人教版八年级数学下限时训练
人教版八级数学下册第二学期 同步课堂补习辅导练习题作业 第十九章 一次函数 第十九章复习1

《一次函数》复习一、相信你一定能填对!(每小题3分,共24分)1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ...D .2.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 3.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3 6.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 7.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 8.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、你能填得又快又对吗?(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.17.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.18.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共36分)23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B 种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。
人教版八级数学下册第二学期 同步课堂补习辅导练习题作业 第十九章 一次函数周周测9(全章)

人教版八级数学下册第二学期同步课堂补习辅导练习题作业第十九章一次函数周周测9(全章)人教版八级数学下册第二学期同步课堂补习辅导练习题作业第十九章一次函数周周测9(全章)第1九章主要功能的每周测量9题号得分评卷人选择题填空题解答题总分一个选择题1.星期天,小明和小兵租用一艘皮划艇去嘉陵江游玩,他们先从上游顺流划行1小时,再停留0.5小时采集植物标本,然后加速划行0.5小时到下游,最后乘坐公交车1小时回到出发地,那么小明和小兵距离出发点的距离y随时间x变化的大致图象是()2.洗衣服时,洗衣机要经历三个连续的过程:注水、清洗和排水(工作前洗衣机没有水)。
在这三个过程中,洗衣机中的水量y(L)和时间x(min)之间的函数关系,以及相应的图像大致为()3.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是()4.主函数y=2x-1的图像大致为()第1页共8页5.在同一直角坐标系中,主函数Y1=K1X+B和正比例函数y2=k2x的图像如图所示,则X的值范围满足Y1≥ Y2是()a.x≤2b、x≥2c.x<2d.x>26.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.图描述了他上学的情景,下列说法中错误的是()a、维修时间为15分钟。
从学校到家的距离是2000米。
C.到达学校时的共享时间为20分钟d.自行车发生故障时离家距离为1000米7.如果主函数y=ax+B的图像经过第一、第二和第四象限,则以下不等式始终成立:(a.ab>0b.a-B>0C.A2+B>0d.a+B>0)8.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的...象限是()a.第一象限b.第二象限c.第三象限d.第四象限9.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是().a.2b.1.5c.2.5d.-610.在本市举办的“龙舟赛龙舟”比赛中,a队和B队在比赛中的距离s(米)和时间t(分钟)之间的函数关系如图所示。
人教版八年级数学下册专题训练(含参考答案与解析)

人教版八年级数学下册专题训练(附答案与解析)说明:本套训练习题包含12个专题:类比归纳专题:二次根式求值的常用方法考点综合专题:一次函数与几何图形的综合问题解题技巧专题:利用一次函数解决实际问题解题技巧专题:正方形中特殊的证明(计算)方法思想方法专题:矩形中的折叠问题核心素养专题:四边形中的探究与创新类比归纳专题:有关中点的证明与计算解题技巧专题:特殊平行四边形中的解题方法思想方法专题:勾股定理中的思想方法解题技巧专题:勾股定理与面积问题难点探究专题:特殊四边形中的综合性问题解题技巧专题:函数图象信息题考点综合专题:一次函数与几何图形的综合问题——代几综合,明确中考风向标◆类型一一次函数与面积问题1.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.2.如图,直线y =-2x +3与x 轴相交于点A ,与y 轴相交于点B.【易错7】(1)求A ,B 两点的坐标;(2)过B 点作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.3.如图,直线y =-x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),点P(x ,y)是在第一象限内直线y =-x +10上的一个动点.(1)求△OPA 的面积S 与x 的函数解析式,并写出自变量x 的取值范围;(2)当△OPA 的面积为10时,求点P 的坐标.◆类型二 一次函数与三角形、四边形的综合4.(2016·长春中考)如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限,若点B 在直线y =kx +3上,则k 的值为________.第4题图 第5题图5.(2016·温州中考)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是()A.y=x+5 B.y=x+10C.y=-x+5 D.y=-x+10◆类型三一次函数与几何图形中的规律探究问题6.(2017·安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为________.第6题图第7题图7.★(2016·潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是________.参考答案与解析1.16解析:如图,∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB =90°,BC=5,∴在Rt△ABC中,由勾股定理得AC=BC2-AB2=4,∴A′C′=4.∵点C′在直线y=2x-6上,∴2x-6=4,解得x=5.即OA′=5,∴CC′=AA′=5-1=4.∴S▱BCC′B′=CC′·CA=4×4=16.即线段BC扫过的面积为16.2.解:(1)令y=0,则-2x+3=0,解得x=32;令x=0,则y=3,∴点A的坐标为⎝ ⎛⎭⎪⎫32,0,点B 的坐标为(0,3). (2)由(1)得点A ⎝ ⎛⎭⎪⎫32,0,∴OA =32,∴OP =2OA =3,∴点P 的坐标为(3,0)或(-3,0),∴AP =OP -OA =32或AP =OP +OA =92,∴S △ABP =12AP ·OB =12×92×3=274或S △ABP =12AP ·OB =12×32×3=94.综上所述,△ABP 的面积为274或94.3.解:(1)∵点P 在直线y =-x +10上,且点P 在第一象限内,∴x >0且y >0,即-x +10>0,解得0<x <10.∵点A (8,0),∴OA =8,∴S =12OA ·|y P |=12×8×(-x +10)=-4x +40(0<x <10).(2)当S =10时,即-4x +40=10,解得x =152.当x =152时,y =-152+10=52,∴当△OP A 的面积为10时,点P 的坐标为⎝ ⎛⎭⎪⎫152,52. 4.-2 5.C6.2n +1-2 解析:由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)….∵2=22-2,6=23-2,14=24-2,…∴B n 的横坐标为2n +1-2.故答案为2n +1-2.7.(2n -1,2n -1) 解析:∵y =x -1与x 轴交于点A 1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 是正方形,∴A 1B 1=OA 1=1,∴点B 1的坐标为(1,1).∵C 1A 2∥x 轴,点A 2在直线y =x -1上,∴点A 2的坐标为(2,1).∵四边形A 2B 2C 2C 1是正方形,∴A 2B 2=A 2C 1=2,∴点B 2的坐标为(2,3),同理可得点B 3的坐标为(4,7).∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴点B n 的坐标为(2n -1,2n -1).难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC 到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图②,点P 是四边形ABCD 内一点,且满足P A =PB ,PC =PD ,∠APB =∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB =∠CPD =90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE =90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EEF =3 3 .在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP=90°.∵AC 为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP =10,∴PM =12E AP =5.由勾股定理得AM =P A 2-PM 2=5 3 .在△ANP 和△AMP 中,⎩⎨⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3 .∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF=10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°.3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎨⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH是菱形,∴四边形EFGH 是正方形.解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.(2016·攀枝花中考)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.(2016·荆州中考)为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A 点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有( )A .1个B .2个C .3个D .4个四、分类讨论思想4.(2017·天门中考)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?◆类型二路程类问题一、两个一次函数图象结合的问题5.(2017·青岛中考)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5km?二、分段函数问题6.(2016·新疆中考)暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5h后离目的地有多远?◆类型三工程类问题一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x =2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.(2016·绍兴中考)根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m 3)和开始排水后的时间t(h )之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎨⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎨⎧m =2,n =3.5.答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎨⎧2x (0≤x ≤14),3.5x -21(x >14).(3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎨⎧20k +b =160,40k +b =288,解得⎩⎨⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎨⎧8x (0≤x ≤20),6.4x +32(x >20).(2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎨⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元). 3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎨⎧2000m +n =2000,4000m +n =3400,解得⎩⎨⎧m =0.7,n =600,所以y乙=⎩⎨⎧x (0<x <2000),0.7x +600(x ≥2000).(2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20.(2)设甲出发x h 两人恰好相距5km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3h 或1.5h 两人恰好相距5km. 6.解:(1)从小刚家到该景区乘车一共用了4h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎨⎧k +b =80,3k +b =320,解得⎩⎨⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km. 7.①②④ 8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎨⎧2k +b =450,3.5k +b =0,解得⎩⎨⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.类比归纳专题:二次根式求值的常用方法——明确计算便捷渠道◆类型一 利用二次根式的非负性求值1.若a ,b 为实数,且|a +1|+b -1=0,则(ab )2018的值是( ) A .0 B .1 C .-1 D .±12.已知a +1+b 2-2b +1=0,则a 2018+b 2017的值是________.3.若a 2-3a +1+b 2-2b +1=0,则a 2+1a 2-|b |=________. 4.若y =x -3+3-x +2,求x y 的值.【方法1②】◆类型二利用乘法公式进行计算5.计算:(1)(5+3)2; (2)(25-2)2;(3)(3+2)2-(3-2)2.6.已知x+1x=5,求x2x4+x2+1的值.◆类型三整体代入求值7.已知x=2-10,则代数式x2-4x-6的值为()A.-1 B.0 C.1 D.28.(2017·安顺中考)已知x+y=3,xy=6,则x2y+xy2的值为________.9.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.10.已知x=13-22,y=13+22,求xy+yx-4的值.参考答案与解析: 1.B 2.23.6 解析:∵a 2-3a +1+b 2-2b +1=0,∴a 2-3a +1+(b -1)2=0,∴a 2-3a +1=0,b =1,∴a -3+1a =0,∴a +1a =3,∴⎝ ⎛⎭⎪⎫a +1a 2=32,∴a 2+1a 2=7.∴a 2+1a2-|b |=6. 4.解:由题意有x -3≥0,3-x ≥0,∴x =3,∴y =2,∴x y =32=9. 5.解:(1)原式=8+215.(2)原式=22-410. (3)原式=4 6.6.解:原式取倒数得x 4+x 2+1x 2=x 2+1x 2+1=⎝ ⎛⎭⎪⎫x +1x 2-1=(5)2-1=4.∴原式=14.7.B 8.329.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2 )(1+ 2 )=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2 2 )2-2×(-22)+(-1)=7+4 2.方法点拨:根据原式以及字母取值的特点,将原式配方、整合成含有x -y 和xy 的形式,利用整体思想代入求值.10.解:由已知得x =3+22,y =3-2 2.∴x +y =6,xy =1,∴原式=x 2+y 2xy -4=(x +y )2-6xy xy=62-6×1=30.思想方法专题:矩形中的折叠问题——体会折叠中的方程思想及数形结合思想◆类型一 折叠中求角度1.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ′处,折痕为EF .若∠EFC ′=125°,那么∠ABE 的度数为( )A .15°B .20°C .25°D .30°第1题图 第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形纸片ABCD ,使AD 和BC 重合,得到折痕EF ,把纸片展平;(2)再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN .观察探究可以得到∠ABM 的度数是( )A .25°B .30°C .36°D .45° ◆类型二 折叠中求线段长3.(2017·安顺中考)如图,在矩形纸片ABCD 中,AD =4cm ,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O ,若AO =5cm ,则AB 的长为( ) A .6cm B .7cm C .8cm D .9cm第3题图 第4题图4.(2017·宜宾中考)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的F 处,则DE 的长是( )A .3 B.245 C .5 D.89165.★(2016·威海中考)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内的点F 处,连接CF ,则CF的长为________.◆类型三折叠中求面积6.(2017·鄂州中考)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.7.★(2016·福州中考)如图,矩形ABCD中,AB=4,AD=3,M是边CD上的一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积.参考答案与解析1.B 解析:由折叠可知∠EFC =∠EFC ′=125°.∵在矩形ABCD 中,AD ∥BC ,∴∠DEF =180°-125°=55°.根据折叠可知∠BEF =∠DEF =55°,∴∠BED =110°.∵四边形ABCD 为矩形,∠A =90°,∴∠ABE =110°-90°=20°.故选B. 2.B 3.C 4.C5. 185 解析:如图,连接BF 交AE 于H ,由折叠的性质可知BE =FE ,AB =AF ,∠BAE =∠F AE ,∴AH ⊥BF ,BH =FH .∵BC =6,点E 为BC 的中点,∴BE =12E B C =3.又∵AB =4,∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =125,则BF =2BH =245.∵E 是BC 的中点,∴FE =BE =EC ,∴∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝ ⎛⎭⎪⎫2452=185.6.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°.∵将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,∴∠F =∠B ,AB =AF ,∴AF =CD ,∠F=∠D .在△AFE 与△CDE 中,⎩⎨⎧∠F =∠D ,∠AEF =∠CED ,AF =CD ,∴△AFE ≌△CDE .(2)解:∵AB =4,BC =8,∴CF =AD =8,AF =CD =AB =4.∵△AFE ≌△CDE ,∴EF =DE .在Rt △CED 中,由勾股定理得DE 2+CD 2=CE 2,即DE 2+42=(8-DE )2,∴DE =3,∴AE =8-3=5,∴S 阴影=12×4×5=10.7.解:(1)由折叠性质得△ANM ≌△ADM ,∴∠MAN =∠DAM .∵AN 平分∠MAB ,∴∠MAN =∠NAB ,∴∠DAM =∠MAN =∠NAB .∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DAM =30°,∴AM =2DM .在Rt △ADM 中,∵AD =3,∴由勾股定理得AM 2-DM 2=AD 2,即(2DM )2-DM 2=32,解得DM = 3.(2)延长MN 交AB 的延长线于点Q ,如图所示.∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠DMA=∠MAQ,由折叠性质得△ANM≌△ADM,∴∠ANM=∠D=90°,∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ.设NQ=x,则AQ=MQ=MN+NQ=1+x.∵∠ANM=90°,∴∠ANQ=90°.在Rt△ANQ中,由勾股定理得AQ2=AN2+NQ2,即(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5.∵△NAB和△NAQ在AB边上的高相等,AB=4,AQ=5,∴S△NAB =45S△NAQ=45×12×AN·NQ=45×12×3×4=245.解题技巧专题:正方形中特殊的证明(计算)方法——解决正方形中的最值及旋转变化模型问题◆类型一利用正方形的旋转性质解题1.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P,若四边形ABCD的面积是18,则DP的长是__________.2.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF.3.如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,P 为正方形ABCD 外一点,且BP ⊥CP . 求证:BP +CP =2OP .◆类型二 利用正方形的对称性解题4.如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( ) A. 3 B .23 C .2 6 D.6第4题图 第5题图5.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为________.6.如图,在正方形ABCD 中,点E 是CD 的中点,AC ,BE 交于点F ,MF ∥AE 交AB 于M . 求证:DF =MF .参考答案与解析1.322.证明:延长CB到点H,使得HB=DF,连接AH.∵四边形ABCD是正方形,∴∠ABH=∠D=90°,AB=AD.∴△ADF绕点A顺时针旋转90°后能和△ABH重合.∴AH=AF,∠BAH=∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=∠EAF=45°.又∵AE=AE,∴△AEF与△AEH关于直线AE对称,∴S△AEF =S△AEH=S△ABE+S△ABH=S△ABE+S△ADF.3.证明:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°.将△OCP顺时针旋转90°至△OBE(如图所示),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC=90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE=180°,∴E,B,P在同一直线上.∵∠POC+∠POB=∠BOC=90°,∠BOE=∠COP,∴∠BOE+∠POB=90°,即∠EOP=90°.在Rt△EOP中,由勾股定理得PE=OE2+OP2=OP2+OP2=2OP.∵PE=BE+BP,BE=CP,∴BP+CP=2OP.4.B解析:连接PB.∵点P在正方形ABCD的对角线AC上,∴PD=PB,∴PD +PE的最小值就是PB+PE的最小值,∴PD+PE的最小值就是BE.∵△ABE是等边三角形,∴BE=AB.∵S正方形ABCD=12,∴BE2=AB2=12,即BE=23,故选B.5.176.证明:∵B,D关于AC对称,点F在AC上,∴BF=DF.∵四边形ABCD是正方形,∴AD=BC,∠ADE=∠BCE.∵点E是CD的中点,∴DE=CE.在△ADE 和△BCE中,∵AD=BC,∠ADE=∠BCE,DE=CE,∴△ADE≌△BCE,∴AE =BE,∴∠BAE=∠ABE.∵MF∥AE,∴∠BAE=∠BMF,∴∠BMF=∠ABE,∴MF=BF.∵BF=DF,∴DF=MF.解题技巧专题:函数图象信息题——数形结合,快准解题◆类型一 根据实际问题判断函数图象1.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗.下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )2.(2017·牡丹江中考)下列图象中,能反映等腰三角形顶角度数y(度)与底角度数x(度)之间的函数关系的是( )◆类型二 获取实际问题中图象的信息3.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(m 2)与工作时间t(h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是【方法12】( )A .300m 2B .150m 2C .330m 2D .450m 2第3题图 第4题图4.(2017·河南中考)如图①,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图②是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.5.(2017·西宁中考)首条贯通丝绸之路经济带的高铁线——宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y 与x 之间的函数关系,根据图象进行一下探究:【方法12】 【信息读取】(1)西宁到西安两地相距________千米,两车出发后________小时相遇;(2)普通列车到达终点共需________小时,普通列车的速度是________千米/时. 【解决问题】(3)求动车的速度;(4)普通列车行驶t 小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安.◆类型三 一次函数图象与字母系数的关系6.若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )7.在一次函数y =12ax -a 中,y 随x 的增大而减小,则其图象可能是( )参考答案与解析 1.A 2.C3.B 解析:设点A (4,1200),点B (5,1650),直线AB 的解析式为y =kx +b,则⎩⎨⎧4k +b =1200,5k +b =1650,解得⎩⎨⎧k =450,b =-600,故直线AB 的解析式为y =450x -600.当x =2时,y =450×2-600=300,300÷2=150(m 2).故选B.4.12 解析:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 运动到C 的过程中,BP 的最大值为5,即BC =5.点P 运动到点A 时,BP =AB =5.∴△ABC 是等腰三角形.∵M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC 时,BP =4,∴由勾股定理得PC =3,∴AC =6,∴△ABC 的面积为12×4×6=12,故答案为12. 5.解:(1)1000 3(2)12 2503(3)设动车的速度为x 千米/时,根据题意,得3x +3×2503=1000,解得x =250. 答:动车的速度为250千米/时.(4)∵t =1000250=4(小时),∴4×2503=10003(千米),∴1000-10003=20003(千米),∴此时普通列车还需行驶20003千米到达西安. 6.B 7.B思想方法专题:勾股定理中的思想方法◆类型一 分类讨论思想一、直角边与斜边不明需分类讨论1.一直角三角形的三边长分别为2,3,x ,那么以x 为边长的正方形的面积为【易错3】( ) A .13 B .5C .13或5D .42.直角三角形的两边长是6和8,则这个三角形的面积是____________. 二、锐角或钝角三角形形状不明需分类讨论3.★(2016·东营中考)在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则BC 的长为【易错4】( ) A .10 B .8C .6或10D .8或104.在等腰△ABC中,已知AB=AC=5,△ABC的面积为10,则BC=____________.【易错4】◆类型二方程思想一、实际问题中结合勾股定理列方程求线段长5.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为________.二、折叠问题中结合勾股定理列方程求线段长6.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,求BF的长.【方法4】三、利用公共边相等结合勾股定理列方程求线段长7.(2016·益阳中考)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC 的面积.◆类型三 利用转化思想求最值8.(2017·涪陵区期末)一只蚂蚁从棱长为4cm 的正方体纸箱的A 点沿纸箱外表面爬到B 点,那么它的最短路线的长是________cm .【方法5】9.如图,A ,B 两个村在河CD 的同侧,且AB =13km ,A ,B 两村到河的距离分别为AC =1km ,BD =3km .现要在河边CD 上建一水厂分别向A ,B 两村输送自来水,铺设水管的工程费每千米需3000元.请你在河岸CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W(元).【方法5】参考答案与解析 1.C 2.24或673.C 解析:根据题意画出图形,如图所示,图①中,AB =10,AC =210,AD =6.在Rt △ABD 和Rt △ACD 中,根据勾股定理得BD =AB 2-AD 2=102-62=8,CD =AC 2-AD 2=(210)2-62=2,此时BC =BD +CD =8+2=10;图②中,同理可得BD =8,CD =2,此时BC =BD -CD =8-2=6.综上所述,BC 的长为6或10.故选C.4.25或45 解析:如图①,△ABC 为锐角三角形,过点C 作CD ⊥AB ,交AB 于点D .∵S △ABC =10,AB =5,∴12AB ·CD =10,解得CD =4.在Rt△ACD 中,由勾股定理得AD=AC2-CD2=52-42=3,∴BD=AB-AD=5-3=2.在Rt△CBD中,由勾股定理得BC=BD2+CD2=22+42=25;如图②,△ABC为钝角三角形,过点C作CD⊥AB,交BA的延长线于点D.同上可得CD=4.在Rt△ACD中,AC=5,由勾股定理得AD=AC2-CD2=52-42=3.∴BD=BA+AD=5+3=8.在Rt△BDC中,由勾股定理得BC=BD2+CD2=82+42=4 5.综上所述,BC的长度为25或4 5.5.17m6.解:∵折叠前后两个图形的对应线段相等,∴CF=C′F.设BF=x.∵BC=9,∴C′F=CF=BC-BF=9-x.∵C′是AB的中点,AB=6,∴BC′=12E A B=3.在Rt△C′BF中,由勾股定理得C′F2=BF2+C′B2,即(9-x)2=x2+32,解得x=4,即BF的长为4.7.解:过A作AD⊥BC交BC于点D.在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=BC-BD=14-x.在Rt△ABD和Rt△ACD中,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,即152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,由勾股定理得AD=AB2-BD2=152-92=12.∴S△ABC =12BC·AD=12×14×12=84.8.459.解:如图,作点A关于CD的对称点A′,连接BA′交CD于O,点O即为水厂的位置.过点A′作A′E∥CD交BD的延长线于点E,过点A作AF⊥BD于点F,则AF=A′E,DF=AC=1km,DE=A′C=1km.∴BF=BD-FD=3-1=2(km).在Rt△ABF中,AF2=AB2-BF2=13-22=9,∴AF=3km.∴A′E=3km.在Rt△A′BE中,BE=BD+DE=4km,由勾股定理得A′B=A′E2+BE2=32+42=5(km).∴W=3000×5=15000(元).故铺设水管的总费用为15000元.解题技巧专题:勾股定理与面积问题——全方位求面积,一网搜罗◆类型一 三角形中利用面积法求高1.直角三角形的两条直角边的长分别为5cm ,12cm ,则斜边上的高线的长为( ) A.8013cm B .13cm C.132cm D.6013cm2.(2017·乐山中考)点A 、B 、C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是________. ◆类型二 结合乘法公式巧求面积或长度3.已知Rt △ABC 中,∠C =90°,若a +b =12cm ,c =10cm ,则Rt △ABC 的面积是( )A .48cm 2B .24cm 2C .16cm 2D .11cm 24.若一个直角三角形的面积为6cm 2,斜边长为5cm ,则该直角三角形的周长是( )A .7cmB .10cmC .(5+37)cmD .12cm5.(2017·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6◆类型三巧妙利用割补法求面积6.如图,已知AB=5,BC=12,CD=13,DA=10,AB⊥BC,求四边形ABCD 的面积.7.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD的面积.【方法6】◆类型四利用“勾股树”或“勾股弦图”求面积8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为________cm2.9.在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图①是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图②是将图①放入长方形内得到的,∠BAC =90°,AB =3,AC =4,则D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,那么长方形KLMJ 的面积为________.参考答案与解析 1.D2. 355 解析:如图,连接AC ,BC ,设点C 到线段AB 所在直线的距离是h .∵S △ABC =3×3-12×2×1-12×2×1-12×3×3-1=9-1-1-92-1=32,AB =12+22=5,∴12×5h =32,∴h =355.故答案为355.3.D 4.D 5.C6.解:连接AC ,过点C 作CE ⊥AD 交AD 于点E .∵AB ⊥BC ,∴∠CBA =90°.在Rt △ABC 中,由勾股定理得AC =AB 2+BC 2=52+122=13.∵CD =13,∴AC =CD .∵CE ⊥AD ,∴AE =12AD =12×10=5.在Rt △ACE 中,由勾股定理得CE =AC 2-AE 2=132-52=12.∴S 四边形ABCD =S △ABC +S △CAD =12E A B ·BC +12E A D ·CE =12×5×12+12×10×12=90.7.解:延长AD ,BC 交于点E .∵∠B =90°,∠A =60°,∴∠E=30°.∴AE =2AB。
八年级第二学期数学限时训练16

八年级第二学期数学限时训练(16)1. (2012浙江杭州3分)已知平行四边形ABCD 中,∠B=4∠A,则∠C=【 】A .18°B .36°C .72°D .144°2. (2012四川自贡3分)如图,在平行四边形ABCD 中,AD=5,AB=3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为【 】A .2和3B .3和2C .4和1D .1和43. (2012山东泰安3分)如图,在平行四边形ABCD 中,过点C 的直线CE⊥AB,垂足为E ,若∠EAD=53°,则∠BCE 的度数为【 】A .53°B .37°C .47°D .123°4. (2012广西南宁3分)如图,在平行四边形ABCD 中,AB=3cm ,BC=5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是【 】A .2cm <OA <5cmB .2cm <OA <8cmC .1cm <OA <4cmD .3cm <OA <8cm5. (2013湖南益阳,6,4分)如图2,在平行四边形ABCD 中,下列结论中错误..的是( ) A .∠1=∠2 B .∠ BAD =∠BCD C .AB =CDD . AC ⊥BDX k B 1 . c o m 6. (2012湖南永州3分)如图,平行四边形ABCD 的对角线相交于点O ,且AB≠AD,过O 作OE⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 .12ABC D 图27.(2013黑龙江省哈尔滨市,7)如图,在ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为().8.(2012山东烟台3分)ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C 的坐标为.9、(2010青海西宁)在□ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是.10、(2010辽宁铁岭).如图所示,平行四边形ABCD的周长是18 cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差是5 cm,则边AB的长是________ cm.(A)4 (B)3 (C) 5 2(D)2。
人教版八级数学下册第二学期 同步课堂补习辅导练习题作业 第十九章 一次函数周周测9(全章)

第十九章 一次函数周周测9一 选择题1.星期天,小明和小兵租用一艘皮划艇去嘉陵江游玩,他们先从上游顺流划行1小时,再停留0.5小时采集植物标本,然后加速划行0.5小时到下游,最后乘坐公交车1小时回到出发地,那么小明和小兵距离出发点的距离y 随时间x 变化的大致图象是( )2.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为( )3.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )4.一次函数y=2x-1的图象大致是( )5.同一直角坐标系中,一次函数y=k1x+b与正比例函数y2=k2x的图象如图,则满足y1≥y2的x取1值范围是()A.x≤﹣2 B.x≥﹣2 C.x<﹣2 D.x>﹣26.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校. 图描述了他上学的情景,下列说法中错误的是( )A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米7.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( ) A.ab>0 B.a-b>0 C.a2+b>0 D.a+b>08.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过...的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限9.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是().A.2 B.1.5 C.2.5 D.-610.在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是()A.这次比赛的全程是500米B.乙队先到达终点C.比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快D.乙与甲相遇时乙的速度是375米/分钟11.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(1,1),B(3,1),C(2,2)当直线y=0.5x+b与△ABC有交点时,b的取值范围是( )A.-1≤b≤1B.-1≤b≤0.5C.-0.5≤b≤0.5D.-0.5≤b≤112.如图,在平面直角坐标系中,直线y=-3x+3与坐标轴分别交于A,B两点,以线段AB为边,在第一象限内作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x-2上,则a的值为()A.1 B.2 C.﹣1 D.﹣1.5二填空题13.3x﹣y=7中,变量是,常量是.把它写成用x的式子表示y的形式是.14.已知y-2与x成正比,且当x=1时, y=-6,则y与x的关系式是____________。
人教版 八年级下数学 19.2 一次函数 课时训练(含答案)

人教版 八年级数学 19.2 一次函数 课时训练一、选择题1. 在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( )A. M (2,-3),N (-4,6)B. M (-2,3),N (4,6)C. M (-2,-3),N (4,-6)D. M (2,3),N (-4,6)2. 下列函数中,满足y 的值随x 的值增大而增大的是( )A. y =-2xB. y =3x -1C. y =1xD. y =x 23. 已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是( )4. 如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( )A .4B .- 4C .14 D . 14-5. 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <7. 下面哪个正比例函数的图象经过一、三象限 ( )A .()23y x =-B .()3.14πy x =-C .π22y x ⎛⎫=- ⎪⎝⎭D .()526y x =-8. 把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组( )A.无解B.有唯一解C.有无数个解D.以上都有可能二、填空题9. 的图像是;过象限;过象限;过象限;过象限.轴的交点分别为、;其中、分别叫做该一次函数在10. 若函数y=(m-1)x|m|是正比例函数,则该函数的图象经过第________象限.11. 3个单位,再向下平移2个单位,所得到的直线的解析式是.12.________.13. 二、三象限,、).14. 已知一次函数的图象如图所示,则的取值范围是.15. 若点M(k-1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k-1)x +k的图象不经过...第________象限.16. 已知,并且,则直线一定通过象限.三、解答题17. (2019•淮安)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为1y 千米,慢车行驶的路程为2y 千米.如图中折线OAEC 表示1y 与x 之间的函数关系,线段OD 表示2y 与x 之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC 所表示的1y 与x 之间的函数表达式;(3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.18. 作函数31y x x =-+-的图象,并根据图象求出函数的最小值.人教版 八年级数学 19.2 一次函数 课时训练-答案一、选择题1. 【答案】A 【解析】判断两个点是否在同一个正比例函数图象上,只需看它们的横、纵坐标比值是否相等.∵-32=6-4,∴只有A 选项的两个点的纵坐标与横坐标的比值相等,因此选A.2. 【答案】B 【解析】一次函数y =-2x 中,y 随x 增大而减小;一次函数y =3x -1中,y 随x 的增大而增大;反比例函数y =1x 中,在每一个分支上,y 随x的增大而减小;二次函数y =x 2中,当x >0时,y 随x 增大而增大,当x <0时,y 随x 的增大而减小,故答案为B .3. 【答案】C 【解析】由已知一次函数经过(0,1),可求得k >0,b =1,则画出图象草图,故选C.4. 【答案】B5. 【答案】C【解析】分别求出两个直线与x交与x6. 【答案】Cx7. 【答案】D8. 【答案】A【解析】二元一次方程组的解就是两条直线的交点坐标,若两条直线平行,则说明这两条直线无交点,则此二元一次方程组无解二、填空题10. 【答案】二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎨⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.11.12.13.14.15. 【答案】一【解析】依据题意,M关于y轴对称点在第四象限,则M点在第三象限,即k-1<0,k+1<0, 解得k<-1.∴一次函数y=(k-1)x+k的图象过第二、三、四象限,故不经过第一象限.三、解答题17. 【答案】(1)/小时,/小时,答:快车的速度为90千米/小时,慢车的速度为60千米/小时.(2)由题意可得,点E则点E快车从点E到点C小时),则点C设线段EC x即线段EC x(3)设点F的横坐标为a,即点FF代表的实际意义是在4.5小时时,甲车与乙车行驶的路程相等.。
2020-2021学年 八年级数学人教版 下册 19.2 一次函数 课时训练(含答案)

人教版 八年级||数学 19.2 一次函数 课时训练一、选择题1. 如果每盒羽毛球有20个 ,每盒售价为24元 ,那么羽毛球的售价y (元 )与羽毛球个数x (个 )之间的关系式为 ( ) A .24y x =B .20y x = C .65y x =D .56y x =2. 函数y =kx +b 的图象如图 ,那么当y <0时 ,x 的取值范围是( )A .x <-2B .x >-2C .x <-1D .x >-13. (2021•辽阳)假设0ab <且a b > ,那么函数y ax b =+的图象可能是A .B .C .D .4. 函数y =kx +b 的图象如图 ,那么y =2kx +b 的图象可能是( )5. 假设函数y =2x +( -3 -m )是关于x 的正比例函数 ,那么m 的值是 ()A . -3B .1C . -7D .36. 正比例函数y=2(m -1)x 的图象上两点A (x 1 ,y 1) ,B (x 2 ,y 2) ,当x 1<x 2时 ,有y1>y 2,那么m 的取值范围是 ()A .m<1B .m>1C .m<2D .m>07. 甲、乙两车同时从A 地出发 ,沿同一路线各自匀速向B 地行驶 ,甲到达B 地停留1小时后按原路以另一个速度匀速返回 ,直到与乙车相遇.乙车的速度为每小时60千米 ,两车之间的距离y (千米)与乙车行驶时间x (时)之间的函数图象如下列图 ,那么以下结论错误的选项是 () A .行驶3小时后 ,两车相距120千米 B .甲车从A 地到B 地的速度为100千米/时 C .甲车返回时行驶的速度为95千米/时 D .A ,B 两地之间的距离为300千米8. (2021•辽阳)一条公路旁依次有,,A B C 三个村庄,甲乙两人骑自行车分别从A村、B 村同时出发前往C 村 ,甲乙之间的距离(km)s 与骑行时间t(h)之间的函数关系如下列图 ,以下结论:①A B ,两村相距10km ;②出发1.25 h 后两人相遇;③甲每小时比乙多骑行8 km ;④相遇后 ,乙又骑行了15min 或65min 时两人相距2 km .其中正确的个数是 A .1个 B .2个 C .3个D .4个二、填空题9. 函数()2211m y m x mn -=-+在条件下 ,y 是x 的一次函数;在条件下 ,y 与x 成正比例函数.10. y 是x 一次函数,11. 假设一次函数y =-2x +b ,那么b 的值可以是________(写出一个即可).12. 如果直线y ax b =+经过第|一、二、三象限 ,那么ab 0 (填 ">〞、 "<〞、 "=〞 ).13. 如图,直线()0y kx b k =+<经过点()3,1A ,当13kx b x +<时 ,x 的取值范围为__________.14. 如图,在x 轴上有五个点 ,它们的横坐标依次为12345,,,,.分别过这些点作x 轴的垂线与三条直线y ax = ,()1y a x =+ ,()2y a x =+相交 ,其中0a > ,那么图中阴影局部的面积是_________.15. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的局部沿x 轴翻折至||其上方后 ,所得的折线是函数y =|2x +b |(b 为常数)的图象 ,假设该图象在直线y =2下方的点的横坐标x 满足0<x <3 ,那么b 的取值范围为____________.16. 一个一次函数的图象与直线59544y x =+平行 ,与x 轴 ,y 轴分别交于A ,B 两点 ,并且通过()125--, ,那么在线段AB 上 (包括端点A ,B 两点 ) ,横纵坐标都是整数的点有_______个.三、解答题17. 一次函数y =kx +b (k ≠0)的图象交x 轴于点A (2 ,0) ,交y 轴于点B ,且△AO B 的面积为3 ,求此一次函数的解析式.18. 如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1 ,b ).(1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.19. (2021•徐州)如图① ,将南北向的中山路与东西向的北京路看成两条直线 ,十字路口记作点A .甲从中山路上点B 出发 ,骑车向北匀速直行;与此同时 ,乙从点A 出发 ,沿北京路步行向东匀速直行.设出发min x 时 ,甲、乙两人与点A 的距离分别为1m y 、2m y .1y 、2y 与x 之间的函数关系如图②所示. (1)求甲、乙两人的速度;(2)当x 取何值时 ,甲、乙两人之间的距离最||短 ?20. 作函数31y x x =-+-的图象,并根据图象求出函数的最||小值.人教版 八年级||数学 19.2 一次函数 课时训练-答案一、选择题 1. 【答案】C【解析】624205÷= ,确定函数解析式2. 【答案】B3. 【答案】A【解析】∵0ab < ,且a b > , ∴a>0 ,b<0. ∴函数y ax b =+的图象经过第|一、三、四象限.应选A .4. 【答案】C【解析】由一次函数经过(0 ,1) ,可求得k >0 ,b =1 ,那么画出图象草图 ,应选C. 5. 【答案】A6. 【答案】A7. 【答案】C[解析]由图象可得行驶3小时后 ,两车相距120千米 ,∴甲车从A 地到B 地的速度 ==100(千米/时).∴A ,B 两地的距离为3×100 =300(千米).甲车在B 地停留1小时后 ,两车相距120 -60×1 =60(千米).∴甲车返回的速度 = =90(千米/时).应选C .8. 【答案】D【解析】由图象可知A 村、B 村相离10 km ,故①正确; 当1.25 h 时 ,甲、乙相距为0 km ,故在此时相遇 ,故②正确;当0 1.25t ≤≤时 ,易得一次函数的解析式为810s t =-+ ,故甲的速度比乙的速度快8 km/h .故③正确;当1.252t ≤≤时 ,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s kt b =+ ,代入得0 1.2562k b k b =+⎧⎨=+⎩ ,解得810k b =⎧⎨=-⎩ , ∴810s t =+ ,当2s =时.得2810t =- ,解得 1.5h t = , 由1.5 1.250.25h 15min -== ,同理当2 2.5t ≤≤时 ,设函数解析式为s kt b =+ , 将点(2,6)(2.5,0)代入得 ,0 2.562k b k b =+⎧⎨=+⎩ ,解得1230k b =-⎧⎨=⎩ , ∴1230s t =-+ ,当2s =时 ,得21230t =-+ ,解得73t =, 由7131.25h 65min 312-== , 故相遇后 ,乙又骑行了15min 或65min 时两人相距2 km ,④正确. 应选D . 二、填空题9. 【答案】1m =-;1m =-且0n =【解析】1m =-时该函数为一次函数;1m =-且0n =时该函数为正比例函数; 10. 【答案】1m =11. 【答案】-1(答案不唯一 ,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限 ,∴b <0 ,故b 的值可以是-1. 12. 【答案】>【解析】先画草图 ,根据得y 随x 的增大而增大 ,可知0a >;图象与y 轴交点在x 轴上方 ,知0b > ,故0ab >. 13. 【答案】3x >【解析】∵正比例函数13y x =也经过点A ,∴13kx b x +<的解集为3x > ,故答案为:3x >.14. 【答案】12.515. 【答案】-4<b<-2 【解析】先求出直线y =2与y =|2x +b|的交点的横坐标 ,再由条件列出关于b 的不等式组 ,便可求出结果.由⎩⎨⎧y =2y =|2x +b| ,得⎩⎨⎧y =2y =2x +b 或⎩⎨⎧y =2y =-2x -b,解得x =2-b 2或x =-2+b2 ,∵0<x<3 ,∴⎩⎪⎨⎪⎧2-b 2<3-b +22>0 ,解得-4<b<-2.16. 【答案】5【解析】依题意可求出这个一次函数的解析式为:59544y x =-,于是可求得()190A , ,9504B ⎛⎫- ⎪⎝⎭,. ∴x 的取值范围为019x ≤≤的整数 ,y 的取值范围为:9504y -≤≤的整数. ∴求线段AB 上的整点坐标可转化为方程()5194x y -=在上述条件下的整数解. ∴当19x =时 ,0y =;当15x =时 ,5y =-;当11x =时 ,10y =-;当7x =时 ,15y =-;当3x =时 ,20y =- ,故可知线段AB 上有5个整点.三、解答题17. 【答案】解:因为A (2 ,0) ,S △AOB =3 , 所以OB =3 , 所以B (0 ,3)或(0 , -3).①当B (0 ,3)时 ,把A (2 ,0) ,B (0 ,3)代入y =kx +b 中 ,得解得所以一次函数的解析式为y = -x +3.②当B (0 , -3)时 ,把A (2 ,0) ,B (0 , -3)代入y =kx +b 中 ,得解得所以y =x -3.综上所述 ,该一次函数的解析式为y = -x +3或y =x -3.18. 【答案】解:(1)当x =1时 ,y =1+1=2 ,∴b =2. (2)⎩⎪⎨⎪⎧x =1 y =2.(3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1 ,b ) ,∴当x =1时 ,y =m +n =b =2.∴ 当x =1时 ,y =n +m =2 ,∴直线l 3:y =nx +m 也经过点P .19. 【答案】(1)设甲、乙两人的速度分别为m /min a ,m /min b ,甲从B 到A 用时为p 分钟 ,那么:11200(0)1200()ax x p y ax x p -≤≤⎧=⎨->⎩ ,2y bx = ,由图②知: 3.75x =或7.5时 ,12y y = ,那么有1200 3.75 3.757.512007.5a b a b -=⎧⎨-=⎩ ,解得24080a b =⎧⎨=⎩ , p =1200÷240 =5 ,答:甲的速度为240m /min ,乙的速度为80m /min . (2)设甲、乙之间距离为d ,那么222(1200240)(80)d x x =-+2964000()1440002x =-+ ,∴当92x =时 ,2d 的最||小值为144000 ,即d 的最||小值为12010, 答:当92x =时 ,甲、乙两人之间的距离最||短. 20. 【答案】如图 ,函数的最||小值为2.【解析】24(3)2(13)24(1)x x y x x x -≥⎧⎪=≤≤⎨⎪-+<⎩,,,根据表达式作图如下:由图象可知 ,当13x ≤≤时 ,函数的最||小值为2.。
2020-2021学年人教版 八年级数学下册 19.2 一次函数 同步课时训练(含答案)

)
y ①
y ②
y
②
①
y ①
O
x
②
A.
O
x
① B.
O
x
C.
O
x
②
D.
8. 若 A(x1, y1), B(x2, y2 ) 为一次函数, y 3x 1的图象上的两个不同点,且 x1x2 0 ,
设 M y1 1 , N y2 1 ,则(
)
x1
x2
A. M N
B. M N
C. M N
D. 以上都不对
三、解答题
16. 当自变量 x 满足什么条件时,函数 y 2x 3 的图象在:
(1) x 轴下方;
(2) y 轴左侧;
(3)第一象限.
17. 如图,直线 l1:y=2x+1 与直线 l2:y=mx+4 相交于点 P(1,b). (1)求 b,m 的值; (2)垂直于 x 轴的直线 x=a 与直线 l1,l2 分别交于点 C,D,若线段 CD 长为 2.求
A.乙摩托车的速度较快 两地的中点 C.经过 0.25 h 两摩托车相遇 车距离 A 地 km
B.经过 0.3 h 甲摩托车行驶到 A,B D.当乙摩托车到达 A 地时,甲摩托
5. 明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时 间后,提高了工作效率.该绿化组完成的绿化面积 S(单位:m2)与工作时间 t(单位:h) 之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学限时训练(三)
2013.3.19
一、选择题:(每题3分,共36分) 1、在
(3)5,,,
2a b x x x a b x a b π-+++-,m
a 1
+中,是分式的有 ( ) A 、1个 B 、2个 C 、3个 D 、4个 2、下列约分正确的是( )
A 、
3
2
6x x
x = B 、
0=++y
x y x C 、
x
xy
x y x 12
=
++ D 、
2
1422
2
=
y
x xy
3、下列函数是反比例函数的是 ( ) A 、y=
3
x B 、y=
x
36 C 、y=x 2+2x D 、y=4x+8
4、分式:①
2
23
a a ++,②
2
2
a b a b
--,③
412()
a a
b -,④
12
x -中,最简分式有( )
A.1个
B.2个
C.3个
D.4个
5、无论x 取什么数时,总是有意义的分式是( ) A .
1
22
+x x B.1
2+x x C.
1
33
+x x D.
2
5x
x -
6、能使分式1
22
--x x x 的值为零的所有x 的值是( )
A 、0=x
B 、1=x
C 、0=x 或1=x D.、0=x 或1±=x 7、若分式2
31
x
x -的值为正数,则( ) A 、0>x B 、0<x C 、1>x D 、1<x 8、反比例函数)0(≠=
k x
k y 的图象经过点(2-,3),则它还经过点 ( )
A. (6,1-)
B. (1-,6-)
C. (3,2)
D.(2,3)
9、如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( )
A 、x <-1
B 、x >2
C 、-1<x <0,或x >2
D 、x <-1,或0<x <2 10.若把分式
xy
y x +中的x 和y 都扩大2倍,那么分式的值( )
A .扩大2倍
B .不变
C .缩小2倍
D .缩小4倍
11.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用
时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( ) A .x x -=+306030100 B .306030100-=+x x C .
x
x
+=
-306030100 D .
30
6030
100+=
-x x
12、在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千
米,则他在这段路上、下坡的平均速度是每小时 ( )。
A 、
2
2
1v v +千米 B 、
2
121v v v v +千米 C 、
2
1212v v v v +千米 D 无法确定
13、赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 ( ) A 、
1421140
140=-+x x B 、
1421280
280
=++
x x
B 、1211010
=++x x D 、1421
140140=++x x 二、填空题:(每小题3分,共12分)
14、用科学记数法表示:-0.00002009= .
15、一批零件300个,一个工人每小时做15个,用关系式表示人数y 与完成任务所需的时间x•之间的函数关系式为_______ _. 16、关于x 的方程 23
23
=--
-x a x x 无解,则a 为_______ __ __.
17、已知:
2
41
1
1
A B x x x =
+
--+是一个恒等式,则A =______,B=________。
18、已知点A (-2,a ),B (-1,b ),C (3,c )在双曲线y=x
7上,则a 、b 、c 的大小关系
为 (用“<”号将a 、b 、c 连接起来)。
19、观察下面一列有规律的数:31
,82,153,244,355,48
6,……
根据规律可知第n 个数应是 (n 为正整数)
三、解答题:(共9小题,共72分)
20、在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。
(每小题3分,共6分) (1)求I 与R 之间的函数关系式 (2)当电流I=0.5安培时,求电阻R 的值
21、解方程 (1)、2212
1--=
--x
x x (2)
、0(,0)1
m n m n m n x
x -
=≠≠+
22、请你先化简2
2
21
4
244x x x x x
x x x
+--⎛⎫-
÷ ⎪--+⎝⎭,再选取一个你喜欢的数代入求值。
(8分)
23、(8分)已知关于x 的方程23
3
x m x x -=
--有一个正数解,求m 的取值范围?
24、甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调 走,乙队再做21天完成任务。
甲、乙两队独做各需几天才能完成任务?
25、 某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m ³,5月份的燃气费是90元.求该市今年居民用气的价格.
26、小王开着私家车到某市接朋友,他家到该市的路程为300千米,其车速与每千米的耗油量之间的关系如下表所示:
车速x (千米/小时)
10
20
40
80 每千米耗油量y (升) 0.4 0.2 0.1
0.05
(1)认真分析表中的数据,试写出y 和x 之间的函数关系式; (2)若该车油箱最大容积为35升,小王把油箱加满油后出发,接到朋友后迅速返回,如果
他保持60千米/小时的速度匀速行驶,问油箱中的油是否够用?
27、供电局的电力维修工甲、乙两人要到30千米远的A 地进行电力抢修.甲骑摩托车先行,
41
小时后乙开抢修车载着所需材料出发,结果甲、乙两人同时到达.已知抢修车的速度
是摩托车的1.5倍,求摩托车的速度.
28.某服装店用960元购进一批服装,并以每件46元价格全部售完,由于服装畅销,服装店又用了2220元再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,服装店将剩余20件以售价的九折全部出售,
(1) 服装店第一次购买了此种服装多少件? (2)两次出售服装共盈利多少元?
29. 我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局 根据甲乙两队的投标书测算,应有三种施工方案: (1)甲队单独做这项工程刚好如期完成. (2)乙队单独做这项工程,要比规定日期多5天. (3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成. 在确保如期完成的情况下,你认为哪种方案最节 省工程款,通过计算说明理由.
30.如图,已知一次函数y=k 1x+b 的图象与反比例函数y=
x
k 2的图象交于A (1,-3),B (3,
m )两点,连接OA 、OB . (1)求两个函数的解析式;(2)求△AOB 的面积.
A B
O
x
y。