能力和计算求解能力.10. 在的展开式中,的系数为____________.【答案】【详解】分析由题意结合二项式定理展开式的通项公式得到r的值,然后求解的系数即可. 详解:结合二项式定理的通项公式有:,令可得:,则的系数为:.拓展:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且n≥r,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.11. 已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为__________.【答案】【详解】分析:由题意首先求解底面积,然后结合四棱锥的高即可求得四棱锥的体积.详解:由题意可得,底面四边形为边长为的正方形,其面积,顶点到底面四边形的距离为,由四棱锥的体积公式可得:.拓展:本题主要考查四棱锥的体积计算,空间想象能力等知识,意在考查学生的转化能力和计算求解能力.12. 已知圆的圆心为C,直线(为参数)与该圆相交于A,B两点,则的面积为___________.【答案】【详解】分析:由题意首先求得圆心到直线的距离,然后结合弦长公式求得弦长,最后求解三角形的面积即可.详解:由题意可得圆的标准方程为:,直线的直角坐标方程为:,即,则圆心到直线的距离:,由弦长公式可得:,则.拓展:处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.13. 已知,且,则的最小值为_____________.【答案】【详解】分析:由题意首先求得a-3b的值,然后结合均值不等式的结论整理计算即可求得最终结果,注意等号成立的条件.详解:由可知,且:,因为对于任意x,恒成立,结合均值不等式的结论可得:.当且仅当,即时等号成立.综上可得的最小值为.拓展:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.14. 已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.【答案】【详解】分析:由题意分类讨论和两种情况,然后绘制函数图像,数形结合即可求得最终结果.详解:分类讨论:当时,方程即,整理可得:,很明显不是方程的实数解,则,当时,方程即,整理可得:,很明显不是方程的实数解,则,令,其中,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.拓展:本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.。
2018年各地高考真题分类汇编-圆锥曲线---学生版

圆锥曲线1.(2018年全国一·文科4)已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13 B .12 CD2.(2018年全国二·文科6)双曲线,则其渐近线方程为 A .B .C .D .3.(2018年全国二·文科11)已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A .B .CD4.(2018年全国三·文科10)已知双曲线,则点到的渐近线的距离为AB .CD .5.(2018年北京·文科10)已知直线l 过点(1,0)且垂直于 轴,若l 被抛物线24y ax =截得的线段长为4,则抛物线的焦点坐标为_________.6.(2018年北京·文科12)若双曲线2221(0)4x y a a -=>的离心率为2,则a =_________. 7.(2018年天津·文科7)已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d +=则双曲线的方程为(A )22139x y -= (B )22193x y -= (C )221412x y -=(D )221124x y -= 22221(0,0)x y a b a b-=>>y =y =2y x =±y =1F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 1-2-122221(00)x y C a b a b-=>>:,(4,0)C 28.(2018年江苏8)在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近线,则其离心率的值是 . 9.(2018年浙江2)双曲线221 3=x y -的焦点坐标是 A .(,0),0)B .(−2,0),(2,0)C .(0,,(0D .(0,−2),(0,2) 10.(2018年浙江17)已知点P (0,1),椭圆24x +y 2=m (m >1)上两点A ,B 满足AP =2PB ,则当m =___________时,点B 横坐标的绝对值最大.11.(2018年上海2)双曲线2214x y -=的渐近线方程为 。
天津数学高考中的圆锥曲线

天津数学高考中的圆锥曲线
天津数学高考中的圆锥曲线包括椭圆、双曲线和抛物线。
这些曲线在几何和代数方面都有其特定的性质和方程。
在天津的高考中,圆锥曲线是一个重要的考点,需要考生熟练掌握相关的知识点和解题技巧。
具体来说,需要掌握以下内容:1.圆锥曲线的标准方程:包括椭圆的标准方程、双曲线的标准方程和抛物线的
标准方程。
这些方程是解决圆锥曲线问题的基础。
2.圆锥曲线的几何性质:包括曲线的形状、大小、对称性、离心率等。
这些性
质对于解决圆锥曲线问题非常重要。
3.直线与圆锥曲线的位置关系:包括直线与圆锥曲线的交点个数、交点坐标等。
这些关系可以通过联立方程组来解决。
4.圆锥曲线的参数方程:参数方程是一种描述曲线的方法,可以通过参数的变
化来描述曲线的变化。
在解决某些问题时,参数方程可以简化计算过程。
5.圆锥曲线的实际应用:圆锥曲线在实际生活中有着广泛的应用,例如行星运
动轨迹、光学仪器等。
这些应用可以帮助考生理解圆锥曲线的意义和价值。
为了应对天津数学高考中的圆锥曲线题目,考生需要加强练习,熟练掌握上述知识点和解题技巧。
还需要注意数形结合的思想,将几何图形与代数方程结合起来,以更好地解决圆锥曲线问题。
1/ 1。
专题7 圆锥曲线几何性质-2018年高考数学(文)母题题源系列(天津专版)(解析版)

母题7 圆锥曲线几何性质【母题原题1】【2018天津,文7】已知双曲线22221(0,0)x y a b a b-=>> 的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于,A B 两点.设,A B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126,d d += 则双曲线的方程为( )A .22139x y -=B .22193x y -=C .221412x y -=D .221124x y -=【解析】试题分析:由题意首先求得,A B 的坐标,然后利用点到直线距离公式求得b 的值,之后求解a 的值即可确定双曲线方程.则12226bc d d b c+===,则23,9b b ==,双曲线的离心率:2c e a ====,据此可得:23a =,则双曲线的方程为22139x y -=,故选A . 【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据,,,a b c e 及渐近线之间的关系,求出,a b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可. 【母题原题2】【2017天津,文5】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=【答案】D【考点】双曲线方程【名师点睛】本题主要考查的是双曲线的标准方程和双曲线的简单几何性质,属于基础题.解题时要注意a 、b 、c 的关系222c a b =+,否则很容易出现错误.解本题首先画图,掌握题中所给的几何关系,再结合双曲线的一些几何性质,得到,,a b c 的关系,联立方程,求得,,a b c 的值, 【母题原题3】【2017天津,文12】设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=︒,则圆的方程为 .【答案】22(1)(1x y ++=【解析】设圆心坐标为(1,)C m -,则(0,)A m ,焦点(1,0)F ,(1,0),(1,)AC AF m =-=-,1cos 21AC AF CAF AC AF⋅∠===-⋅+,m =,由于圆C 与y 轴得正半轴相切,则取m =(-,半径为1,所求圆的方程为22(1)(1x y ++-=.【考点】1.抛物线的方程;2.圆的方程.xk/w【名师点睛】本题设计比较巧妙,考查了圆,抛物线的方程,同时还考查了向量数量积的坐标表示,本题只有一个难点,就是0120CAF ∠=,会不会用向量的坐标表示cos CAF ∠,根据图象,可设圆心为()1,C m -,那么方程就是()()2211x y m ++-=,若能用向量的坐标表示角,即可求得m ,问题也就迎刃而解了.【母题原题4】【2016天津,文4】已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为( )A .1422=-y xB .1422=-y xC .15320322=-y xD .12035322=-y x【答案】A【解析】由题意,得12b c a ==,又222a b c +=,所以2,1a b ==,所以双曲线的方程为22141x y -=,选A .考点:双曲线渐近线【母题原题5】【2015天津,文5】已知双曲线22221(0,0)x y a b a b-=>>的一个焦点为(2,0)F ,且双曲线的渐近线与圆()222y 3x -+=相切,则双曲线的方程为( )A .221913x y -=B .221139x y -=C .2213x y -=D .2213y x -=【答案】D【考点定位】圆与双曲线的性质及运算能力.【名师点睛】本题是圆与双曲线的交汇题,虽有一定的综合性,但方法容易想到,仍属于基础题.不过要注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.【命题意图】本类题通常主要考查对椭圆的离心率、椭圆的几何性质、双曲线的离心率、双曲线的几何性质、双曲线的渐近线、抛物线的几何性质等基本知识的理解,以及对直线与圆锥曲线间的交点问题(含切线问题)、与圆锥曲线定义有关的问题、与曲线有关的最值问题(含三角形和四边形面积)等知识的理解与简单的应用.【命题规律】这类试题在考查题型上,通常基本以选择题与填空题的形式出现,也会出现在解答题中第一问,难度一般中等,有时中等偏上,一般不会作为把关题,在考查内容上一般以求离心率,求双曲线的渐近线,求最值,求范围,利用性质求曲线方程等,着重考查对基本概念和基本性质的理解与应用,题型稳定,中规中矩,不偏不怪,内容及位置也很稳定,计算量比过去减少,但思考量增大,思维层次的要求并没有降低.若再按以前的“解几套路”解题显然难以成功.【答题模板】以2017年高考题为例,求取椭圆或双曲线离心率,一般可由下面三个方面着手: (1)根据已知条件确定,,a b c 的等量关系,然后把b 用,a c 代换,求ca的值; (2)已知条件构造出,,a b c 的等式或不等式,结合222a b c =+化出关于,a c 的式子,再利用c e a=,化成关于e 的等式或不等式,从而解出e 的值或范围.(3)求离心率的范围问题关键是确立一个关于,,a b c 的不等式,再根据,,a b c 的关系消掉b 得到关于,a c 的不等式,由这个不等式确定,a c 的关系.总体来说,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出,a c ,然后根据离心率的定义式求解;二是根据已知条件构造关于,a c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数. 【方法总结】1.圆锥曲线的定义反映了它们的基本特征,理解定义是掌握其性质的基础.因此,对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求1212PF PF F F +>,双曲线的定义中要求1212PF PF F F -<,抛物线的定义的实质可归结为“一动三定”:一个动点M ;一个定点F (抛物线的焦点);一条定直线l (抛物线的准线);一个定值1(点M 与定点F 的距离和它到定直线l 的距离之比等于1),常常利用抛物线的定义将抛物线上一点到焦点的焦半径问题与焦点到准线的距离问题互相转化.2.求圆锥曲线标准方程常用的方法:(1)定义法;(2)待定系数法,若顶点在原点,对称轴为坐标轴的抛物线,可设为22y ax =或22x ay = (0a ≠),避开对焦点在哪个半轴上的分类讨论,此时a 不具有p 的几何意义.若椭圆的焦点位置不确定,椭圆的标准方程可设为221(0,0)x y m n m n+=>>,也可设椭圆方程为221(0,0)Ax By A B +=>>,若双曲线的焦点位置不确定,双曲线的标准方程可设为221(0)x y mn m n-=>,也可设双曲线的方程为221Ax By +=,其中,A B 异号且都不为0,若已知双曲线的渐近线方程为0ax bx ±=,则可设双曲线的标准方程为ax bx λ±=(0λ≠)可避免分类讨论,这样可以避免讨论和繁琐的计算.3.求解与二次曲线性质有关的问题时要结合图像进行分析,即使不画图形,思考时也要联想到图像.对椭圆当涉及到顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.对双曲线应围绕双曲线中的“六点”(两个顶点、两个焦点、虚轴的两个端点),“四线”(两条对称轴,两条渐近线),“两形”(中心、焦点、虚轴端点构成的特征三角形,双曲线上一点与两个交点构成的三角形),研究它们之间的关系,挖掘出它们之间的内在联系.4.椭圆取值范围实质实质是椭圆上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用,椭圆上一点到椭圆一个焦点的距离的取值范围为[,a c a c -+].在椭圆中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在椭圆上,称该三角形为焦点三角形,则三角形12F PF 的周长为定值等于22a c +,面积等于212tan2F PF b ∠,其中b 是短半轴的长;过焦点垂直于对称轴的弦长即通径长为22b a.双曲线取值范围实质实质是双曲线上点的横坐标、纵坐标的取值范围,在求解一些最值、取值范围以及存在性、判断性问题中有着重要的应用,双曲线上一点到双曲线一个焦点的距离的取值范围为[,c a -+∞).在双曲线中,如果一个三角形的两个顶点是焦点12,F F ,另一个顶点P 在双曲线上,称该三角形为焦点三角形,则面积等于212tan2b F PF ∠,其中b 是虚半轴的长;过焦点垂直于对称轴的弦长即通径长为22b a .抛物线中:抛物线上一点11(,)P x y ,F 为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p >0):22112:;2:22pp y px PF x y px PF x ==+=-=-+ 22112:;2:22ppx py PF y x py PF y ==+=-=-+.焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式.设过抛物线y2=2px (p >O )的焦点F 的弦为AB ,A 11(,)x y ,B 22(,)x y , AB 的倾斜角为α,则有12AB x x p =++或22sin pAB α=,以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求.在抛物线中,以抛物线的焦点弦为直径的圆与该抛物的对应准线相切.5.求椭圆、双曲线的离心率,关键是根据已知条件确定,,a b c 的等量关系,然后把b 用,a c 代换,求ca的值;椭圆求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合222a b c =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.离心率e 与,a b 的关系为:222222c a b e a a -===221b a -⇒ba=.双曲线求离心率问题,关键是先根据题中的已知条件构造出,,a b c 的等式或不等式,结合222c b a =+化出关于,a c 的式子,再利用ce a=,化成关于e 的等式或不等式,从而解出e 的值或范围.离心率e 与,a b 的关系为:222222c a b e a a +===221b a +⇒b a =,在双曲线中由于221b e a ⎛⎫=+ ⎪⎝⎭,故双曲线的渐近线与离心率密切相关.求离心率的范围问题关键是确立一个关于,,a b c 的不等式,再根据,,a b c 的关系消掉b 得到关于,a c 的不等式,由这个不等式确定,a c 的关系.求解圆锥曲线的离心率,基本思路有两种:一是根据圆锥曲线的定义、方程、性质等分别求出,a c ,然后根据离心率的定义式求解;二是根据已知条件构造关于,a c 的方程,多为二次齐次式,然后通过方程的变形转化为离心率e 的方程求解,要灵活利用椭圆、双曲线的定义求解相关参数.学--科/网6.抛物线22y px =(0p >)上点的坐标可设为(20,2y y p),在计算时,可以降低计算量. 7. 焦点三角形问题的求解技巧(1)所谓焦点三角形,就是以椭圆或双曲线的焦点为顶点,另一个顶点在椭圆或双曲线上的三角形. (2)解决此类问题要注意应用三个方面的知识: ①椭圆或双曲线的定义; ②勾股定理或余弦定理;③基本不等式与三角形的面积公式.1.【2018年天津市河西区高三三模】已知双曲线:的虚轴长为,右顶点到双曲线的一条渐近线的距离为,则双曲线的方程为()A.B.C.D.【答案】A则双曲线的方程为,故选A.【名师点睛】用待定系数法求双曲线方程的一般步骤;①作判断:根据条件判断双曲线的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.2.【天津市部分区2018年高三质量调查(二)】已知双曲线的一条渐近线方程是,且它的一个焦点在抛物线的准线上,则双曲线的方程是()A.B.C.D.【答案】C【解析】分析:由双曲线的一条渐近线方程得,求出抛物线y2=24x的准线l:x=﹣6,得到双曲线的半焦距c=6,由此利用双曲线的简单性质能求出双曲线的方程.详解:∵双曲线=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线l:x=﹣6上,∴,解得a=3,b=3,∴双曲线方程为.故选C.【名师点睛】本题考查双曲线的简单几何性质,考查求双曲线方程,属于基础题.3.【天津市河东区2018届高三高考二模】双曲线方程为,其中,双曲线的渐近线与圆相切,则双曲线的离心率为()A.B.C.D.【答案】A结合题意有,结合的条件,求得,所以,所以有,故选A.【名师点睛】该题考查的是直线与圆的位置关系以及双曲线的离心率问题,在解题的过程中,需要根据双曲线的方程求得渐近线的方程,利用圆的方程得到圆心的坐标和半径长,利用直线与圆相切,求得圆心到直线的距离等于半径,应用点到直线的距离等于半径求得相应的参数的值,最后应用双曲线的离心率公式求得其离心率的大小.4.【2018年天津市河北区高三数学二模】已知点A(-1,0)、B(1,0)分别为双曲线的左、右顶点,点M在双曲线上,且△ABM是顶角为120°的等腰三角形,则双曲线的方程为()A.B.C.D.【答案】D∴点M的横坐标为,纵坐标为,∴点M的坐标为.又点在双曲线上,∴,解得,∴双曲线的方程为.故选D.【名师点睛】对于圆锥曲线中的特殊几何图形的问题,解题时要根据题意将几何图形的性质转化为曲线中的有关系数的问题处理,如根据等腰三角形可得线段相等、底边上的高与底边垂直等.5.【天津市十二校2018年高三二模联考】双曲线的左、右焦点分别为,,点,在双曲线上,且,,线段交双曲线于点,,则该双曲线的离心率是()A.B.C.D.【答案】D【解析】分析:运用双曲线的对称性结合,可设出的坐标,由可得的坐标,再由在双曲线上,满足双曲线的方程,消去参数可得从而可得到双曲线的离心率.消去整理可得,,故选D .【名师点睛】本题主要考查利用双曲线的简单性质求双曲线的离心率,属于中档题.求解与双曲线性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、实轴、虚轴、渐近线等双曲线的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.求离心率问题应先将 用有关的一些量表示出来,再利用其中的一些关系构造出关于的等式,从而求出的值.6.【2018届天津市滨海新区七所重点学校高三毕业班联考】已知双曲线22221x y a b-= (0,0)a b >>的两条渐近线与抛物线22(0)y px p =>的准线分别交于A ,B 两点,O 为坐标原点.若双曲线的离心率为2,ABO ∆的面积为( )A .(1,02) B .) C .10(,) D .)【答案】D【解析】双曲线离心率2,b e a ===抛物线的准线2p x =-,,22p bp A a ⎛⎫- ⎪⎝⎭2218,224ABObp p bp S p p a a∆=⨯⨯====)F .选D .【点睛】圆锥曲线是历年高考命题的重点和热点,也是一大难点.命题的热点主要有四个方面:一是直线和圆锥曲线的位置关系中的基本运算;二是最值与范围问题;三是定点与定值问题;四是有关探究性的问题.命题多与函数、方程、不等式、数列、向量等多种知识综合,考查考生的各种数学思想与技能,因此也是高考的难点.本题是圆锥曲中的基本量运算.7.【2018天津市十二重点中学高三毕业班联考(一)】设P 为双曲线()2222:1,0x y C a b a b-=>上一点,12,F F 分别为双曲线C 的左、右焦点,212PF F F ⊥,若12PF F ∆的外接圆半径是其内切圆半径的176倍,则双曲线C 的离心率为( ) A .2 B .4 C .2或3 D .4或53【答案】D【解析】∵12,F F 分别为双曲线C 的左、右焦点,∴()1,0F c -,()2,0F c ,∵212PF F F ⊥,∴2317200e e -+=,∴53e =或4,故选D . 【名师点睛】本题主要考查双曲线的标准方程与几何性质.求解双曲线的离心率问题的关键是利用图形中的几何条件构造,,a b c 的关系,处理方法与椭圆相同,但需要注意双曲线中,,a b c 与椭圆中,,a b c 的关系不同.求双曲线离心率的值或离心率取值范围的两种方法:(1)直接求出,a c 的值,可得e ;(2)建立,,a b c 的齐次关系式,将b 用,a c 表示,令两边同除以a 或2a 化为e 的关系式,解方程或者不等式求值或取值范围.8.【天津市十二重点中学2018年高三毕业班联考】已知双曲线的右焦点到抛物线的准线的距离为,点是双曲线的一条渐近线与抛物线的一个交点,则双曲线的标准方程为( )A .B .C .D .【答案】D 【解析】将代入,可得,抛物线方程为,准线方程为,则,又,可得,双曲线方程为,故选D .9.【陕西省西安市长安区第一中学上学期期末考】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF 是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A .221412x y -=B .221124x y -=C .2213x y -=D .2213y x -=【答案】D【考点】 双曲线的标准方程【名师点睛】利用待定系数法求圆锥曲线方程是高考常见题型,求双曲线方程最基础的方法就是依据题目的条件列出关于,,a b c 的方程,解方程组求出,a b ,另外求双曲线方程要注意巧设双曲线(1)双曲线过两点可设为221(0)mx ny mn -=>,(2)与22221x y a b-=共渐近线的双曲线可设为()22220x y a bλλ-=≠,(3)等轴双曲线可设为()220x y λλ-=≠等,均为待定系数法求标准方程. 10.【2018年天津市南开中学高三模拟】已知抛物线的参数方程为(为参数),其中,焦点为,准线为,过抛物线上一点作的垂线,垂足为.若,点的横坐标为3,则__________.【答案】2.【解析】分析:把抛物线的参数方程化为普通方程,则由抛物线的定义以及,可得为等边三角形,设点的坐标为,则,把点的坐标代入抛物线的方程再由,可得为等边三角形,设点的坐标为,则点,把点的坐标代入抛物线的方程可得,即,再由,可得,即,解得或(舍去),故答案是2.【名师点睛】该题考查的是有关抛物线方程的求解问题,在解题的过程中,涉及到的知识点有抛物线的定义,有关三角形的边的关系,对应的等量关系式的建立,最后求得结果.11.【2018年天津市河西区高三三模】在极坐标系中,直线的极坐标方程为,设抛物线的参数方程为(为参数,),其焦点为,点()是抛物线上一点,圆与线段相交于点,且被直线截得的弦长为,若,则__________.【答案】1因为,又,所以,所以,所以,解得,则.【名师点睛】1.进行曲线的参数方程和直角坐标方程的互化时,要注意参数的选择,因为参数的不同,导致转化后的方程和曲线不同;2.涉及抛物线的过焦点的弦时,往往利用抛物线的定义将抛物线的点到焦点的距离转化为到准线的距离,如抛物线上的点到焦点的距离为.12.【天津市河东区2018届高三高考二模】抛物线焦点为F,原点为O,过抛物线焦点垂直于轴的直线与抛物线交于点P,若,则的值为_______.【答案】6【解析】分析:首先根据题意,求得抛物线的焦点坐标,之后将横坐标代入抛物线方程,求得点P 的纵坐标,从而得到点P的坐标,利用两点间距离公式得到p所满足的等量关系,从而求得结果.详解:根据题意得,将代入抛物线方程,求得,从而有,因为,得到,解得.【名师点睛】该题考查的是有关曲线方程中参数的求解问题,在解题的过程中,需要把握住题的条件,因为等量关系就有,所以关键是点P的坐标,利用点p的条件,得到其横坐标,代入抛物线方程,求得点P的纵坐标,之后应用两点间距离公式求得结果.13.【2018年天津市河北区高三数学二模】若点在以F为焦点的抛物线上,则等于_________.【答案】4【名师点睛】抛物线的定义有两个作用,一是当已知曲线是抛物线时,抛物线上的点M 满足定义,它到准线的距离为d ,则|MF |=d ,由此可解决有关距离、最值、弦长等问题;二是利用动点满足的几何条件符合抛物线的定义,从而得到动点的轨迹是抛物线.14.【2018天津市和平区上学期期末考试】若双曲线2221613x y p-= (0p > )的左焦点在抛物线22y px = 的准线上,则p = __________.【答案】4【解析】双曲线()22216103x y p p -=>的左焦点⎛⎫⎪ ⎪⎝⎭,双曲线()22216103x y p p -=>的左焦点在抛物线22y px =2p=,解得4p =,故答案为4.。
高考数学圆锥曲线专题练习及答案解析

X = —½距离为6,点P,Q是椭圆上的两个动点©
C
(1)求椭圆C的方程;
(2)若直线AP丄40,求证:直线P0过泄点R,并求出R点的坐标。
【例二・】已知一动圆经过点M(2,0),且在y轴上截得的弦长为4,设该动圆圆心的轨迹为曲 线C。
(1)求曲线C的方程;
(2)过点N(1,O)任意作两条互相垂直的直线∕1,∕2,分别交曲线C于不同的两点A,B和
的焦点,直线4F的斜率为少,O为坐标原点。
3
(1)求E方程;
(2)设过点A的直线/与E相交于PQ两点,当AOP0的面积最大时,求/的方
程。
专题练习
1•在平面直角坐标系XOy中,已知点A(O,—OB点在直线y = -3±, M点满足
MB//QA,莎•亦=屁•鬲M点的轨迹为曲线C。
(1)求C的方程:
(2)P为C上的动点,/为C在P点处的切线,求O点到/距离的最小值。
10.抛汤钱屮阿基来德三角形鲂纟见般质及疝用
11.(S傩曲钱屮的戒切後龜哩
锥曲线中的求轨迹方程问题
解题技巧
求动点的轨迹方程这类问题可难可易是高考中的髙频题型,求轨迹方程的主要方法有直译法、
相关点法、泄义法、参数法等。它们的解题步骤分别如下:
1.直译法求轨迹的步骤:
(1)设求轨迹的点为P(χ,y);
(2)由已知条件建立关于x,y的方程;
D,Q设线段ABQE的中点分别为几。・
①求证:直线P0过左点R,并求出泄点/?的坐标;
②求PGl的最小值。
专题练习
1.设椭圆E:丄y+ =y=l(α> b > 0)的右焦点到直线x-y + 2√z2=0的距离为3,且过点Cr Ir
I
2018年高考数学—圆锥曲线(解答+答案)

2018年高考数学——圆锥曲线解答1.(18北京理(19)(本小题14分))已知抛物线C :2y =2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (Ⅰ)求直线l 的斜率的取值范围;(Ⅱ)设O 为原点,QM QO λ=u u u u r u u u r ,QN QO μ=u u u r u u u r ,求证:11λμ+为定值.2.(18江苏18.(本小题满分16分))如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.3.(18全国二理19.(12分))设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.4.(18全国三理20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,. (1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:FA u u u r ,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.5.18全国一理19.(12分)设椭圆22:12x C y +=的右焦点为F ,过F 的直线l 与C 交于,A B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:OMA OMB ∠=∠.6.(18天津理(19)(本小题满分14分))设椭圆22221x x a b+=(a >b >0)的左焦点为F ,上顶点为B .A的坐标为(,0)b,且FB AB ⋅=(I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q .若4AQ AOQ PQ=∠(O 为原点) ,求k 的值.7.(18浙江21.(本题满分15分))如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足PA ,PB 的中点均在C 上.(Ⅰ)设AB 中点为M ,证明:PM 垂直于y 轴;(Ⅱ)若P 是半椭圆x 2+24y =1(x <0)上的动点,求△P AB 面积的取值范围.8.(18北京文(20)(本小题14分))已知椭圆2222:1(0)x y M a b a b +=>>的离心率为63,焦距为22.斜率为k 的直线l与椭圆M 有两个不同的交点A ,B . (Ⅰ)求椭圆M 的方程;(Ⅱ)若1k =,求||AB 的最大值;(Ⅲ)设(2,0)P -,直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D .若C ,D 和点71(,)42Q - 共线,求k .9.(18全国三文20.(12分))已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点.线段AB 的中点为(1,)(0)M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且FP FA FB ++=0u u u r u u u r u u u r.证明:2||||||FP FA FB =+u u u r u u u r u u u r .10.(18全国一文20.(12分))设抛物线22C y x =:,点()20A ,,()20B -,,过点A 的直线l 与C 交于M ,N 两点. (1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:ABM ABN =∠∠.参考答案:1.解:(Ⅰ)因为抛物线y 2=2px 经过点P (1,2), 所以4=2p ,解得p =2,所以抛物线的方程为y 2=4x . 由题意可知直线l 的斜率存在且不为0, 设直线l 的方程为y =kx +1(k ≠0). 由241y xy kx ⎧=⎨=+⎩得22(24)10k x k x +-+=. 依题意22(24)410k k ∆=--⨯⨯>,解得k<0或0<k<1. 又PA ,PB 与y 轴相交,故直线l 不过点(1,-2).从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (Ⅱ)设A (x 1,y 1),B (x 2,y 2).由(I )知12224k x x k -+=-,1221x x k =. 直线PA 的方程为y –2=1122(1)1y y x x --=--.令x =0,得点M 的纵坐标为1111212211M y kx y x x -+-+=+=+--. 同理得点N 的纵坐标为22121N kx y x -+=+-. 由=QM QO λuuu r uuu r ,=QN QO μuuu r uuu r得=1M y λ-,1N y μ=-.所以2212121212122224112()111111=2111(1)(1)11M N k x x x x x x k k y y k x k x k x x k k λμ-+---++=+=+=⋅=⋅------. 所以11λμ+为定值.2.解:(1)因为椭圆C的焦点为12(),F F -,可设椭圆C 的方程为22221(0)x y a b a b +=>>.又点1)2在椭圆C 上,所以2222311,43,a ba b ⎧+=⎪⎨⎪-=⎩,解得224,1,a b ⎧=⎪⎨=⎪⎩ 因此,椭圆C 的方程为2214x y +=.因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于0000(),,(00)P x y x y >>,则22003x y +=, 所以直线l 的方程为0000()x y x x y y =--+,即0003x y x y y =-+. 由220001,43,x y x y x y y ⎧+=⎪⎪⎨⎪=-+⎪⎩,消去y ,得222200004243640()x y x x x y +-+-=.(*) 因为直线l 与椭圆C 有且只有一个公共点,所以222222000000()()(24)(44364820)4x x y y y x ∆=--+-=-=. 因为00,0x y >,所以002,1x y ==. 因此,点P 的坐标为(2,1). ②因为三角形OAB 的面积为26,所以21 26AB OP ⋅=,从而427AB =. 设1122,,()(),A x y B x y ,由(*)得22000001,22448(2)x y x x ±-=,所以2222121()()x B y y x A =-+- 222000222200048(2)(1)(4)x y x y x y -=+⋅+.因为22003x y +=,所以22022016(2)32(1)49x AB x -==+,即42002451000x x -+=, 解得22005(202x x ==舍去),则2012y =,因此P 的坐标为102(,).综上,直线l 的方程为532y x =-+.学*科网3.解:(1)由题意得(1,0)F ,l 的方程为(1)(0)y k x k =->.设1221(,),(,)A y x y x B , 由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=.216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=.由题设知22448k k+=,解得1k =-(舍去),1k =. 因此l 的方程为1y x =-.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆的圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=.4.解:(1)设1221(,),(,)A y x y x B ,则222212121,14343y x y x +=+=. 两式相减,并由1221y x y k x -=-得1122043y x y k x +++⋅=. 由题设知12121,22x y x ym ++==,于是 34k m=-.① 由题设得302m <<,故12k <-. (2)由题意得(1,0)F ,设33(,)P x y ,则331122(1,)(1,)(1,)(0,0)y x x y x y -+-+-=.由(1)及题设得3321213()1,()20y y x x y x m =-+==-+=-<.又点P 在C 上,所以34m =,从而3(1,)2P -,3||2FP =u u u r .于是1||22x FA ===-u u u r .同理2||22xFB =-u u u r .所以121||||4()32FA FB x x +=-+=u u u r u u u r .故2||||||FP FA FB =+u u u r u u u r u u u r ,即||,||,||FA FP FB u u u r u u u r u u u r成等差数列.设该数列的公差为d ,则1212||||||||||2FB FA x x d =-=-=u u u r u u u r .②将34m =代入①得1k =-. 所以l 的方程为74y x =-+,代入C 的方程,并整理得2171404x x -+=.故121212,28x x x x +==,代入②解得||28d =.所以该数列的公差为28或28-.5解:(1)由已知得(1,0)F ,l 的方程为x =1.由已知可得,点A 的坐标为(1,2或(1,2-.所以AM 的方程为y x =+y x =.(2)当l 与x 轴重合时,0OMA OMB ∠=∠=︒.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以OMA OMB ∠=∠.当l 与x 轴不重合也不垂直时,设l 的方程为(1)(0)y k x k =-≠,1221(,),(,)A y x y x B ,则12x x <<MA ,MB 的斜率之和为212122MA MB x x y yk k +=+--. 由1122,y k k x y k x k =-=-得121212(23()42)(2)MA MB x x x x k k x x kk k -+++=--.将(1)y k x =-代入2212x y +=得 2222(21)4220k x k x k +-+-=.所以,21221222422,2121x x x k k k x k -+==++. 则3131322244128423()4021k k k k kk k k k x x x x --++-++==+. 从而0MA MB k k +=,故MA ,MB 的倾斜角互补,所以OMA OMB ∠=∠. 综上,OMA OMB ∠=∠.6.(Ⅰ)解:设椭圆的焦距为2c ,由已知知2259c a =,又由a 2=b 2+c 2,可得2a =3b .由已知可得,FB a =,AB =,由FB AB ⋅=,可得ab =6,从而a =3,b =2.所以,椭圆的方程为22194x y +=. (Ⅱ)解:设点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2).由已知有y 1>y 2>0,故12sin PQ AOQ y y ∠=-.又因为2sin y AQ OAB =∠,而∠OAB =π4,故2AQ =.由AQ AOQ PQ=∠,可得5y 1=9y 2. 由方程组22194y kx x y =⎧⎪⎨+=⎪⎩,,消去x,可得1y =AB 的方程为x +y –2=0,由方程组20y kx x y =⎧⎨+-=⎩,,消去x ,可得221ky k =+.由5y 1=9y 2,可得5(k +1)=,两边平方,整理得25650110k k -+=,解得12k =,或1128k =. 所以,k 的值为111228或.7.(Ⅰ)设00(,)P x y ,2111(,)4A y y ,2221(,)4B y y . 因为PA ,PB 的中点在抛物线上,所以1y ,2y 为方程202014()422y x y y ++=⋅即22000280y y y x y -+-=的两个不同的实数根. 所以1202y y y +=. 因此,PM 垂直于y 轴.(Ⅱ)由(Ⅰ)可知120212002,8,y y y y y x y +=⎧⎪⎨=-⎪⎩ 所以2221200013||()384PM y y x y x =+-=-,12||y y -= 因此,PAB △的面积32212001||||4)24PABS PM y y y x =⋅-=-△. 因为220001(0)4y x x +=<,所以2200004444[4,5]y x x x -=--+∈.因此,PAB △面积的取值范围是.8.【解析】(Ⅰ)由题意得2c =,所以c =又3c e a ==,所以a =2221b a c =-=, 所以椭圆M 的标准方程为2213x y +=.(Ⅱ)设直线AB 的方程为y x m =+,由2213y x m x y =+⎧⎪⎨+=⎪⎩消去y 可得2246330x mx m ++-=, 则2223644(33)48120m m m ∆=-⨯-=->,即24m <,设11(,)A x y ,22(,)B x y ,则1232m x x +=-,212334m x x -=,则12|||2AB x x =-==,易得当20m =时,max ||AB ,故||AB. (Ⅲ)设11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y ,则221133x y += ①,222233x y += ②,又(2,0)P -,所以可设1112PA y k k x ==+,直线PA 的方程为1(2)y k x =+, 由122(2)13y k x x y =+⎧⎪⎨+=⎪⎩消去y 可得2222111(13)121230k x k x k +++-=, 则2113211213k x x k +=-+,即2131211213k x x k =--+, 又1112y k x =+,代入①式可得13171247x x x --=+,所以13147y y x =+,所以1111712(,)4747x y C x x --++,同理可得2222712(,)4747x y D x x --++.故3371(,)44QC x y =+-u u u r ,4471(,)44QD x y =+-u u u r ,因为,,Q C D 三点共线,所以34437171()()()()04444x y x y +--+-=,将点,C D 的坐标代入化简可得12121y y x x -=-,即1k =. 9..解:(1)设11()A x y ,,22()B x y ,,则2211143x y +=,2222143x y +=.两式相减,并由1212=y y k x x --得1212043x x y y k +++⋅=. 由题设知1212x x +=,122y y m +=,于是34k m=-. 由题设得302m <<,故12k <-. (2)由题意得F (1,0).设33()P x y ,,则 331122(1)(1)(1)(00)x y x y x y -+-+-=,,,,.由(1)及题设得3123()1x x x =-+=,312()20y y y m =-+=-<. 又点P 在C 上,所以34m =,从而3(1)2P -,,3||=2FP uu r .于是1||22x FA ==-uu r .同理2||=22xFB -uu r .所以1214()32FA FB x x +=-+=uu r uu r .故2||=||+||FP FA FB uu r uu r uu r .10.解:(1)当l 与x 轴垂直时,l 的方程为x =2,可得M 的坐标为(2,2)或(2,–2).所以直线BM 的方程为y =112x +或112y x =--.(2)当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为(2)(0)y k x k =-≠,M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由2(2)2y k x y x=-⎧⎨=⎩,得ky 2–2y –4k =0,可知y 1+y 2=2k ,y 1y 2=–4.直线BM ,BN 的斜率之和为 1221121212122()22(2)(2)BM BN y y x y x y y y k k x x x x ++++=+=++++.① 将112y x k =+,222yx k=+及y 1+y 2,y 1y 2的表达式代入①式分子,可得 121221121224()882()0y y k y y x y x y y y k k++-++++===.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM +∠ABN .综上,∠ABM=∠ABN.。
(word完整版)2018年高考天津卷理科数学真题及答案,推荐文档

2018年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第Ⅰ卷1至2页,第Ⅱ卷3至5页。
答卷前,考生务必将自己的姓名、准考证号填写在答题考上,并在规定位置粘贴考试用条形码。
答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。
考试结束后,将本试卷和答题卡一并交回。
祝各位考生考试顺利!第I 卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
2.本卷共8小题,每小题5分,共40分。
参考公式:如果事件A ,B 互斥,那么()()()P A B P A P B =+U . 如果事件A ,B 相互独立,那么()()()P AB P A P B = .棱柱的体积公式V Sh =,其中S 表示棱柱的底面面积,h 表示棱柱的高.棱锥的体积公式13V Sh =,其中S 表示棱锥的底面面积,h 表示棱锥的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ð (A) {01}x x <≤ (B) {01}x x << (C) {12}x x ≤< (D) {02}x x <<(2)设变量x ,y 满足约束条件5,24,1,0,x y x y x y y +≤⎧⎪-≤⎪⎨-+≤⎪⎪≥⎩ 则目标函数35z x y =+的最大值为(A) 6 (B) 19 (C) 21 (D) 45(3)阅读如图的程序框图,运行相应的程序,若输入N 的值为20,则输出T 的值为(A) 1 (B) 2 (C) 3 (D) 4(4)设x ∈R ,则“11||22x -<”是“31x <”的 (A)充分而不必要条件 (B)必要而不充分条件 (C)充要条件(D)既不充分也不必要条件(5)已知2log e =a ,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为(A) a b c >> (B) b a c >> (C) c b a >> (D) c a b >>(6)将函数sin(2)5y x π=+的图象向右平移10π个单位长度,所得图象对应的函数(A)在区间35[,]44ππ上单调递增 (B)在区间3[,]4ππ上单调递减 (C)在区间53[,]42ππ上单调递增 (D)在区间3[,2]2ππ上单调递减(7)已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点. 设A ,B 到双曲线同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为(A) 221412x y -=(B) 221124x y -=(C) 22139x y -=(D) 22193x y -=(8)如图,在平面四边形ABCD 中,AB BC ⊥,AD CD ⊥,120BAD ∠=︒,1AB AD ==. 若点E 为边CD 上的动点,则⋅uu u r uurAE BE 的最小值为(A)2116(B) 32 (C)2516(D) 3第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆锥曲线之高考链接 (一)天津理科18年(19)(本小题满分14分)设椭圆22221x x a b +=(a >b >0)的左焦点为F ,上顶点为B . 已知椭圆的离心率为53,点A 的坐标为(,0)b ,且62FB AB ⋅=. (I )求椭圆的方程;(II )设直线l :(0)y kx k =>与椭圆在第一象限的交点为P ,且l 与直线AB 交于点Q . 若52sin 4AQ AOQ PQ=∠(O 为原点) ,求k 的值.17年(19)(本小题满分14分) 设椭圆22221(0)x y a b a b+=>>的左焦点为F ,右顶点为A ,学|科网离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程. 16年(19)(本小题满分14分)设椭圆22ax +33y =1(a >3)的右焦点为F ,右顶点为A.已知FA e OA OF 311=+,其中O 为原点,e 为椭圆的离心率。
(I)求椭圆的方程;(II)设过点A 的直线l 与椭圆交于点B (点B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H .若B F ⊥HF ,且∠MOA ≤∠MAO,求直线l 的斜率的取值范围。
15年19. (本小题满分14分)已知椭圆2222+=1(0)x y a b a b >>的左焦点为F -c (,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆422+4b x y =截得的线段的长为c ,43|FM|=3.(I)求直线FM 的斜率; (II)求椭圆的方程;(III)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.14(18)(本小题满分13分)设椭圆22221x ya b+=(0a b>>)的左、右焦点为12,F F,右顶点为A,上顶点为B.已知1232AB F F=.(Ⅰ)求椭圆的离心率;(Ⅱ)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点1F,经过原点的直线l与该圆相切. 求直线的斜率.13年(18) (本小题满分13分)设椭圆22221(0)x ya ba b+=>>的左焦点为F, 离心率为33, 过点F且与x 轴垂直的直线被椭圆截得的线段长为433.(Ⅰ) 求椭圆的方程;(Ⅱ) 设A, B分别为椭圆的左,右顶点, 过点F且斜率为k的直线与椭圆交于C, D两点. 若··8AC DB AD CB+=, 求k的值. 12年(19)(本小题满分14分)已知椭圆错误!未找到引用源。
(a>b>0),点P(错误!未找到引用源。
,错误!未找到引用源。
)在椭圆上。
(I)求椭圆的离心率。
(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|求直线OQ的斜率的值。
11年18.(本小题满分13分)设椭圆22221(0)x ya ba b+=>>的左、右焦点分别为F1,F2。
点(,)P a b满足212||||.PF F F=(Ⅰ)求椭圆的离心率e;(Ⅱ)设直线PF2与椭圆相交于A,B两点,若直线PF2与圆22(1)(3)16x y++-=相交于M,N两点,且5||||8MN AB=,求椭圆的方程。
10年(21)(本小题满分14分)已知椭圆22221x y a b +=(a>b>0)的离心率e=32,连接椭圆的四个顶点得到的菱形的面积为4.(Ⅰ)求椭圆的方程;(Ⅱ)设直线l 与椭圆相交于不同的两点A 、B ,已知点A 的坐标为(-a ,0).(i )若42AB 5||=,求直线l 的倾斜角; (ii )若点Q y 0(0,)在线段AB 的垂直平分线上,且QA QB=4.求y 0的值.09年22. (本小题满分14分) 已知椭圆()222210x ya b a b +=>>的两个焦点分别为()1,0F c -和()2,0F c ,过点2,0a E c ⎛⎫ ⎪⎝⎭的直线与椭圆相交于,A B 两点,且1212//,2F A F B F A F B = (1)求椭圆的离心率 (2)求直线AB 的斜率(3)设点C 与点A 关于坐标原点对称,直线2F B 上有一点()(),0H m n m ≠在1AFC ∆的外接圆上,求nm的值08年(22)(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是()0,31-F ,一条渐近线的方程是025=-y x . (Ⅰ)求双曲线C 的方程;(Ⅱ)若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为281,求k 的取值范围.07年(22)(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明2a b =;(Ⅱ)求(0)t b ∈,使得下述命题成立:设圆222x y t +=上任意点00()M x y ,处的切线交椭圆于1Q ,2Q 两点,则12OQ OQ ⊥.06年22.(本小题满分14分) 如图,双曲线12222=-by a x (0,0>>b a )的离心率为25,21F F 、分别为左、右焦点,M 为左准线与渐近线在第二象限内的交点,且4121-=⋅M F M F 。
(1)求双曲线的方程;(2)设A (0,m )和B (01,m)(10<<m )是x 轴上的两点,过点A 作斜率不为0的直线l ,使得l 交双曲线于C 、D 两点,作直线BC 交双曲线于另一点E ,证明直线DE 垂直于x 轴。
05年22.(本小题满分14分)抛物线C 的方程为y =ax 2(a <0),过抛物线C 上一点P (x 0,y 0)(x 0≠0)作斜率为k 1,k 2的两条直线分别交抛物线C 于A (x 1,y 1)、B (x 2,y 2)两点(P 、A 、B 三点互不相同)且满足k 2+λk 1=0(λ≠0且λ≠-1).(I )求抛物线C 的焦点坐标和准线方程; (II )设直线AB 上一点M ,满足=λ,证明线段PM 的中点在y 轴上; (III )当λ=1时,若点P 的坐标为(1,-1),求∠PAB 为钝角时点A 的纵坐标y 1的取值范围04年22.(本小题满分14分)椭圆的中心是原点O ,它的短轴长为22,相应于焦点)0,(c F )0(>c 的准线l 与x 轴相交于点A ,FA OF 2=,过点A 的直线与椭圆相交于P 、Q 两点。
(1)求椭圆的方程及离心率;(2)若0=⋅OQ OP ,求直线PQ 的方程。
[04高考] 22.(本小题满分14分)椭圆的中心是原点O ,它的短轴长为22,相应于焦点)0)(0,(>c c F 的准线l 与x 轴相交于点A ,||2||FA OF =,过点A 的直线与椭圆相交于P 、Q 两点。
(I) 求椭圆的方程及离心率;(II)若,0.=OQ OP 求直线PQ 的方程;(III)设)1(>=λλAQ AP ,过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明FQ FM λ-=。
BM MA(二)文科真题[05高考]21、(本题14分)抛物线C 的方程为()20y ax a =<,过抛物线C 上一点 ()00,P x y (00x ≠)作斜率为12,k k 的两条直线分别交抛物线C 于()11,A x y ,()22,B x y 两点(P 、A 、B 三点互不相同),且满足210k k λ+=(0λ≠≠0且1λ≠)。
(Ⅰ)求抛物线C 的焦点坐标和准线方程(Ⅱ)设直线AB 上一点M ,满足BM MA λ=,证明线段PM 的中点在y 轴上(Ⅲ)当1λ=时,若点P 的坐标为(1,-1),求∠P AB 为钝角时点A 的纵坐标1y 的取值范围。
[06高考] 22、(本题满分14分)如图,以椭圆()012222>>=+b a by a x 的中心O 为圆心,分别以a 和b 为半径作大圆和小圆。
过椭圆右焦点(),0F c ()c b >作垂直于x 轴的直线交大圆于第一象限内的点A .连结OA 交小圆于点B .设直线BF 是小圆的切线.(1)证明ab c =2,并求直线BF 与y 轴的交点M 的坐标;(2)设直线BF 交椭圆于P 、Q 两点,证明212OP OQ b ⋅=.[07高考] 22.(本小题满分14分)设椭圆22221(0)x y a b a b +=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF . (Ⅰ)证明2a b =;(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程.[08高考] (21)(本小题满分14分)已知中心在原点的双曲线C 的一个焦点是()0,31-F ,一条渐近线的方程是025=-y x . (Ⅰ)求双曲线C 的方程;(Ⅱ)若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,线段MN 的垂直平分线与两坐标轴围成的三角形的面积为281,求k 的取值范围.[09高考](21)(本小题满分14分) 以知椭圆22221(0)x y a b a b +=>>的两个焦点分别为12(,0)(,0)(0)F c F c c ->和,过点2(,0)aE c的直线与椭圆相交与,A B 两点,且1212//,2F A F B F A F B =。
(1) 求椭圆的离心率;(2) 求直线AB 的斜率(3) 设点C 与点A 关于坐标原点对称,直线2F B 上有一点(,)(0)H m n m ≠在∆1AFC 的外接圆上,求nm的值[10高考] (20)(本小题满分12分)已知椭圆22221(0x y a b a b +=>>)的离心率32e =,连接椭圆的四个顶点得到的菱形的面积为4。
(1) 求椭圆的方程;(2) 设直线l 与椭圆相交于不同的两点,A B ,已知点A 的坐标为(,0a -),点0(0,)Q y 在线段AB 的垂直平分线上,且4QA QB =,求0y 的值[11高考] 18.(本小题满分13分)在平面直角坐标系xOy 中,点(,)P a b (0)a b >>为动点,12,F F 分别为椭圆22221x y a b+=的左右焦点.已知△12F PF 为等腰三角形. (Ⅰ)求椭圆的离心率e ;(Ⅱ)设直线2PF 与椭圆相交于,A B 两点,M 是直线2PF 上的点,满足2AM BM ⋅=-,求点M 的轨迹方程.[12高考] (19)(本小题满分14分)设椭圆的左、右顶点分别为A ,B ,点P 在椭圆上且异于A ,B 两点,O 为坐标原点.(Ⅰ)若直线AP 与BP 的斜率之积为,求椭圆的离心率; (Ⅱ)若|AP|=|OA|,证明直线OP 的斜率k 满足22221(0)x y a b a b+=>>21-.3>k[13高考] (18) (本小题满分13分) 设椭圆的左焦点为F , 离心率为, 过点F 且与x 轴垂直的直线被椭圆截得的线段长为. (Ⅰ) 求椭圆的方程;(Ⅱ) 设A , B 分别为椭圆的左右顶点, 过点F 且斜率为k 的直线与椭圆交于C , D 两点. 若, 求k 的值.14/ 18.(本小题满分13分)(2014天津,文18)设椭圆2222=1x ya b +(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知1232AB F F =. (1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,222MF =.求椭圆的方程.15/19. 已知椭圆22221(a b 0)x y a b +=>>的上顶点为B ,左焦点为F ,离心率为55,(1)求直线BF 的斜率;(2)设直线BF 与椭圆交于点P (P 异于点B ),故点B 且垂直于BF 的直线与椭圆交于点Q (Q 异于点B )直线PQ 与x 轴交于点M ,|PM|=|MQ|l . 1)求l 的值; 2)若75|PM|sin BQP=9Ð,求椭圆的方程.16/(19)(本小题满分14分)设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率. (Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.22221(0)x y a b a b +=>>33433··8AC DB AD CB +=17/20.(14分)已知椭圆+=1(a>b>0)的左焦点为F(﹣c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为.(I)求椭圆的离心率;(II)设点Q在线段AE上,|FQ|=c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.(i)求直线FP的斜率;(ii)求椭圆的方程.18/(19)(本小题满分14分)设椭圆22221(0)x ya ba b+=>>的右顶点为A,上顶点为B.已知椭圆的离心率为53,||13AB=.(I)求椭圆的方程;(II)设直线:(0)l y kx k=<与椭圆交于,P Q两点,l与直线AB交于点M,且点P,M均在第四象限.若BPM△的面积是BPQ△面积的2倍,求k的值.。