全国卷高考数学圆锥曲线大题集大全
全国卷高考数学圆锥曲线大题(带答案)

全国卷高考数学圆锥曲线大题(带答案)1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程.(Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足:①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ⋅= 求点G 的横坐标的取值范围.2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程.3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是,425=x 其左、右顶点分别 是A 、B ;双曲线1:22222=-b y a x C 的一条渐近线方程为3x -5y=0.(Ⅰ)求椭圆C1的方程及双曲线C2的离心率;(Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若=. 求证:.0=•4. 椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为αa.(1)用半焦距c表示椭圆的方程及tanα;(2)若2<tanα<3,求椭圆率心率e的取值范围.5. 已知椭圆2222byax+(a>b>0)的离心率36=e,过点A(0,-b)和B(a,0)的直线与原点的距离为23(1)求椭圆的方程(2)已知定点E(-1,0),若直线y=kx+2(k≠0)与椭圆交于C D两点问:是否存在k的值,使以CD为直径的圆过E点?请说明理由6. 在直角坐标平面中,ABC ∆的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①0=++GC GB GA MCMB MA ==GM ∥AB(1)求ABC ∆的顶点C 的轨迹方程;(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ⋅的取值范围7. 设R y x ∈,,j i,为直角坐标平面内x 轴.y 轴正方向上的单位向量,若jy i x b j y i x a)2(,)2(-+=++=,且8||||=+b a(Ⅰ)求动点M(x,y)的轨迹C 的方程;(Ⅱ)设曲线C 上两点A .B ,满足(1)直线AB 过点(0,3),(2)若OB OA OP +=,则OAPB 为矩形,试求AB 方程.8. 已知抛物线C :)0,0(),(2>≠+=n m n x m y 的焦点为原点,C 的准线与直线 )0(02:≠=+-k k y kx l 的交点M 在x 轴上,l 与C 交于不同的两点A 、B ,线段AB 的垂直平分线交x 轴于点N (p ,0).(Ⅰ)求抛物线C 的方程; (Ⅱ)求实数p 的取值范围;(Ⅲ)若C 的焦点和准线为椭圆Q 的一个焦点和一条准线,试求Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴AA 1在x 轴上.以A 、A 1为焦点的双曲线交椭圆于C 、D 、D 1、C 1四点,且|CD|=21|AA 1|.椭圆的一条弦AC 交双曲线于E ,设λ=EC AE ,当4332≤≤λ时,求双曲线的离心率e 的取值范围.x10. 已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; 若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.11. 如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于,A B两点,点Q 是点P 关于原点的对称点.(1) 设点P 分有向线段AB 所成的比为λ,证明:()QP QA QB λ⊥-;(2) 设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.12. 已知动点P (p ,-1),Q (p ,212p +),过Q 作斜率为2p 的直线l ,P Q 中点M 的轨迹为曲线C.(1)证明:l 经过一个定点而且与曲线C 一定有两个公共点; (2)若(1)中的其中一个公共点为A ,证明:AP 是曲线C 的切线; (3)设直线AP 的倾斜角为α,AP 与l 的夹角为β,证明:βα+或βα-是定值.13. 在平面直角坐标系内有两个定点12F F 、和动点P ,12F F 、坐标分别为)0,1(1-F 、)0,1(F 2,动点P 满足22|PF ||PF |21=,动点P 的轨迹为曲线C ,曲线C 关于直线y x =的对称曲线为曲线'C ,直线3-+=m x y 与曲线'C 交于A 、B 两点,O 是坐标原点,△ABO 的面积为7,(1)求曲线C 的方程;(2)求m 的值。
圆锥曲线综合试题(全部大题目)含答案

1. 平面上一点向二次曲线作切线得两切点,连结两切点的线段我们称切点弦.设过抛物线22x py =外一点00(,)P x y 的任一直线与抛物线的两个交点为C 、D ,与抛物线切点弦AB的交点为Q 。
(1)求证:抛物线切点弦的方程为00()x x p y y =+; (2)求证:112||||PC PD PQ +=.2. 已知定点F (1,0),动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且.||||,0PN PM PF PM ==⋅ (1)动点N 的轨迹方程;(2)线l 与动点N 的轨迹交于A ,B 两点,若304||64,4≤≤-=⋅AB OB OA 且,求直线l 的斜率k 的取值范围.3. 如图,椭圆134:221=+y x C 的左右顶点分别为A 、B ,P 为双曲线134:222=-y x C 右支上(x 轴上方)一点,连AP 交C 1于C ,连PB 并延长交C 1于D ,且△ACD 与△PCD 的面积相等,求直线PD 的斜率及直线CD 的倾斜角.4. 已知点(2,0),(2,0)M N -,动点P 满足条件||||22PM PN -=.记动点P 的轨迹为W .(Ⅰ)求W 的方程;(Ⅱ)若,A B 是W 上的不同两点,O 是坐标原点,求OA OB ⋅的最小值.5. 已知曲线C 的方程为:kx 2+(4-k )y 2=k +1,(k ∈R) (Ⅰ)若曲线C 是椭圆,求k 的取值范围;(Ⅱ)若曲线C 是双曲线,且有一条渐近线的倾斜角是60°,求此双曲线的方程; (Ⅲ)满足(Ⅱ)的双曲线上是否存在两点P ,Q 关于直线l :y=x -1对称,若存在,求出过P ,Q 的直线方程;若不存在,说明理由。
6. 如图(21)图,M (-2,0)和N (2,0)是平面上的两点,动点P 满足: 6.PM PN +=(1)求点P 的轨迹方程; (2)若2·1cos PM PN MPN-∠=,求点P 的坐标.7. 已知F 为椭圆22221x y a b +=(0)a b >>的右焦点,直线l 过点F 且与双曲线1222=-b y a x 的两条渐进线12,l l 分别交于点,M N ,与椭圆交于点,A B . (I )若3MON π∠=,双曲线的焦距为4。
全国一卷圆锥曲线高考题汇编含答案

圆锥曲线部分高考试题汇编(椭圆部分)1、(2016全国Ⅰ卷)(20)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l过点B(1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B作AC 的平行线交AD于点E.(I)证明EA EB +为定值,并写出点E 的轨迹方程;(II)设点E 的轨迹为曲线C 1,直线l 交C1于M ,N 两点,过B且与l垂直的直线与圆A 交于P ,Q两点,求四边形M PN Q面积的取值范围.2、(2015全国Ⅰ卷)(14)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴上,则该圆的标准方程为 。
3、(2014全国Ⅰ卷)20.(本小题满分12分)已知点A (0,-2),椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆的焦点,直线AF 的斜率为3,O 为坐标原点. (Ⅰ)求E 的方程;(Ⅱ)设过点A 的直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程.4、(2016山东卷)(21)(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 3,抛物线E:22x y =的焦点F是C 的一个顶点. (I )求椭圆C 的方程;(II )设P是E 上的动点,且位于第一象限,E 在点P处的切线l 与C 交与不同的两点A,B,线段AB 的中点为D,直线O D与过P且垂直于x 轴的直线交于点M. (i)求证:点M 在定直线上;(ii )直线l 与y 轴交于点G ,记PFG 的面积为1S ,PDM 的面积为2S ,求12S S 的最大值及取得最大值时点P的坐标.5、(2015山东卷)(20) (本小题满分13分)平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,左、右焦点分别是12,F F ,以1F 为圆心,以3为半径的圆与以2F为圆心,以1为半径的圆相交,交点在椭圆C上. (Ⅰ)求椭圆C的方程;(Ⅱ)设椭圆2222:144x yEa b+=,P为椭圆C上的任意一点,过点P的直线y kx m=+交椭圆E于A,B两点,射线PO交椭圆E于点Q.(ⅰ)求||||OQOP的值;(ⅱ)求ABQ∆面积最大值.圆锥曲线部分高考试题汇编(双曲线部分)1、(2016全国Ⅰ卷)(5)已知方程错误!–错误!=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是( )(A)(–1,3) (B)(–1,错误!) (C)(0,3)(D)(0,错误!)2、(2015全国Ⅰ卷)(5)已知M(x 0,y 0)是双曲线C :2212x y -=上的一点,F1、F 2是C 上的两个焦点,若1MF •2MF <0,则y 0的取值范围是()3 (B )((C)(3-,3) (D)()3、(2014全国Ⅰ卷)4. 已知F 是双曲线C :223(0)x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A .B .3CD .3m4、(2016山东卷)(13)已知双曲线E1:22221x y a b-=(a>0,b >0),若矩形ABCD 的四个顶点在E上,AB ,CD的中点为E 的两个焦点,且2|AB |=3|B C|,则E 的离心率是_______ .5、(2015山东卷)(15)平面直角坐标系xOy 中,双曲线22122:1(0,0)x y C a b a b-=>>的渐近线与抛物线22:2(0)C x py p =>交于点,,O A B ,若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .6、(2014山东卷)(10)已知a b >,椭圆1C 的方程为22221x y a b +=,双曲线2C 的方程为22221x y a b-=,1C 与2C2C 的渐近线方程为( )(A)0x = (0y ±= (C)20x y ±= (D)20x y ±=圆锥曲线部分高考试题汇编(抛物线部分)1、(2016全国Ⅰ卷)(10)以抛物线C 的顶点为圆心的圆交C 于A,B 两点,交C的准线于D ,E 两点.已知|AB |=DE |=C 的焦点到准线的距离为( )(A)2 (B )4 (C )6 (D )82、(2015全国Ⅰ卷)(20)(本小题满分12分)在直角坐标系xoy中,曲线C :y=24x 与直线y kx a =+(a >0)交与M ,N两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠O PN ?说明理由。
圆锥曲线大题精选(含答案解析)(适合文理科)

1.过抛物线外一点M 作抛物线的两条切线,两切点的连线段称为点M 对应的切点弦已知抛物线为24x y =,点P ,Q 在直线l :1y =-上,过P ,Q 两点对应的切点弦分别为AB ,CD()1当点P 在l 上移动时,直线AB 是否经过某一定点,若有,请求出该定点的坐标;如果没有,请说明理由()2当AB CD ⊥时,点P ,Q 在什么位置时,PQ 取得最小值?详解:()1设()11,A x y ,()22,B x y ,()0,1P x -,则2114x y =,2224x y =,抛物线的方程可变形为214y x =,则'2x y =, ∴直线PA 的斜率为01'|2PA x x xk y ===,∴直线PA 的方程()1112xy y x x -=-,化简()112x x y y =+,同理可得直线PB 的方程为()222x x y y =+,由()0,1P x -可得()()011x 2102221x y x x y =-⎧⎪=-⎨⎪⎩,∴直线AB 的方程为()021x x y =-,则{1x y ==是方程的解, ∴直线AB 经过定点()0,1.()2设(),1P P x -,(),1Q Q x -,由()1可知2PAB x k =,2Q CD x k =, AB CD ⊥,14P Q AB CD x x k k ∴⋅==-,即4P Q x x =-,P x ∴,Q x 异号,不妨设0P x >,则0Q x <,且4Q Px x =-, 44P Q P Q P PPQ x x x x x x ∴=-=-=+≥,当且仅当2P x =,2Q x =-时取等号, 即当()2,1P --,()2,1Q --时,PQ 取得最小值42.已知椭圆()2222:10x y C a b a b +=>>A ,下顶点为B ,定点()0,2C ,ABC ∆的面积为3,过点C 作与y 轴不重合的直线l 交椭圆C 于,P Q 两点,直线,BP BQ 分别与x 轴交于,M N 两点.(1)求椭圆C 的方程;(2)试探究,M N 的横坐标的乘积是否为定值,说明理由. 【详解】(1)由已知,,A B 的坐标分别是()(),0,0,A a B b -由于ABC ∆的面积为3,1(2)32b a ∴+=,又由e =2a b =, 解得:=1b ,或=3b -(舍去),2,=1a b ∴=∴椭圆方程为2214x y +=;(2)设直线PQ 的方程为2y kx =+,,P Q 的坐标分别为()()1122,,,P x y Q x y则直线BP 的方程为1111y y x x +=-,令0y =,得点M 的横坐标111M xx y =+ 直线BQ 的方程为2211y y x x +=-,令0y =,得点N 的横坐标221N x x y =+ 1212(1)(1)M N x x x x y y ∴⋅=++1212(3)(3)x x kx kx =++12212123()9x x k x x k x x =+++把直线2y kx =+代入椭圆2214x y +=得22(14)16120k x kx +++=由韦达定理得1221214x x k =+,1221614kx x k +=-+ ∴222221214124891414M N k x x k k k k +==-+++22212412489363k k k =-++,是定值.3.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,,F F M 为椭圆上一动点,当12MF F ∆的面积最大时,其内切圆半径为3b,设过点2F 的直线l 被椭圆C 截得线段RS ,当l x ⊥轴时,3RS =. (1)求椭圆C 的标准方程;(2)若点A 为椭圆C 的左顶点,,P Q 是椭圆上异于左、右顶点的两点,设直线,AP AQ 的斜率分别为12,k k ,若1214k k =-,试问直线PQ 是否过定点?若过定点,求该定点的坐标;若不过定点,请说明理由. 详解:(1)由题意及三角形内切圆的性质可得112(22)223b c b a c ⋅⋅=+⋅,得12c a =①将x c =代入22221x y a b+=,结合222a b c =+②,得2b y a =±,所以223b a =③,由①②③得2,a b ==故椭圆C 的标准方程为22143x y +=(2)设点,P Q 的坐标分别为11,x y (),22,x y (). ①当直线PQ 的斜率不存在时,由题意得331122P Q -(,),(,)或331122P Q -(,),(,),直线PQ 的方程为1x =②当直线PQ 的斜率存在时,设直线PQ 的方程为y kx m =+,联立得22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得2224384120k x kmx m +++-=(), 由222222644(43)(412)48(43)0k m k m k m ∆=-+-=-+>,得2243k m +>21212228412,.(1)4343km m x x x x k k -+=-=++) 由1212121,(2)(2)4y y k k x x ==-++可得12124(2)(2)0y y x x +++=,得12124()()(2)(2)0kx m kx m x x +++++=,整理得221212(41)(42)()440,(2)k x x km x x m ++++++= 由(1)和(2)得2220m km k --=,解得2m k =或m k =-当2m k =时,直线PQ 的方程为2y kx k =+,过定点(2,0)-,不合题意; 当m k =-时,直线PQ 的方程为y kx k =-,过定点(1,0), 综上直线PQ 过定点,定点坐标为(1,0).4.已知椭圆()2222:10x y C a b a b+=>>的焦距为4,且过点(P .(1)求椭圆C 的标准方程;(2)设()()0000,0Q x y x y ≠为椭圆C 上一点,过点Q 作x 轴的垂线,垂足为E,取点(0,A ,连接AE ,过点A 作AE 的垂线交x 轴于点D ,点G 是点D 关于y 轴的对称点,作直线QG ,问这样作出的直线QG 是否与椭圆C 一定有唯一的公共点?并说明理由. 详解:(1)因为焦距为4,所以224a b -=,又因为椭圆C过点(P ,所以22421a b +=,故28a =,24b =,从而椭圆C 的方程为22184x y +=已知椭圆()2222:10x y C a b a b+=>>的焦距为4,且过点(P .(2)由题意,E 点坐标为()0,0x ,设(),0D D x ,则(0,AE x =-,(,D AD x =-,再由AD AE ⊥知,0AE AD ⋅=,即080D x x +=. 由于000x y ≠,故08D x x =-,因为点G 是点D 关于y 轴的对称点,所以点08,0G x ⎛⎫ ⎪⎝⎭. 故直线QG 的斜率00020088QG y x y k x x x =--=.又因()00,Q x y 在椭圆C 上,所以220028x y +=.①从而002QG x k y =-,故直线QG 的方程为00082x y x y x ⎛⎫=-- ⎪⎝⎭② 将②代入椭圆C 方程,得()222200021664160nxy x x x y +-+-=③再将①代入③,化简得:220020x x x x -+=解得0x x =,0y y =,即直线OG 与椭圆C 一定有唯一的公共点.5.在平面直角坐标系xOy 中,已知过点()4,0D 的直线l 与椭圆22:14x C y +=交于不同的两点()11,A x y ,()22,B x y ,其中120y y ≠.(1)若10x =,求OAB 的面积;(2)在x 轴上是否存在定点T ,使得直线TA 、TB 与y 轴围成的三角形始终为等腰三角形. 【详解】(1)当10x =时,代入椭圆方程可得A 点坐标为()0,1或()0,1- 若A 点坐标为()0,1,此时直线l :440x y +-=联立2244044x y x y +-=⎧⎨+=⎩,消x 整理可得25830y y -+= 解得11y =或235y =,故B 83,55⎛⎫ ⎪⎝⎭ 所以OAB 的面积为1841255⨯⨯= ()0,1A -若点坐标为,由对称性知OAB 的面积也是45,综上可知,当10x =时,OAB 的面积为45. (2)显然直线l 的斜率不为0,设直线l :4x my =+联立22444x my x y =+⎧⎨+=⎩,消去x 整理得()2248120m y my +++= 由()226441240m m =-⨯+>,得212m >则12284m y y m +=-+,122124y y m =+ , 因为直线TA 、TB 与y 轴围成的三角形始终为等腰三角形,所以0TA TB k k += 设(),0T t ,则()()()()()()()()122112121212111224TA TB y x t y x t my y t y y y y k k x t x t x t x t x t x t -+-+-++=+==------,即()()()()1212222848124240444m t m t m my y t y y m m m --+-+=+==+++,解得1t =.故x 轴上存在定点()1,0T ,使得直线TA 、TB 与y 轴围成的三角形始终为等腰三角形.6.已知椭圆2222:1x y C a b +=(0a b >>⎛- ⎝⎭. (1)求椭圆C 的方程; (2)过点)作直线l 与椭圆C 交于不同的两点A ,B ,试问在x 轴上是否存在定点Q使得直线QA 与直线QB 恰关于x 轴对称?若存在,求出点Q 的坐标;若不存在,说明理由. 【详解】 (1)ca =,22131a4b +=,又222a b c -=,解得2a 4=,2b 1=.所以,椭圆C 的方程为22x y 14+=(2)存在定点Q ⎫⎪⎪⎝⎭,满足直线QA 与直线QB 恰关于x 轴对称. 设直线l的方程为x my 0+=,与椭圆C 联立,整理得,()224m y 10+--=.设()22B x ,y ,11x xy y 12+=,定点()Q t,0.(依题意12t x ,t x )≠≠则由韦达定理可得,12y y +=,1221y y 4m -=+.直线QA 与直线QB 恰关于x 轴对称,等价于AQ,BQ 的斜率互为相反数.所以,1212y y0x t x t+=--,即得()()1221y x t y x t 0-+-=.又11x my 0+=,22x my 0+=,所以,))1221y my t y my t 0-+-=,)()1212t y y 2my y 0+-=.从而可得,)21t 2m 04m-⋅=+,即()2m 40=,所以,当t =,即Q ⎫⎪⎪⎝⎭时,直线QA 与直线QB 恰关于x 轴对称成立. 特别地,当直线l 为x轴时,Q ⎫⎪⎪⎝⎭也符合题意. 综上所述,存在x轴上的定点Q ⎫⎪⎪⎝⎭,满足直线QA 与直线QB 恰关于x 轴对称.7.设椭圆22:182x y C +=,过点()2,1A 的直线AP ,AQ 分别交C 于不同的两点P 、Q ,直线PQ 恒过点()4,0B(1)证明:直线AP ,AQ 的斜率之和为定值;(2)直线AP ,AQ 分别与x 轴相交于M ,N 两点,在x 轴上是否存在定点G ,使得GM GN ⋅为定值?若存在,求出点G 的坐标,若不存在,请说明理由.【详解】(1)设()()()()112234,,,,,0,,0P x y Q x y M x N x ,直线PQ AP AQ 、、的斜率分别为12,,k k k ,由()22448y k x x y ⎧=-⎨+=⎩得()222214326480k x k x k +-+-= >0∆,可得:222121222132648,,41414k k k x x x x k k -<+==++,()()()()12121212121212121241412(61)16411222224k x k x kx x k x x k y y k k x x x x x x x x -----++++--+=+=+=-----++2222222222648322(61)16416414814164832164241414k k k k k k k k k k k k k-⋅-+⋅++-++-+===----⋅+++(2)由()112y k x -=-,令0y =,得3112x k =-,即112,0M k ⎛⎫- ⎪⎝⎭ 同理4212x k =-,即212,0N k ⎛⎫- ⎪⎝⎭,设x 轴上存在定点()0,0G x 则 ()()20000121212111112222GM GN x x x x k k k k k k ⎛⎫⎛⎫⎛⎫⋅=--⋅--=-+-⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()212001212122k k x x k k k k ⎛⎫+=-+-⋅+ ⎪⎝⎭()()20012121122x x k k k k ⎛⎫-=-+-⋅+⎪⎝⎭,要使GM GN ⋅为定值,即0021,3x x -==故x 轴上存在定点()3,0G 使GM GN ⋅为定值,该定值为18.如图,已知抛物线E :y 2=4x 与圆M :(x -3)2+y 2=r 2(r>0)相交于A ,B ,C ,D 四个点.(1)求r 的取值范围;(2)设四边形ABCD 的面积为S ,当S 最大时,求直线AD 与直线BC 的交点P 的坐标. 【详解】(1)联立抛物线与圆的方程22224,(3),y x x y r ⎧=⎨-+=⎩消去y ,得x 2-2x+9-r 2=0.由题意可知x 2-2x+9-r 2=0在(0,+∞)上有两个不等的实数根,所以2244(9)0,90,r r ⎧∆=-->⎨->⎩解得3,即r. (2)根据(1)可设方程x 2-2x+9-r 2=0的两个根分别为x 1,x 2(0<x 1<x 2),则A (x 1),B (x 1, -C (x 2, -D (x 2且x 1+x 2=2,x 1x 2=9-r 2, 所以S=12(AB +CD )·(x 2-x 1)=12x 2-x 1) ==令∴(0,1),f (t )=S 2=4(2+2t )(4-4t 2)= -32(t 3+t 2-t -1), f'(t )= -32(3t 2+2t -1)= -32(t+1)(3t -1),可得f (t )在(0,13)上单调递增,在(13,1)上单调递减,即当t=13时,四边形ABCD 的面积取得最大值. 根据抛物线与圆的对称性,可设P 点坐标为(m ,0),由P ,A ,D 三点共线,21=1整理得m=--t=-13, 所以点P 的坐标为(-13,0).9.设椭圆()2222:10,0x y C a b a b +=>>,离心率e =,短轴2b =点,以坐标轴为对称轴,焦点为()0,1, (1)求椭圆和抛物线的方程;(2)设坐标原点为O ,A 为抛物线上第一象限内的点,B 为椭圆是一点,且有OA OB ⊥,当线段AB 的中点在轴上时,求直线AB 的方程. 【详解】 (1)由2e =得a =,又有b =222a b c =+,解得a = 所以椭圆方程为2212010y x +=由抛物线的焦点为()0,1得,抛物线焦点在y 轴,且12p=, 抛物线的方程为:24x y =(2)由题意点A 位于第一象限,可知直线OA 的斜率一定存在且大于0 设直线OA 方程为:y kx =,0k >联立方程24y kx x y=⎧⎨=⎩得:24x kx =,可知点A 的横坐标4A x k =,即()24,4A k k因为OA OB ⊥,可设直线OB 方程为:1y x k=-连立方程22112010y x k y x ⎧=-⎪⎪⎨⎪+=⎪⎩得:2222012k x k =+,从而得x =若线段AB 的中点在y轴上,可知B x =B ⎛ ⎝有4k =0k >,解得k =从而得12A ⎫⎪⎭,()B 直线AB的方程:8180y +-=10.已知中心在原点的椭圆C 1和抛物线C 2有相同的焦点(1,0),椭圆C 1过点31,2G ⎛⎫⎪⎝⎭,抛物线2C 的顶点为原点.(1)求椭圆C 1和抛物线C 2的方程;(2)设点P 为抛物线C 2准线上的任意一点,过点P 作抛物线C 2的两条切线PA ,PB ,其中A 、B 为切点.设直线PA ,PB 的斜率分别为k 1,k 2,求证:k 1k 2为定值;②若直线AB 交椭圆C 1于C ,D 两点,S ∴PAB ,S ∴PCD 分别是∴PAB ,∴PCD 的面积,试问:PAB PCDSS是否有最小值?若有,求出最小值;若没有,请说明理由. 【详解】(1)因为抛物线C 2有相同的焦点(1,0),且顶点为原点,所以12p=,所以2p =, 所以抛物线2C 的标准方程为24y x =,设椭圆方程为22221x ya b +=,则1c =且222211914a b ab ⎧-=⎪⎨+=⎪⎩,解得224,3a b ==, 所以椭圆1C 的方程为:22143x y +=.(2)①证明:设(1,)P t -,过点P 与抛物线24y x =相切的直线为(1)y t k x -=+,由2(1)4y t k x y x -=+⎧⎨=⎩,消去x 得24440t y y k k -++=, 由∴=244()4(4)0tkk--+=,得210k tk +-=, 则121k k =-.②设1122(,),(,)A x y B x y 由①得112,y k =222y k =,则12221211,x x k k ==,所以直线AB 的方程为211121()y y y y x x x x --=--,所以211222122(1)11k k y y x k k --=--,即122(1)y x k k =--+,即直线AB 恒过定点(1,0),设点P 到直线AB 的距离为d ,所以PAB PCDS S1||||21||||2d AB AB CD d CD ⋅==⋅,当直线AB 的斜率存在时,设直线AB 的方程为(1)y k x =-, 设3344(,),(,)C x y D x y ,由24(1)y xy k x ⎧=⎨=-⎩,消去y 得2222(24)0k x k x k -++=, 0k ≠时,∴0>恒成立,||AB == 224(1)k k+=, 由22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩消去y 得2222(34)84120k x k x k +-+-=,∴0>恒成立,则||CD == 2212(1)34k k+=+. 所以22224(1)12(1)34PAB PCD k S k k S k+=++22234144333k k k +==+>, 当直线AB 的斜率不存在时,直线AB 的方程为1x =,此时||4AB =,||3CD =,PAB PCDS S43=, 所以PAB PCDS S的最小值为43.11.已知过圆1C :221x y +=上一点12E ⎛ ⎝⎭的切线,交坐标轴于A 、B 两点,且A 、B 恰好分别为椭圆2C :()222210x y a b a b+=>>的上顶点和右顶点.(1)求椭圆2C 的方程;(2)已知P 为椭圆的左顶点,过点P 作直线PM 、PN 分别交椭圆于M 、N 两点,若直线MN 过定点()1,0Q -,求证:PM PN ⊥. 【详解】(1)直线OE l的方程为y ,则直线AB l的斜率AB k =. 所以AB l:y x =A ⎛ ⎝⎭,()2,0B ,椭圆方程为:221443x y +=; (2)①当MN k 不存在时,()1,1M -,()1,1N --,因为()()1,11,10PM PN ⋅=-⋅--=,所以PM PN ⊥.②当MN k 存在时,设()11,M x y ,()22,N x y ,MN l :()1y k x =+,联立()2211443y k x x y ⎧=+⎪⎪⎨+=⎪⎪⎩得:()2222136340k x k x k +++-=.所以2122613k x x k +=-+,21223413k x x k-=+,又已知左顶点P 为()2,0-, ()()()11221212122,2,24x y x y x x x x y y PM PN +⋅+=+++⋅=+,又()()()212121212111y y k x k x k x x x x =++=+++22313k k-=+, 所以222222341234131313k k k PM PN k k k --⋅=-+++++2222234124123013k k k k k --++-==+,所以PM PN ⊥.综上PM PN ⊥得证.12.已知椭圆C :()222210x y a b a b+=>>的左右顶点分别为(),0A a -,(),0B a ,点P 是椭圆C 上异于A 、B 的任意一点,设直线PA ,PB 的斜率分别为1k 、2k ,且1213k k ⋅=-,椭圆的焦距长为4. (1)求椭圆C 的离心率;(2)过右焦点F 且倾斜角为30的直线l 交椭圆C 于M 、N 两点,分别记ABM ∆,ABN ∆的面积为1S 、2S ,求12S S -的值. 【详解】(1)设点()()000,P x y x a ≠,则2200221x y a b+=,①∵2000122200013y y y k k x a x a x a ⋅=⋅==-+--,②∴联立①②得()()222230b a x a --=,∴()2203a a b x =≠,∴22222212133a b e a a c -===-=,∴e =. (2)由题意知,24c =,即2c =,由(1)知,223a b ,∴22224a b c b =+=+,∴22b =,26a =,∴椭圆C 的方程为:22162x y +=,由已知得l:)2y x =-.联立)2223162y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,可得2210x x --=.设()11,M x y ,()22,N x y ,根据韦达定理,得122x x +=,于是)12121212S S y x x -=⨯+=+13.(本小题满分12分)记抛物线2::2C y x =-的焦点为F ,点M 在抛物线上,(3,1)N -,斜率为k 的直线l 与抛物线C 交于P Q ,两点.(1)求||||MN MF +的最小值;(2)若(2,2)M -,直线MP MQ ,的斜率都存在,且20MP MQ k k ++=;探究:直线l 是否过定点,若是,求出定点坐标;若不是,请说明理由. 【解析】(1)设抛物线C 的准线为l ',过点M 作1MM l '⊥,垂足为1M ,过点N 作1NN l '⊥,垂足为1N ,如图:则117||||||2MN MF MN MM NN +=+=,即||||MN MF +的最小值为72. (2)设直线l 的方程为()11,,y kx b P x y =+,()22,Q x y ,将直线l 与抛物线C 的方程联立得22y kx b y x=+⎧⎨=-⎩,222(22)0k x kb x b +++=,212122222,kb b x x x x k k --+== ① 又121222222MP MQ y y k k x x --+=+=-++, 即()()()()()()1221122222222kx b x kx b x x x +-+++-+=-++,()()()()12121212121222248248kx x k x x b x x x x bx x x x ++++-++-=--+-,将①代入得,222(1)0b b k b ---+=,即(1)(22)0b b k +--=,得1b =-或22b k =+, 当1b =-时,直线l 为1y kx =-,此时直线恒过(0,1)-;当22b k =+时,直线l 为22(2)2y kx k k x =++=++,此时直线恒过(2,2)M -(舍去). 综上所述,直线l 过定点(0,1)-.14.(本小题满分12分)已知抛物线2(:0)y ax a >Γ=的焦点为F ,若过F 且倾斜角为4π的直线交Γ于M ,N 两点,满足||4MN =. (I )求抛物线Γ的方程;(II )若P 为Γ上动点,B ,C 在y 轴上,圆22(1)1x y -+=内切于PBC ,求PBC 面积的最小值. 【解析】(I )抛物线2(:0)y ax a >Γ=的焦点为,04a F ⎛⎫⎪⎝⎭,则过点F 且斜率为1的直线方程为4ay x =-, 联立抛物线方程2y ax =,消去y 得:2230216a ax x -+=,设()()1122,,,M x y N x y ,则1232a x x +=, 由抛物线的定义可得12||242aMN x x a =++==,解得2a =,∴抛物线的方程为2:2y x Γ=.(II )设()00,P x y ,()0,B b ,()0,C c ,不妨设b c >,00:PB y bl y b x x --=,化简得:()0000y b x x y x b --+=,圆心()1,0到直线PB 的距离为11=,即()()()222220000002y b x y b x b y b x b -+=-+-+,不难发现02x >,上式又可化为()2000220x b y b x -+-=,同理有()2000220x c y c x -+-=,∴,b c 可以看做关于t 的一元二次方程()2000220x t y t x -+-=的两个实数根,0022y b c x -∴+=-,()()220002020042,()22x y x x bc b c x x +--=∴-=--, 由条件:2002y x =()2220042()22x x b c b c x x ∴-=∴-=--,, ()()20000014()248222PBCx S b c x x x x ∆=-==-++≥--,当且仅当04x =时取等号, ∴PBC S △面积的最小值为8.15.(本小题满分12分)已知抛物线C 的顶点为坐标原点O ,焦点F 在y 轴的正半轴上,过点F 的直线l 与抛物线相交于A ,B 两点,且满足3.4OA OB ⋅=- (1)求抛物线C 的方程;(2)若P 是抛物线C 上的动点,点,M N 在x 轴上,圆2211x y +-=()内切于PMN ∆,求PMN ∆面积的最小值. 【解析】(1)由题意,设抛物线C 的方程为22(0)x py p =>,则焦点F 的坐标为02p(,).设直线l 的方程为()()11222py kx A x y B x y =+,,,,, 联立方程得222x py p y kx ⎧=⎪⎨=+⎪⎩,消去y 得2222220,440x pkx p p k p --=∆=+>,∴221212122.4p x x pk x x p y y +==-=,,∵121234OA OB x x y y ⋅=+=-,∴ 1.p =故抛物线的方程为22x y =.(2)设()()()()0000000P x y x y M m N n ≠,,,,,,易知点M N ,的横坐标与P 的横坐标均不相同,不妨设m n >,易得直线PM 的方程为()00y y x m x m=--化简得()0000y x x m y my ---=,又圆心(0,1)到直线PM 的距离为11=,∴()()()222220000002x m y x m my x m m y -+=-+-+,不难发现02y >,故上式可化为()2000220y m x m y -+-=,同理可得()2000220y n x n y -+-=,,m n ∴可以看作是()2000220y t x t y -+-=的两个实数根,则0000222x y m n mn y y --+==--,,∴()()()2222000204484.2x y y m n m n mn y +--=+-=- ∵()00P x y ,是抛物线C 上的点,∴2002x y =,则()()222042y m n y -=-,又02y >,∴02,2y mn y =- 从而()02000000014242222PMNy y S m n y y y y y y ∆=-=⋅==-++---48≥=,当且仅当()2024y-=时取得等号,此时004,y x ==±故△PMN 面积的最小值为8.16.(12分)已知直线与抛物线:交于,两点,且2x p =C ()220y px p =>P Q POQ∆的面积为16(为坐标原点). (1)求的方程;(2)直线经过的焦点且不与轴垂直,与交于,两点,若线段的垂直平分线与轴交于点,证明:为定值.【解析】(1)将代入,得,所以的面积为. 因为,所以,故的方程为.(2)证明:由题意设直线的方程为,由,得.设,,则,所以.因为线段的中点的横坐标为,纵坐标为,所以线段的垂直平分线的方程为,令,得,所以的横坐标为,所以,故为定值.17.(12分)已知椭圆2.(1)求椭圆C 的方程;(2)设直线与椭圆C交于点E ,F ,过点E 作轴于点M ,直线FM 交椭圆C 于另一点N ,证明:. 【解析】(1)由题,,∴,, 故椭圆方程为; O C l C F l x C A B AB x D AB DF2x p =22y px =2y p =±POQ ∆21244162p p p ⨯⨯==0p >2p =C 24y x =l ()()10y k x k =-≠()214y k x y x⎧=-⎨=⎩()2222240k x k x k -++=()11,A x y ()22,B x y 212224k x x k ++=212244k x x p AB k +=++=AB 212222x x k k ++=2kAB 22212k y x k k k ⎛⎫+-=-- ⎪⎝⎭0y =223x k =+D 223k +2222312k D kF =+-=+2AB DF =2222:1(0)x y C a b a b +=>>y kx =EM x ⊥EF EN ⊥2c a =22c =a =1e =1b =2212x y +=(2)设,,,则,与椭圆方程联立得,由得,, ∴,即.18.(12分)如图,设抛物线21C x y =与()22:20C y px p =>的公共点M 的横坐标为()0t t >,过M 且与1C 相切的直线交2C 于另一点A ,过M 且与2C 相切的直线交1C 于另一点B ,记S 为MBA ∆的面积.(∴)求p 的值(用t 表示); (∴)若1,24S ⎡⎤∈⎢⎥⎣⎦,求t 的取值范围.注:若直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行也不重合,则称该直线与抛物线相切. 【解析】00(,)E x y ()00,F x y --00(),M x 000:()2FM y l y x x x =-()22222220002240x y x x y x x y x +-+-=2000220022N F N x y x x x x x y +=-=+230002200322N x y x x x y +=+()0000000000022N N ENN N N y x x y y y y y x k x x x x x x x ---===----00230000022003222y y x y x x x x y =-+-+2200000222220000000222224y y y x y x x x x y x y +=-=⋅+-+2220000000000022222y x y x x x x y x y y +-=-==-00001EN EF x y k k y x ⋅=-⋅=-EF EN⊥(∴)因点M 在抛物线1C :2x y =上,故()()2,0M t tt >,又点M 在抛物线2C :()220y px p =>上,故()222tpt =,则32t p =(∴)设点()11,A x y ,直线MA 的方程为()2y k x t t =-+,联立方程组22(),,y k x t t x y ⎧=-+⎨=⎩消去y ,得220x kx kt t -+-=,则()()222420k kt tk t ∆=--=-=,因此2k t ,即直线MA的方程为22y tx t =-则直线MA 的斜率223112211132y t y t t k t y x t y t t t --====-+-,从而212t y =-,即2,42t t A ⎛⎫- ⎪⎝⎭,同理,直线MB 的方程为222t t y x =+,点2,24t t B ⎛⎫- ⎪⎝⎭,因此2t MB t =-=2,42t t A ⎛⎫- ⎪⎝⎭到直线MB :2022t t x y -+=的距离29t d ==MBA ∆的面积23911272232t t S MB d ===,即32732t S =,因为1,24S ⎡⎤∈⎢⎥⎣⎦,即31272432t ≤≤,解得24,33t ⎡⎤∈⎢⎥⎣⎦.19.已知椭圆2222:1x y C a b+=(0a b >>)C 的短轴为直径的圆与直线:3450l x y +-=相切.(1)求C 的方程;(2)直线y x m =+交椭圆C 于()11,M x y ,()22,N x y 两点,且12x x >.已知l 上存在点P ,使得PMN △是以PMN ∠为顶角的等腰直角三角形.若P 在直线MN 右下方,求m 的值. 【解析】 (1)依题意,1b =,因为离心率c e a ===,=a = 所以椭圆C 的标准方程为2213x y +=.(2)因为直线y x m =+的倾斜角为45︒,且PMN △是以PMN ∠为顶角的等腰直角三角形,P 在直线MN 右下方,所以NP x ∥轴.过M 作NP 的垂线,垂足为Q ,则Q 为线段NP 的中点,所以()12,Q x y ,故()1222,P x x y -, 所以()12232450x x y -+-=, 即()()12232450x x x m -++-=, 整理得126450x x m ++-=.①由2233,x y y x m⎧+=⎨=+⎩得2246330x mx m ++-=. 所以223648480m m ∆=-+>,解得22m -<<, 所以1232x x m +=-,②()212314x x m =-,③ 由①-②得,112mx =-,④ 将④代入②得21x m =--,⑤将④⑤代入③得()()()3111124m m m m ⎛⎫-+=-+ ⎪⎝⎭,解得1m =-.综上,m 的值为1-.20.(12分)已知直线2x p =与抛物线C :()220y px p =>交于P ,Q 两点,且POQ∆的面积为16(O 为坐标原点). (1)求C 的方程.(2)直线l 经过C 的焦点F 且l 不与x 轴垂直,l 与C 交于A ,B 两点,若线段AB 的垂直平分线与x 轴交于点D ,试问在x 轴上是否存在点E ,使AB DE为定值?若存在,求该定值及E 的坐标;若不存在,请说明理由. 【解析】(1)将2x p =代入22y px =,得2y p =±,所以POQ ∆的面积为21244162p p p ⨯⨯==. 因为0p >,所以2p =,故C 的方程为24y x =. (2)由题意设直线l 的方程为()()10y k x k =-≠,由()21,4,y k x y x ⎧=-⎨=⎩得()2222240k x k x k -++=.设()11,A x y ,()22,B x y ,则212224k x x k ++=,所以212244||k AB x x p k+=++=. 因为线段AB 的中点的横坐标为212222x x k k++=,纵坐标为2k , 所以线段AB 的垂直平分线的方程为22212k y x k k k ⎛⎫+-=-- ⎪⎝⎭, 令0y =,得223x k =+,所以D 的横坐标为223k +,设(),0E t ,则()2223223t k DE t k k-+=+-=,()224432AB k DE t k +∴=-+, 所以当且仅当32t -=,即1t =时,AB DE为定值,且定值为2,故存在点E ,且E 的坐标为()1,0.21.已知直线l 与抛物线()2:20C x py p =>相交于,A B 两个不同点,点M 是抛物线C 在点,A B 处的切线的交点。
历年高考数学《圆锥曲线》真题集锦

以下题目全是经典的高考题目,希望对您有帮助!!圆锥曲线1.如图,设抛物线方程为x 2=2py (p >0),M 为直线p y 2-=上任意一点,过M 引抛物线的切线,切点分别为A ,B .(1)求证:A ,M ,B 三点的横坐标成等差数列; (2)已知当M 点的坐标为(2,p 2-)时,AB = (3)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB =+(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由. 解:(1)证明:由题意设221212120(,),(,),,(,2).22x x A x B x x x M x p p p-<由22x py =得22x y p =,则,x y p'= 所以12,.MA MB x x k k p p ==因此直线MA :102(),x y p x x p +=- 直线MB :202().xy p x x p+=-所以211102(),2x x p x x p p +=- ① 222202().2x x p x x p p+=- ② 由①、②得: 0122.x x x =+所以A 、M 、B 三点的横坐标成等差数列. (2)解:由(1)知,当x 0=2时, 将其代入①、②并整理得:2211440,x x p --= 2222440,x x p --=所以x 1、x 2是方程22440x x p --=的两根,因此212124,4,x x x x p +==-又22210122122,2ABx x x x x p p k x x p p-+===-所以2.AB k p =由弦长公式AB==又AB=p=1或p=2,因此所求抛物线方程为22x y=或24.x y=(3)解:设D(x3,y3),由题意得C(x1+ x2, y1+ y2),则CD的中点坐标为123123(,),22x x x y y yQ++++设直线AB的方程为011(),xy y x xp-=-由点Q在直线AB上,并注意到点1212(,)22x x y y++也在直线AB上,代入得033.xy xp=若D(x3,y3)在抛物线上,则2330322,x py x x==因此x3=0或x3=2x0. 即D(0,0)或22(2,).xD xp(1’ 当x0=0时,则12020x x x+==,此时,点M(0,-2p)适合题意.(2’ 当x≠,对于D(0,0),此时221222221212002(2,),,224CDx xx x x xpC x kp x px+++==又0,ABxkp=AB⊥CD,所以22220121221,44AB CDx x x x xk kp px p++===-即222124,x x p+=-矛盾.对于22(2,),xD xp因为2212(2,),2x xC xp+此时直线CD平行于y轴,又00,ABxkp=≠所以直线AB与直线CD不垂直,与题设矛盾,所以x≠时,不存在符合题意的M点. 综上所述,仅存在一点M(0,-2p)适合题意.2.已知曲线11(0)xyC a ba b+=>>:所围成的封闭图形的面积为1C的内切圆半径为3.记2C为以曲线1C与坐标轴的交点为顶点的椭圆.(O为坐标原点)(Ⅰ)求椭圆2C 的标准方程;(Ⅱ)设AB 是过椭圆2C 中心的任意弦,l 是线段AB 的垂直平分线.M 是l 上异于椭圆中心的点.(1)若MO OA λ=,当点A 在椭圆2C 上运动时,求点M 的轨迹方程; (2)若M 是l 与椭圆2C 的交点,求AMB △的面积的最小值.解:(Ⅰ)由题意得23ab ⎧=⎪⎨= 又0a b >>,解得25a =,24b =.因此所求椭圆的标准方程为22154x y +=. (Ⅱ)(1)假设AB 所在的直线斜率存在且不为零,设AB 所在直线方程为(0)y kx k =≠,()A A A x y ,.解方程组22154x y y kx ⎧+=⎪⎨⎪=⎩,,得222045A x k =+,2222045A k y k =+, 所以22222222202020(1)454545AAk k OA x y k k k +=+=+=+++.设()M x y ,由(0)MO OA λλ=≠,所以222MO OA λ=,即2222220(1)45k x y kλ++=+, 因为l 是AB 的垂直平分线,所以直线l 的方程为1y x k=-,即x k y =-,因此22222222222220120()4545x y x y x y x y x y λλ⎛⎫+ ⎪+⎝⎭+==++, 又220x y +≠,所以2225420x y λ+=,故22245x y λ+=. 又当0k =或不存在时,上式仍然成立.综上所述,M 轨迹222(0)45x y λλ+=≠. (2)当k 存在且0k ≠时,由(1)得222045Ax k =+,2222045A k y k =+,由221541x y y x k ⎧+=⎪⎪⎨⎪=-⎪⎩,,解得2222054M k x k =+,222054M y k =+, 所以2222220(1)45AAk OA x y k +=+=+,222280(1)445k AB OA k +==+,22220(1)54k OM k+=+. 解法一:由于22214AMBSAB OM =△2222180(1)20(1)44554k k k k ++=⨯⨯++ 2222400(1)(45)(54)k k k +=++22222400(1)45542k k k +⎛⎫+++ ⎪⎝⎭≥222221600(1)4081(1)9k k +⎛⎫== ⎪+⎝⎭, 当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时最小409AMB S =△.当0k =,140229AMB S =⨯=>△. 当k不存在时,140429AMB S ==>△.综上,AMB △的面积的最小值为409.解法二:因为222222111120(1)20(1)4554k k OAOMk k +=+++++2224554920(1)20k k k +++==+,又22112OA OMOAOM+≥,409OA OM ≥,当且仅当224554k k +=+时等号成立,即1k =±时等号成立,此时AMB △面积的最小值是409AMB S =△.下同解法一. 3.已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么?解: (1)直线l 的方程可化为22411m m y x m m =-++,此时斜率21mk m =+ 因为()2112m m ≤+,所以2112m k m =≤+,当且仅当1m =时等号成立 所以,斜率k 的取值范围是11,22⎡⎤-⎢⎥⎣⎦;(2)不能.由(1)知l 的方程为()4y k x =-,其中12k ≤; 圆C的圆心为()4,2C -,半径2r =;圆心C到直线l的距离d =由12k ≤,得1d ≥>,即2rd >,从而,若l 与圆C相交,则圆C截直线l 所得 的弦所对的圆心角小于23π,所以l 不能将圆C分割成弧长的比值为12的两段弧; 4.双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程.解:(Ⅰ)设OA m d =-,AB m =,OB m d =+则由题有:222()()m d m m d -+=+ 得:14d m =,tan b AOF a ∠=,4tan tan 23AB AOB AOF OA ∠=∠== 由倍角公式∴22431ba b a =⎛⎫- ⎪⎝⎭,解得12b a =,则离心率e = (Ⅱ)过F 直线方程为()ay x c b=--,与双曲线方程22221x y a b -=联立将2a b =,c =代入,化简有22152104x x b b-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369x y -=。
圆锥曲线历年高考题(整理)附答案

数学圆锥曲线测试高考题一、选择题:1. (2006全国II )已知双曲线x 2a 2-y 2b 2=1的一条渐近线方程为y =43x ,则双曲线的离心率为( )(A )53 (B )43 (C )54 (D )322. (2006全国II )已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )(A )2 3 (B )6 (C )4 3 (D )123.(2006全国卷I )抛物线2y x =-上的点到直线4380x y +-=距离的最小值是( )A .43 B .75 C .85D .3 4.(2006广东高考卷)已知双曲线2239x y -=,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( ) A.2 B.223C. 2D. 4 5.(2006辽宁卷)方程22520x x -+=的两个根可分别作为( )A.一椭圆和一双曲线的离心率 B.两抛物线的离心率 C.一椭圆和一抛物线的离心率D.两椭圆的离心率6.(2006辽宁卷)曲线221(6)106x y m m m +=<--与曲线221(59)59x y m m m+=<<--的( ) (A)焦距相等 (B) 离心率相等 (C)焦点相同 (D)准线相同7.(2006安徽高考卷)若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .48.(2006辽宁卷)直线2y k =与曲线2222918k x y k x += (,)k R ∈≠且k 0的公共点的个数为( )(A)1 (B)2 (C)3 (D)4二、填空题:9. (2006全国卷I )双曲线221mx y +=的虚轴长是实轴长的2倍,则m = 。
10. (2006上海卷)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(3,0)F -,右顶点为(2,0)D ,设点11,2A ⎛⎫⎪⎝⎭,则求该椭圆的标准方程为 。
圆锥曲线大题20道(含答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且 ① 设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得 .1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设AM =λAB .(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=由得所以⎪⎩⎪⎨⎧=-=.)1(00a y ea x λλ 因为点M 在椭圆上,所以 ,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1|1|0)(|||21221c eec e a c e d PF =+=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是 即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形.[来源:Z,xx,]3.设R y x ∈,,j i、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a )3( ,)3(-+=++=,且4=+b a.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长.[来源学+科+网][启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R OB OA OM ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由y y x x +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x OM =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •=0,求直线PQ 的方程;(3)设AP =λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且3,3OF FP t OM OP j ⋅==+ .(I )设443,t OF FP θ<<求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2OP c t c OF 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-,0MA AP ⋅=. (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8. 已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。
(完整版)圆锥曲线高考真题

(完整版)圆锥曲线⾼考真题(1)求M 的⽅程(2)C ,D 为M 上的两点,若四边形ACBD 的对⾓线CD ⊥AB ,求四边形ACBD 的⾯积最⼤值.2.设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上⼀点且2MF 与x 轴垂直,直线1MF 与C 的另⼀个交点为N.(1)若直线MN 的斜率为34,求C 的离⼼率;(2)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .3.已知椭圆C :,直线不过原点O 且不平⾏于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1) 证明:直线OM 的斜率与的斜率的乘积为定值;(2)若过点(),延长线段OM 与C 交于点P ,四边形OAPB 能否平⾏四边⾏?若能,求此时的斜率,若不能,说明理由.4.已知抛物线C :22y x = 的焦点为F ,平⾏于x 轴的两条直线12,l l 分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(2)若△PQF 的⾯积是△ABF 的⾯积的两倍,求AB 中点的轨迹⽅程.5.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,-2),求直线l 与圆M 的⽅程.6.已知斜率为k 的直线l 与椭圆22143x y C +=:交于A ,B 两点,线段AB 的中点为()()10M m m >,.(1)证明:12k <-;(2)设F 为C 的右焦点,P 为C 上⼀点,且FP FA FB ++=0u u u r u u u r u u u r .证明:FA u u u r,FP u u u r ,FB u u u r 成等差数列,并求该数列的公差.7.已知椭圆2222:1(0)x y C a b a b +=>>的离⼼率为,且经过点(0,1),圆22221:C x y a b +=+。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考二轮复习专项:圆锥曲线大题集1. 如图,直线l 1与l 2是同一平面内两条互相垂直的直线,交点是A ,点B 、D 在直线l 1上(B 、D 位于点A 右侧),且|AB|=4,|AD|=1,M 是该平面上的一个动点,M 在l 1上的射影点是N ,且|BN|=2|DM|.(Ⅰ) 建立适当的坐标系,求动点M 的轨迹C 的方程.(Ⅱ)过点D 且不与l 1、l 2垂直的直线l 交(Ⅰ)中的轨迹C 于E 、F 两点;另外平面上的点G 、H 满足:①(R);AG AD λλ=∈②2;GE GF GH +=③0.GH EF ⋅= 求点G 的横坐标的取值范围.2. 设椭圆的中心是坐标原点,焦点在x 轴上,离心率23=e ,已知点)3,0(P 到这个椭圆上的点的最远距离是4,求这个椭圆的方程.3. 已知椭圆)0(1:22221>>=+b a b y a x C 的一条准线方程是,425=x 其左、右顶点分别 BAD MBNl 2l 1是A 、B ;双曲线1:22222=-b y a x C 的一条渐近线方程为3x -5y=0.(Ⅰ)求椭圆C 1的方程及双曲线C 2的离心率;(Ⅱ)在第一象限内取双曲线C 2上一点P ,连结AP 交椭圆C 1于点M ,连结PB 并延长交椭圆C 1于点N ,若MP AM =. 求证:.0=•AB MN4. 椭圆的中心在坐标原点O,右焦点F (c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A ,B 两点.设AB 中点为M ,直线AB 与OM 的夹角为αa. (1)用半焦距c 表示椭圆的方程及tan α;(2)若2<tan α<3,求椭圆率心率e 的取值范围.5. 已知椭圆2222b y a x +(a >b >0)的离心率36=e ,过点A (0,-b )和B (a ,0)的直线与原点的距离为23(1)求椭圆的方程(2)已知定点E (-1,0),若直线y =kx +2(k≠0)与椭圆交于C D 两点 问:是否存在k 的值,使以CD 为直径的圆过E 点?请说明理由6. 在直角坐标平面中,ABC ∆的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①0=++GC GB GA ;②MCMB MA ==;③GM ∥AB(1)求ABC ∆的顶点C 的轨迹方程;(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ⋅的取值范围7. 设R y x ∈,,j i,为直角坐标平面内x 轴.y 轴正方向上的单位向量,若jy i x b j y i x a)2(,)2(-+=++=,且8||||=+b a(Ⅰ)求动点M(x,y)的轨迹C 的方程;(Ⅱ)设曲线C 上两点A .B ,满足(1)直线AB 过点(0,3),(2)若OB OA OP +=,则OAPB 为矩形,试求AB 方程.8. 已知抛物线C :)0,0(),(2>≠+=n m n x m y 的焦点为原点,C 的准线与直线 )0(02:≠=+-k k y kx l 的交点M 在x 轴上,l 与C 交于不同的两点A 、B ,线段AB 的垂直平分线交x 轴于点N (p ,0).(Ⅰ)求抛物线C 的方程; (Ⅱ)求实数p 的取值范围;(Ⅲ)若C 的焦点和准线为椭圆Q 的一个焦点和一条准线,试求Q 的短轴的端点的轨迹方程.9. 如图,椭圆的中心在原点,长轴AA 1在x 轴上.以A 、A 1为焦点的双曲线交椭圆于C 、D 、D 1、C 1四点,且|CD|=21|AA 1|.椭圆的一条弦AC 交双曲线于E ,设λ=EC AE,当4332≤≤λ时,求双曲线的离心率e 的取值范围.xy O A 1A CD E D 1C 110. 已知三角形ABC 的三个顶点均在椭圆805422=+y x 上,且点A 是椭圆短轴的一个端点(点A 在y 轴正半轴上).若三角形ABC 的重心是椭圆的右焦点,试求直线BC 的方程; 若角A 为090,AD 垂直BC 于D ,试求点D 的轨迹方程.11. 如图,过抛物线24x y =的对称轴上任一点(0,)(0)P m m >作直线与抛物线交于,A B两点,点Q 是点P 关于原点的对称点.(1) 设点P 分有向线段AB 所成的比为λ,证明:()QP QA QB λ⊥-;(2) 设直线AB 的方程是2120x y -+=,过,A B 两点的圆C 与抛物线在点A 处有共同的切线,求圆C 的方程.12. 已知动点P (p ,-1),Q (p ,212p +),过Q 作斜率为2p 的直线l ,P Q 中点M 的轨迹为曲线C.(1)证明:l 经过一个定点而且与曲线C 一定有两个公共点; (2)若(1)中的其中一个公共点为A ,证明:AP 是曲线C 的切线; (3)设直线AP 的倾斜角为α,AP 与l 的夹角为β,证明:βα+或βα-是定值.13. 在平面直角坐标系内有两个定点12F F 、和动点P ,12F F 、坐标分别为)0,1(1-F 、)0,1(F 2,动点P 满足22|PF ||PF |21=,动点P 的轨迹为曲线C ,曲线C 关于直线y x =的对称曲线为曲线'C ,直线3-+=m x y 与曲线'C 交于A 、B 两点,O 是坐标原点,△ABO 的面积为7,(1)求曲线C 的方程;(2)求m 的值。
14. 已知双曲线)0,0(12222>>=-b a b y a x 的左右两个焦点分别为21F F 、,点P 在双曲线右支上.(Ⅰ)若当点P 的坐标为)516,5413(时,21PF PF ⊥,求双曲线的方程; (Ⅱ)若||3||21PF PF =,求双曲线离心率e 的最值,并写出此时双曲线的渐进线方程.15. 若F 1、F 2为双曲线122=-b y a x 的左右焦点,O 为坐标原点,P 在双曲线的左支上,点M 在右准线上,且满足;)0)((,1111 λλOM OM OF OF OP PM O F +==.(1)求该双曲线的离心率;(2)若该双曲线过N (2,3),求双曲线的方程;(3)若过N (2,3)的双曲线的虚轴端点分别为B 1、B 2(B 1在y 轴正半轴上),点A 、B 在双曲线上,且B B A B B B A B 1122,⊥=求λ时,直线AB 的方程.16. 以O 为原点,OF 所在直线为x 轴,建立如 所示的坐标系。
设1OF FG •=,点F 的坐标为(,0)t ,[3,)t ∈+∞,点G 的坐标为00(,)x y 。
(1)求x 关于t 的函数0()x f t =的表达式,判断函数()f t 的单调性,并证明你的判断;(2)设ΔOFG 的面积316S t=,若以O 为中心,F 为焦点的椭圆经过点G ,求当||OG 取最小值时椭圆的方程;(3)在(2)的条件下,若点P 的坐标为9(0,)2,C 、D 是椭圆上的两点,且(1)PC PD λλ=≠,求实数λ的取值范围。
17. 已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅ (Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程;(Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q 的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积的取值范围。
18. 如图所示,O 是线段AB 的中点,|AB|=2c ,以点A 为圆心,2a 为半径作一圆,其中c a <。
(1)若圆A 外的动点P 到B 的距离等于它到圆周的最短距离,建立适当坐标系,求动点P 的轨迹方程,并说明轨迹是何种曲线; (2)经过点O 的直线l 与直线AB 成60°角,当c =2,a =1时,动点P 的轨迹记为E ,设过点B 的直线m 交曲线E 于M 、N 两点,且点M 在直线AB 的上方,求点M 到直线l 的距离d 的取值范围。
A O B19. 设O 为坐标原点,曲线016222=+-++y x y x 上有两点P 、Q 满足关于直线04=++my x 对称,又以PQ 为直径的圆过O 点.(1)求m 的值; (2)求直线PQ 的方程.20. 在平面直角坐标系中,若(3,),(3,)a x y b x y =-=+,且4a b +=,(1)求动点(,)Q x y 的轨迹C 的方程;(2)已知定点(,0)(0)P t t >,若斜率为1的直线l 过点P 并与轨迹C 交于不同的两点,A B ,且对于轨迹C 上任意一点M ,都存在[0,2]θπ∈,使得cos sin OM OA OB θθ=⋅+⋅成立,试求出满足条件的实数t 的值。
21. 已知双曲线12222=-b y a x (a>0,b>0)的右准线与2l 一条渐近线l 交于两点P 、Q ,F是双曲线的右焦点。
(I )求证:PF ⊥l ;(II )若△PQF 为等边三角形,且直线y=x+b 交双曲线于A ,B 两点,且30=AB ,求双曲线的方程;(III )延长FP 交双曲线左准线1l 和左支分别为点M 、N ,若M 为PN 的中点,求双曲线的离心率e 。
22. 已知又曲线 在左右顶点分别是A ,B ,点P 是其右准线上的一点,若点A 关于点P 的对称点是M ,点P 关于点B 的对称点是N ,且M 、N 都在此双曲线上。
(I )求此双曲线的方程; (II )求直线MN 的倾斜角。
23. 如图,在直角坐标系中,点A (-1,0),B (1,0),P (x ,y )(y ≠0)。
设AP OP BP →→→、、与x 轴正方向的夹角分别为α、β、γ,若αβγπ++=。
(I )求点P 的轨迹G 的方程;(II )设过点C (0,-1)的直线l 与轨迹G 交于不同两点M 、N 。
问在x 轴上是否存在一点()E x 00,,使△MNE 为正三角形。
若存在求出x 0值;若不存在说明理由。
yPA BO x24. 设椭圆()2222x y C :1a b 0a b +=>>过点()M 2,1,且焦点为()1F 2,0-。
(1)求椭圆C 的方程; (2)当过点()P 4,1的动直线与椭圆C 相交与两不同点A 、B 时,在线段AB 上取点Q ,满足AP QB AQ PB=,证明:点Q 总在某定直线上。
25. 平面直角坐标系中,O 为坐标原点,给定两点A (1,0)、B (0,-2),点C 满足αβα其中,OB OA OC +=、12,=-∈βαβ且R(1)求点C 的轨迹方程;(2)设点C 的轨迹与双曲线)0,0(12222>>=-b a b y a x 交于两点M 、N ,且以MN 为直径的圆过原点,求证:为定值2211b a -.26. 设)0,1(F ,M 、P 分别为x 轴、y 轴上的点,且PM•0=PF ,动点N 满足:NP MN 2-=.(1)求动点N 的轨迹E 的方程;(2)过定点)0)(0,(>-c c C 任意作一条直线l 与曲线E 交与不同的两点A 、B ,问在x 轴上是否存在一定点Q ,使得直线AQ 、BQ 的倾斜角互补?若存在,求出Q 点的坐标;若不存在,请说明理由.27. 如图,直角梯形ABCD 中,∠︒=90DAB ,AD ∥BC ,AB=2,AD=23,BC=21椭圆F 以A 、B 为焦点,且经过点D ,(Ⅰ)建立适当的直角坐标系,求椭圆F 的方程;(Ⅱ)是否存在直线l 与M 、F 交于椭圆N 两点,且线段C MN 的中点为点,若存在,求直线l 的方程;若不存在,说明理由.C BD28. 如图所示,B (– c ,0),C (c ,0),AH ⊥BC ,垂足为H ,且HC BH 3=.(1)若AC AB ⋅= 0,求以B 、C 为焦点并且经过点A 的椭圆的离心率;(2)D 分有向线段AB 的比为λ,A 、D 同在以B 、C 为焦点的椭圆上, 当 ―5≤λ≤27-时,求椭圆的离心率e 的取值范围.29. 在直角坐标平面中,ABC ∆的两个顶点B A ,的坐标分别为)0,1(-A ,)0,1(B ,平面内两点M G ,同时满足下列条件: ①0=++GC GB GA ;②MCMB MA ==;③GM ∥AB(1)求ABC ∆的顶点C 的轨迹方程;(2)过点)0,3(P 的直线l 与(1)中轨迹交于F E ,两点,求PF PE ⋅的取值范围答案:1.解:(Ⅰ) 以A 点为坐标原点,l1为x 轴,建立如图所示的坐标系,则D(1,0),B(4,0),设M (x ,y ), 则N (x ,0). ∵|BN|=2|DM|, ∴|4-x|=2(x -1)2+y2 , 整理得3x2+4y2=12, ∴动点M 的轨迹 方程为x24+ y23 =1 .(Ⅱ)∵(R),AG AD λλ=∈∴A 、D 、G 三点共线,即点G 在x 轴上;又∵2,GE GF GH +=∴H 点为线段EF 的中点;又∵0,GH EF ⋅=∴点G 是线段EF 的垂直平分线GH 与x 轴的交点。