漏电电流和零序电流区别

合集下载

正序、负序、零序

正序、负序、零序

正序、负序、零序什么是正序、负序、零序?对于非电气专业的人来说,这个问题或许困扰了许久。

就我个人感觉来讲,当初在学校学的时候也困惑了很久,确实不是非常好理解。

用最简单的语言概括如下:当前世界上的交流电力系统一般都是ABC三相的,而电力系统的正序,负序,零序分量便是根据ABC三相的顺序来定的。

正序:A相领先B相120度,B相领先C相120度,C相领先A相120度。

(ABC)负序:A相落后B相120度,B相落后C相120度,C相落后A相120度。

(BAC)零序:ABC三相相位相同,哪一相也不领先,也不落后。

系统里面什么时候分别用到什么保护?三相短路故障和正常运行时,系统里面是正序。

单相接地故障时候,系统有正序、负序和零序分量。

两相短路故障时候,系统有正序和负序分量。

两相短路接地故障时,系统有正序、负序和零序分量。

对称分量法基本概念和简单计算正常运行的电力系统,三相电压、三相电流均应基本为正相序,根据负荷情况(感性或容性),电压超前或滞后电流1个角度(Φ),如图1。

对称分量法是分析电力系统三相不平衡的有效方法,其基本思想是把三相不平衡的电流、电压分解成三组对称的正序相量、负序相量和零序相量,这样就可把电力系统不平衡的问题转化成平衡问题进行处理。

在三相电路中,对于任意一组不对称的三相相量(电压或电流),可以分解为三组三相对称的分量。

对于理想的电力系统,由于三相对称,因此负序和零序分量的数值都为零(这就是我们常说正常状态下只有正序分量的原因)。

当系统出现故障时,三相变得不对称了,这时就能分解出有幅值的负序和零序分量度了(有时只有其中的一种),因此通过检测这两个不应正常出现的分量,就可以知到系统出了毛病(特别是单相接地时的零序分量)。

当选择A相作为基准相时,三相相量与其对称分量之间的关系(如电流)为:I A=Ia1+Ia2+Ia0--------------------------------------------○1I B=Ib1+Ib2+Ib0=α2 Ia1+αIa2 + Ia0------------○2I C=Ic1+Ic2+Ic0=α Ia1+α2 Ia2+Ia0-------------○3对于正序分量:Ib1=α2 Ia1,Ic1=αI a1对于负序分量:Ib2=αIa2,Ic2=α2Ia2对于零序分量:Ia0= Ib0 = Ic0式中,α为运算子,α=1∠120°,有α2=1∠240°,α3=1,α+α2+1=0由各相电流求电流序分量:I1=Ia1= 1/3(I A+αI B+α2 I C)I2=Ia2= 1/3(I A+α2 I B+αI C)I0=Ia0= 1/3(I A +I B +I C)以上3个等式可以通过代数方法或物理意义(方法)求解。

不对称系统中三相的零序电流

不对称系统中三相的零序电流

不对称系统中三相的零序电流:不对称运行和单相运行是零序电流产生的主要原因。

当电路中发生触电或漏电故障时,回路中有漏电电流流过,这时穿过互感器的三相电流向量和不等零,其相量和为:Ia+Ib+Ic=I(漏电电流,即零序电流)。

这样互感器二次线圈中就有一个感应电流,此电流加于检测部分的电子放大电路,与保护区装置预定动作电流值相比较,若大于动作电流,则使灵敏继电器动作,作用于执行元件跳闸。

这里所接的互感器称为零序电流互感器,三相电流的相量和不等于零,所产生的电流即为零序电流。

电流互感器型漏电保护装置分()三种。

电流互感器型漏电保护装置分()三种。

电流互感器型漏电保护装置分()三种。

【实用版】
目录
1.电流互感器和漏电保护器的主要区别
2.电流互感器的分类
3.漏电保护器的分类和功能
4.电流互感器型漏电保护装置的三种类型
正文
电流互感器和漏电保护器是两种不同的电气保护设备,它们在功能和应用上有很大的区别。

电流互感器是一种将大电流按一定比例变为小电流的设备,主要用于测量和保护电路。

它将二次系统与高压隔离,保证了人身和设备的安全,同时简化了仪表和继电器的制造,提高了经济效益。

值得注意的是,电流互感器二次不允许开路工作。

漏电保护器,也叫漏电保护开关,是一种检测电路中进项和出项电流的设备。

如果出现电流不稳定或不一致,超过它的预设范围,它会在短时间内跳闸、断电,以保护人和财产。

漏电保护器必须人工调整后才能恢复通电。

电流互感器分为过负荷保护电流互感器、差动保护电流互感器和接地保护电流互感器(零序电流互感器)。

过负荷保护电流互感器主要用于过负荷保护,差动保护电流互感器主要用于差动保护,接地保护电流互感器主要用于接地保护。

漏电保护器分为电压型、零序电流型和泄露电流型。

电压型漏电保护器检测信号为漏电电压(壳体对地电压),零序电流型漏电保护器检测信号为零序电流,泄露电流型漏电保护器检测信号为泄露电流。

电流互感器型漏电保护装置分为三种类型:过负荷保护型、差动保护型和接地保护型。

漏电保护基础知识

漏电保护基础知识

漏电保护基础知识1、漏电保护器RCD主要提供间接接触触电的保护,在一定条件下也可用作直接接触触电的补充保护。

漏电保护器能及时切断电气设备运行中的单相接地故障,防止因漏电引起的电气火灾事故。

2、将漏电保护器安装在低压电路中,当发生泄漏电流、人体触电等非金属性单相接地故障,且达到所限定的动作电流值时,漏电保护器就立即在限定的时间内动作,自动断开电源进行保护。

3、高灵敏度漏电保护器动作电流在30mA以下;中灵敏度漏电保护器动作电流为30~1000mA;低灵敏度漏电保护器动作电流在1000mA以上。

4、快速型漏电保护器动作时间小于0.ls;延时型漏电保护器动作时间大于0.1s,在0.1~2s之间;反时限型漏电保护器随漏电电流增加,漏电动作时间减小。

当等于额定漏电动作电流时,动作时间为0.2~1s;1.4倍动作电流时为0.1~0.5s;4.4倍动作电流时动作时间小于0.05s。

5、漏电保护器是由检测元件、脱扣机构、放大器及主开关等元件组成。

检测元件是零序电流互感器,其一次绕组通以各相电流,铁芯上绕若干匝线圈作为二次绕组,由二次绕组输出检测信号。

6、脱扣机构是漏电保护器的判断元件,根据零序电流互感器的输出信号或放大以后的信号,经过分析处理后作出是否动作的判断。

当需要动作时,就推动主开关的操作机构,使主开关动作切断电源。

7、漏电保护器的脱扣机构按其结构原理,可分为吸合式和释放式两种。

吸合式脱扣器的灵敏度较低,一般适用于电子式漏电保护器;释放式脱扣器的灵敏度较高,适用于电磁式漏电保护器。

8、零序电流互感器二次绕组的输出信号很小,一般都在1mVA以下,当漏电保护器电流容量较大时,由零序电流互感器的二次输出信号直接通过脱扣器来驱动脱扣的方式往往不能满足要求。

电子式漏电保护器增加了一个放大元件,其工作过程是利用放大信号去推动中间继电器,再由中间继电器接通控制电源,使吸合式脱扣器动作切断电源。

9、电磁式漏电保护器在零序电流互感器二次绕组与脱扣器之间没有放大元件,其工作过程是零序电流互感器二次绕组和断路器中的脱扣线圈相连,当穿过零序电流互感器环形铁芯的线路上有触电、漏电电流流过并达到整定值时,使主开关动作跳闸。

什么是零序电流、什么是剩余电流

什么是零序电流、什么是剩余电流

什么是零序电流、什么是剩余电流、零序电流保护与剩余为了防止人身间接触电以及配电线路由于各种原因而遭损坏,引起火灾等事故,保证设备和线路的热稳定性,我国现行的电气设计、施工等有关规范都提出了在低压配电线路中需设置接地故障保护。

在国家标准GB50054-95《低压配电设计规范》第4.4.10条明确指出了采用接地故障保护的两种方法,零序电流保护与剩余电流保护(亦称漏电电流保护)。

这两种电流保护的基本工作原理相同,但使用范围、安装等要求却有所不同)。

零序电流保护具体应用可在三相线路上各装一个电流互感器(C.T),或让三相导线一起穿过一零序C.T,也可在中性线N上安装一个零序C.T,利用这些C.T来检测三相的电流矢量和,即零序电流Io,IA+IB+IC=IO,当线路上所接的三相负荷完全平衡时(无接地故障,且不考虑线路、电器设备的泄漏电流),IO=0;当线路上所接的三相负荷不平衡,则IO=IN,此时的零序电流为不平衡电流 IN;当某一相发生接地故障时,必然产生一个单相接地故障电流Id,此时检测到的零序电流IO=IN+Id,是三相不平衡电流与单相接地电流的矢量和。

剩余电流保护的具体做法是在被测的三相导线路上与中性N上各装一个C.T,或让三相导线与N 线一起穿过一个零序C.T,得到三相导线与中性线N的电流矢量和IA+IB+IC+IN,当设有发生单相接地故障时,无论三相负荷平衡与否,则此矢量和为零(严格讲为线路与设备的正常泄漏电流);当发生某一相接地故障时,故障电流中会通过保护线PE及与地相关连的金属构件,即IA+IB+IC+IN≠0,此时数值为接地故障电流Id加正常泄漏电流。

从以上分析可看出,零序电流保护和剩余电流保护两者的基本原理都是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零,即ΣI=0,并且都用零序C.T作为取样元件。

在线路与电器设备正常情况下,各相电流的矢量和等于零(对零序电流保护假定不考虑不平衡电流),因此,零序C.T的二次侧绕组无信号输出(零序电流保护时躲过不平衡电流),执行元件不动作。

漏电保护开关的工作原理

漏电保护开关的工作原理

漏电保护开关的工作原理
漏电保护开关是一种安全电器设备,用于检测电气设备中的漏电情况,并在发生漏电时迅速切断电源,以保护人身安全和防止火灾等意外事故发生。

其工作原理主要包括以下几个方面:
1. 漏电保护开关内部安装有零序电流互感器,用于检测电路中的漏电流。

漏电流是指电流从电源到地之间的差值,当电气设备发生漏电时,部分电流会通过漏电路径流入地,导致电路中的总电流不平衡。

2. 当电路中的漏电流超过设定值时,零序电流互感器会感应到这一变化,并将其转化为电信号。

3. 漏电保护开关内部的电子元器件会对接收到的电信号进行处理,当漏电流达到设定阈值时,开关会发出信号,切断电源。

4. 通过切断电源,漏电保护开关阻止漏电继续流入地,保护人身安全和电气设备不受损坏。

漏电保护开关的工作原理实际上是基于电路的平衡原理,即正常情况下,电源输入的电流应该等于电路中各个支路的电流之和,而在发生漏电时,漏电流破坏了这个平衡,漏电保护开关通过检测和切断电源,恢复平衡状态,以保证电路的正常运行。

零序电流(零序保护)与剩余电流(漏电保护)的区别

零序电流(零序保护)与剩余电流(漏电保护)的区别

接地故障保护与漏电故障保护的区别为了防止人身间接触电以及配电线路由于各种原因而遭损坏,引起火灾等事故,保证设备和线路的热稳定性,我国现行的电气设计、施工等有关规范都提出了在低压配电线路中需设置接地故障保护。

在国家标准GB50054-95《低压配电设计规范》第4.4.10条明确指出了采用接地故障保护的两种方法,零序电流保护与剩余电流保护(亦称漏电电流保护)。

这两种电流保护的基本工作原理相同,但使用范围、安装等要求却有所不同)。

零序电流保护具体应用可在三相线路上各装一个电流互感器(C.T),或让三相导线一起穿过一零序C.T,也可在中性线N上安装一个零序C.T,利用这些C.T来检测三相的电流矢量和,即零序电流Io,IA+IB+IC=IO,当线路上所接的三相负荷完全平衡时(无接地故障,且不考虑线路、电器设备的泄漏电流),IO=0;当线路上所接的三相负荷不平衡,则IO=IN,此时的零序电流为不平衡电流IN;当某一相发生接地故障时,必然产生一个单相接地故障电流Id,此时检测到的零序电流IO=IN+Id,是三相不平衡电流与单相接地电流的矢量和。

剩余电流保护的具体做法是在被测的三相导线路上与中性N上各装一个C.T,或让三相导线与N线一起穿过一个零序C.T,得到三相导线与中性线N的电流矢量和IA+IB+IC+IN,当设有发生单相接地故障时,无论三相负荷平衡与否,则此矢量和为零(严格讲为线路与设备的正常泄漏电流);当发生某一相接地故障时,故障电流中会通过保护线PE及与地相关连的金属构件,即IA+IB +IC+IN≠0,此时数值为接地故障电流Id加正常泄漏电流。

从以上分析可看出,零序电流保护和剩余电流保护两者的基本原理都是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零,即ΣI=0,并且都用零序C.T作为取样元件。

在线路与电器设备正常情况下,各相电流的矢量和等于零(对零序电流保护假定不考虑不平衡电流),因此,零序C.T的二次侧绕组无信号输出(零序电流保护时躲过不平衡电流),执行元件不动作。

零序电流(零序保护)与剩余电流(漏电保护)的区别

零序电流(零序保护)与剩余电流(漏电保护)的区别

为了防止人身间接触电以及配电线路由于各种原因而遭损坏,引起火灾等事故,保证设备和线路的热稳定性,我国现行的电气设计、施工等有关规范都提出了在低压配电线路中需设置接地故障保护。

在国家标准GB50054-95《低压配电设计规范》第4.4.10条明确指出了采用接地故障保护的两种方法,零序电流保护与剩余电流保护(亦称漏电电流保护)。

这两种电流保护的基本工作原理相同,但使用范围、安装等要求却有所不同)。

零序电流保护具体应用可在三相线路上各装一个电流互感器(C.T),或让三相导线一起穿过一零序C.T,也可在中性线N上安装一个零序C.T,利用这些C.T来检测三相的电流矢量和,即零序电流Io,IA+IB+IC=IO,当线路上所接的三相负荷完全平衡时(无接地故障,且不考虑线路、电器设备的泄漏电流),IO=0;当线路上所接的三相负荷不平衡,则IO=IN,此时的零序电流为不平衡电流IN;当某一相发生接地故障时,必然产生一个单相接地故障电流Id,此时检测到的零序电流IO=IN+Id,是三相不平衡电流与单相接地电流的矢量和。

剩余电流保护的具体做法是在被测的三相导线路上与中性N上各装一个C.T,或让三相导线与N线一起穿过一个零序C.T,得到三相导线与中性线N的电流矢量和IA+IB+IC+IN,当设有发生单相接地故障时,无论三相负荷平衡与否,则此矢量和为零(严格讲为线路与设备的正常泄漏电流);当发生某一相接地故障时,故障电流中会通过保护线PE及与地相关连的金属构件,即IA+IB+IC+IN≠0,此时数值为接地故障电流Id加正常泄漏电流。

从以上分析可看出,零序电流保护和剩余电流保护两者的基本原理都是基于基尔霍夫电流定律:流入电路中任一节点的复电流的代数和等于零,即ΣI=0,并且都用零序C.T作为取样元件。

在线路与电器设备正常情况下,各相电流的矢量和等于零(对零序电流保护假定不考虑不平衡电流),因此,零序C.T的二次侧绕组无信号输出(零序电流保护时躲过不平衡电流),执行元件不动作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

漏电流和零序电流两种的区别以下讲解均在三相四线制接线模式下。

一.零序电流检测三种方法
方法一:三相电流之和计算方法:
方法二:
直接用零序互感器穿心N相测量。

加入接线图
方法三:
互感器器穿心三相电流。

二.漏电电流检测二种方法
方法一:用漏电互感器穿芯 A B C N
方法二: A B C N均穿芯互感器
通过A+ B + C +N 矢量计算出漏电流。

加入接线图
三.漏电电流和零序电流区别
零序电流产生条件:三相负载不平衡、接地故障、相间短路电流均会产生零序电流。

漏电流产生条件:接地故障。

根据保护三个特性:
选择性、快速性、可靠性。

零序电流保护,零序电流接地和相间短路情况下保护动作,但是三相负载不平衡情况下也能跳闸,误跳情况。

漏电流保护,出现接地故障可靠动作。

综上所述,针对接地故障情况,只有漏电保护才能可靠动作。

四.漏电保护两种检测方法优缺点
方法一:穿芯漏电互感器检测方法,
这种方法是主流设计方案,广泛引用建筑电气防火,市场大部分采用500mA和1000mA 规格,这种设计一般很少设计过载倍数,通过AD数字采集范围窄,测量精度比较高,10mA 电流准确可靠计算出来,符合人身安全标准,适合民用建筑。

优点很明显,但是缺点也很明显,因为检测漏电范围比较窄,漏电流最大1A多。

在工业电气应用会明显不适应,工业设备均是大负荷,一般漏电流都是几十安、几百安,甚至上
千安也会出现,小范围漏电互感器出现铁芯饱和情况,穿芯互感器是检测不出来或者互感器坏。

工业使用环境有完备保护功能(过流保护等),对供电可靠性和连续性要求较高,用电设备环境复杂,对于mA的漏电流可以不必理会,采用穿芯互感器测量方案,感觉容易误跳。

工业负荷比较大,线缆也比较粗,穿芯互感器要穿过A B C N四根线,制造出大孔径漏电互感器,成本比较高,工程施工难穿心,所以工业环境中很少装设具备电气防火设备。

方法二:矢量漏电计算方,A B C N均穿芯互感器,通过A+B+C+N 矢量计算出漏电流。

三相电流 + 零序互感器,通过四相电流矢量和计算出漏电。

三相电流和零序电流互感器均采用5P10互感器,有10倍过载,具备较大过载能力。

出现上千安漏电流,铁芯不会饱和,并且计算准确可靠。

这种方式优点,监测大电流漏电,并且安全可靠,每个穿芯只是一项电流,因此孔径要求不会太大。

缺点也是很明显,电流测量范围宽,特别是针对mA级别小电流计算误差也就大。

森尼瑞电气采用“保护和测量”二者合一技术,即保证过载大倍数电流测量准确,又保证额定范围值小电流计算准确,针对10mA小电流计算效果与穿芯互感器模式是一致的。

所以,采用矢量和计算模式电气防火装置,即适合工业应用,也适合建筑应用。

相关文档
最新文档