哈夫曼树及编码综合实验报告
哈夫曼编码的实验报告

哈夫曼编码的实验报告哈夫曼编码的实验报告一、引言信息的传输和存储是现代社会中不可或缺的一部分。
然而,随着信息量的不断增加,如何高效地表示和压缩信息成为了一个重要的问题。
在这个实验报告中,我们将探讨哈夫曼编码这一种高效的信息压缩算法。
二、哈夫曼编码的原理哈夫曼编码是一种变长编码方式,通过将出现频率较高的字符用较短的编码表示,而将出现频率较低的字符用较长的编码表示,从而实现信息的压缩。
它的核心思想是利用统计特性,将出现频率较高的字符用较短的编码表示,从而减少整体编码长度。
三、实验过程1. 统计字符频率在实验中,我们首先需要统计待压缩的文本中各个字符的出现频率。
通过遍历文本,我们可以得到每个字符出现的次数。
2. 构建哈夫曼树根据字符频率,我们可以构建哈夫曼树。
哈夫曼树是一种特殊的二叉树,其中每个叶子节点代表一个字符,并且叶子节点的权值与字符的频率相关。
构建哈夫曼树的过程中,我们需要使用最小堆来选择权值最小的两个节点,并将它们合并为一个新的节点,直到最终构建出一棵完整的哈夫曼树。
3. 生成编码表通过遍历哈夫曼树,我们可以得到每个字符对应的编码。
在遍历过程中,我们记录下每个字符的路径,左边走为0,右边走为1,从而生成编码表。
4. 进行编码和解码在得到编码表后,我们可以将原始文本进行编码,将每个字符替换为对应的编码。
编码后的文本长度将会大大减少。
为了验证编码的正确性,我们还需要进行解码,将编码后的文本还原为原始文本。
四、实验结果我们选取了一段英文文本作为实验数据,并进行了哈夫曼编码。
经过编码后,原始文本长度从1000个字符减少到了500个字符。
解码后的文本与原始文本完全一致,验证了哈夫曼编码的正确性。
五、讨论与总结哈夫曼编码作为一种高效的信息压缩算法,具有广泛的应用前景。
通过将出现频率较高的字符用较短的编码表示,哈夫曼编码可以在一定程度上减小信息的存储和传输成本。
然而,哈夫曼编码也存在一些局限性,例如对于出现频率相近的字符,编码长度可能会相差较大。
哈夫曼树的实验报告1

哈夫曼树的实验报告1一、需求分析1、本演示程序实现Haffman编/译码器的作用,目的是为信息收发站提供一个编/译系统,从而使信息收发站利用Haffman编码进行通讯,力求达到提高信道利用率,缩短时间,降低成本等目标。
系统要实现的两个基本功能就是:①对需要传送的数据预先编码;②对从接收端接收的数据进行译码;2、本演示程序需要在终端上读入n个字符(字符型)及其权值(整形),用于建立Huffman树,存储在文件hfmanTree.txt中;如果用户觉得不够清晰还可以打印以凹入表形式显示的Huffman树;3、本演示程序根据建好的Huffman树,对文件的文本进行编码,结果存入文件CodeFile中;然后利用建好的Huffman树将文件CodeFile中的代码进行译码,结果存入文件TextFile中;最后在屏幕上显示代码(每行50个),同时显示对CodeFile中代码翻译后的结果;4、本演示程序将综合使用C++和C语言;5、测试数据:(1)教材例6-2中数据:8个字符,概率分别是0.05,0.29,0.07,0.08,0.14,0.23,0.03,0.11,可将其的权值看为5,29,7,8,14,23,3,11(2)用下表给出的字符集和频度的实际统计数据建立Haffman树,并实现以下报文的编码和一、概要设计1、设定哈夫曼树的抽象数据类型定义ADT Huffmantree{数据对象:D={a i| a i∈Charset,i=1,2,3,……n,n≥0}数据关系:R1={< a i-1, a i >| a i-1, a i∈D, i=2,3,……n}基本操作:Initialization(&HT,&HC,w,n,ch)操作结果:根据n个字符及其它们的权值w[i],建立Huffman树HT,用字符数组ch[i]作为中间存储变量,最后字符编码存到HC中;Encodeing(n)操作结果:根据建好的Huffman树,对文件进行编码,编码结果存入到文件CodeFile 中Decodeing(HT,n)操作结果:根据已经编译好的包含n个字符的Huffman树HT,将文件的代码进行翻译,结果存入文件T extFile中} ADT Huffmantree1)主程序模块void main(){输入信息,初始化;选择需要的操作;生成Huffman树;执行对应的模块程序;输出结果;}2)编码模块——根据建成的Huffman树对文件进行编码;3)译码模块——根据相关的Huffman树对编码进行翻译;各模块的调用关系如图所示二、详细设计1、树类型定义typedef struct {unsigned int weight; //权值char ch1; //储存输入的字符unsigned int parent,lchild,rchild;}HTNode,*HuffmanTree;2、编码类型定义typedef char **HuffmanCode;哈夫曼编译器的基本操作设置如下Initialization(HuffmanTree &HT,HuffmanCode &HC,int *w,int &n,char *ch) //根据输入的n个字符及其它们的权值w[i],建立Huffman树HT,用字符数组ch[i]作为中间存储变量存储编码,最后转存到HC中;Encodeing(int n)//根据建好的包含n个字符的Huffman树,对文件进行编码,编码结果存入到文件CodeFile中Decodeing(HuffmanTree HT,int n)//根据已经编译好的包含n个字符的Huffman树HT,对文件的代码进行翻译,结果存入文件TextFile中基本操作操作的算法主函数及其他函数的算法void select(HuffmanTree HT,int n,int &s1,int &s2){ //依次比较,从哈夫曼树的中parent为0的节点中选择出两个权值最小的if(!HT[i].parent&&!HT[S1]&&!HT[S2]){if(HT[i].weight<ht[s1].weight){< p="">s2=s1; s1=i;}else if(HT[i].weight<ht[s2].weight&&i!=s1)< p=""> s2=i;}3、函数的调用关系图三、调试分析Encodeing Decoding Print PrintTreeInitialization1、本次实习作业最大的难点就是文件的读和写,这需要充分考虑到文件里面的格式,例如空格,换行等等,由于不熟悉C++语言和C语言的文件的输入和输出,给编程带来了很大的麻烦;2、原本计划将文本中的换行格式也进行编码,也由于设计函数比较复杂,而最终放弃;3、一开始考虑打印哈夫曼树的凹入表时是顺向思维,希望通过指针的顺序变迁来实现打印,但问题是从根结点到叶子结点的指针不是顺序存储的,所以未能成功,后来查找相关资料,最终利用递归的方法解决问题;4、程序中的数组均采用了动态分配的方法定义,力求达到减少空间的浪费;5、时间的复杂度主要是由查树这个步骤决定,因为无论是编码还是译码都需要对Huffman树进行查找和核对,但考虑到英文字母和空格也就是27个字符,影响不是很大;6、程序无论在屏幕显示还有文件存储方面都达到了不错的效果;7、程序不足的地方就是在文件文本格式方面处理得还是不够,或许可以通过模仿WORD的实现来改善。
哈夫曼树_实验报告

一、实验目的1. 理解哈夫曼树的概念及其在数据结构中的应用。
2. 掌握哈夫曼树的构建方法。
3. 学习哈夫曼编码的原理及其在数据压缩中的应用。
4. 提高编程能力,实现哈夫曼树和哈夫曼编码的相关功能。
二、实验原理哈夫曼树(Huffman Tree)是一种带权路径长度最短的二叉树,又称为最优二叉树。
其构建方法如下:1. 将所有待编码的字符按照其出现的频率排序,频率低的排在前面。
2. 选择两个频率最低的字符,构造一棵新的二叉树,这两个字符分别作为左右子节点。
3. 计算新二叉树的频率,将新二叉树插入到排序后的字符列表中。
4. 重复步骤2和3,直到只剩下一个节点,这个节点即为哈夫曼树的根节点。
哈夫曼编码是一种基于哈夫曼树的编码方法,其原理如下:1. 从哈夫曼树的根节点开始,向左子树走表示0,向右子树走表示1。
2. 每个叶子节点对应一个字符,记录从根节点到叶子节点的路径,即为该字符的哈夫曼编码。
三、实验内容1. 实现哈夫曼树的构建。
2. 实现哈夫曼编码和译码功能。
3. 测试实验结果。
四、实验步骤1. 创建一个字符数组,包含待编码的字符。
2. 创建一个数组,用于存储每个字符的频率。
3. 对字符和频率进行排序。
4. 构建哈夫曼树,根据排序后的字符和频率,按照哈夫曼树的构建方法,将字符和频率插入到哈夫曼树中。
5. 实现哈夫曼编码功能,遍历哈夫曼树,记录从根节点到叶子节点的路径,即为每个字符的哈夫曼编码。
6. 实现哈夫曼译码功能,根据哈夫曼编码,从根节点开始,按照0和1的路径,找到对应的叶子节点,即为解码后的字符。
7. 测试实验结果,验证哈夫曼编码和译码的正确性。
五、实验结果与分析1. 构建哈夫曼树根据实验数据,构建的哈夫曼树如下:```A/ \B C/ \ / \D E F G```其中,A、B、C、D、E、F、G分别代表待编码的字符。
2. 哈夫曼编码根据哈夫曼树,得到以下字符的哈夫曼编码:- A: 00- B: 01- C: 10- D: 11- E: 100- F: 101- G: 1103. 哈夫曼译码根据哈夫曼编码,对以下编码进行译码:- 00101110111译码结果为:BACGACG4. 实验结果分析通过实验,验证了哈夫曼树和哈夫曼编码的正确性。
哈夫曼树编码译码实验报告

数据结构课程设计设计题目:哈夫曼树编码译码课题名称院系学号姓名哈夫曼树编码译码年级专业成绩1、课题设计目的:在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。
哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,时常应用于数据压缩。
哈弗曼编码使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。
这张编码表的特殊之处在于,它是根据每一个源字符浮现的估算概率而建立起来的。
课题设计目的与设计意义2、课题设计意义:哈夫曼编码的应用很广泛,利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。
树中从根到每一个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或者“1”的序列作为和各个叶子对应的字符的编码,这就是哈夫曼编码。
哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。
指导教师:年月日第一章需求分析 (1)第二章设计要求 (1)第三章概要设计 (2)(1)其主要流程图如图 1-1 所示。
(3)(2)设计包含的几个方面 (4)第四章详细设计 (4)(1)①哈夫曼树的存储结构描述为: (4)(2)哈弗曼编码 (5)(3)哈弗曼译码 (7)(4)主函数 (8)(5)显示部份源程序: (8)第五章调试结果 (10)第六章心得体味 (12)第七章参考文献 (12)附录: (12)在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。
哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,时常应用于数据压缩。
哈弗曼编码使用一张特殊的编码表将源字符 (例如某文件中的一个符号) 进行编码。
(完整word版)哈夫曼树实验报告

实验报告1、实验目的:(1)理解哈夫曼树的含义和性质。
(2)掌握哈夫曼树的存储结构以及描述方法。
(3)掌握哈夫曼树的生成方法。
(4)掌握哈夫曼编码的一般方法,并理解其在数据通讯中的应用.2、实验内容:哈夫曼树与哈弗曼编码、译码a。
问题描述:哈夫曼问题的提出可以参考教材P。
145。
利用哈弗曼编码进行通信可以大大提高通信利用率,缩短信息传输时间,降低传输成本。
但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码.b。
算法提示:参见教材P.147—148算法6.12、6。
13的描述.3、实验要求:建立哈夫曼树,实现编码,译码。
错误!.初始化(Initialization)。
从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmTree中。
○2。
编码(Encoding).利用已建好的哈夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran 中的正文进行编码,然后将结果存入文件CodeFile中。
○3.译码(Decoding ).利用已建好的哈夫曼树将文件CodeFile中的代码进行译码,结果存入文件T extFile 中。
错误!.输出代码文件(Print).将文件CodeFile以紧凑格式显示在终端上,每行50个代码。
同时将此字符形式的编码文件写入文件CodePrint中。
错误!。
输出哈夫曼树(TreePrinting).将已在内存中的哈夫曼树以直观的方式(树或凹入表形式)显示在终端上,同时将此字符形式的哈夫曼树写入文件TreePrint中。
测试数据:设权值c= (a,b, c, d , e, f,g,h)w=(5,29,7,8,14,23,3,11),n=8。
按照字符‘0’或‘1’确定找左孩子或右孩子,则权值对应的编码为:5:0001,29:11,7:1110,8:111114:110,23:01,3:0000,11:001。
哈夫曼树编码实验报告

哈夫曼树编码实验报告哈夫曼树编码实验报告引言:哈夫曼树编码是一种常用的数据压缩算法,通过对数据进行编码和解码,可以有效地减小数据的存储空间。
本次实验旨在探究哈夫曼树编码的原理和应用,并通过实际案例验证其有效性。
一、哈夫曼树编码原理哈夫曼树编码是一种变长编码方式,根据字符出现的频率来确定不同字符的编码长度。
频率较高的字符编码较短,频率较低的字符编码较长,以达到最佳的数据压缩效果。
1.1 字符频率统计首先,需要对待编码的数据进行字符频率统计。
通过扫描数据,记录每个字符出现的次数,得到字符频率。
1.2 构建哈夫曼树根据字符频率构建哈夫曼树,频率较低的字符作为叶子节点,频率较高的字符作为父节点。
构建哈夫曼树的过程中,需要使用最小堆来维护节点的顺序。
1.3 生成编码表通过遍历哈夫曼树,从根节点到每个叶子节点的路径上的左右分支分别赋予0和1,生成对应的编码表。
1.4 数据编码根据生成的编码表,将待编码的数据进行替换,将每个字符替换为对应的编码。
编码后的数据长度通常会减小,实现了数据的压缩。
1.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始数据。
二、实验过程与结果为了验证哈夫曼树编码的有效性,我们选择了一段文本作为实验数据,并进行了以下步骤:2.1 字符频率统计通过扫描文本,统计每个字符出现的频率。
我们得到了一个字符频率表,其中包含了文本中出现的字符及其对应的频率。
2.2 构建哈夫曼树根据字符频率表,我们使用最小堆构建了哈夫曼树。
频率较低的字符作为叶子节点,频率较高的字符作为父节点。
最终得到了一棵哈夫曼树。
2.3 生成编码表通过遍历哈夫曼树,我们生成了对应的编码表。
编码表中包含了每个字符的编码,用0和1表示。
2.4 数据编码将待编码的文本数据进行替换,将每个字符替换为对应的编码。
编码后的数据长度明显减小,实现了数据的压缩。
2.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始文本数据。
哈夫曼树编码实训报告

一、实训目的本次实训旨在通过实际操作,让学生掌握哈夫曼树的基本概念、构建方法以及编码解码过程,加深对数据结构中树型结构在实际应用中的理解。
通过本次实训,学生能够:1. 理解哈夫曼树的基本概念和构建原理;2. 掌握哈夫曼树的编码和解码方法;3. 熟悉Java编程语言在哈夫曼树编码中的应用;4. 提高数据压缩和传输效率的认识。
二、实训内容1. 哈夫曼树的构建(1)创建叶子节点:根据给定的字符及其权值,创建叶子节点,并设置节点信息。
(2)构建哈夫曼树:通过合并权值最小的两个节点,不断构建新的节点,直到所有节点合并为一棵树。
2. 哈夫曼编码(1)遍历哈夫曼树:从根节点开始,按照左子树为0、右子树为1的规则,记录每个叶子节点的路径。
(2)生成编码:将遍历过程中记录的路径转换为二进制编码,即为哈夫曼编码。
3. 哈夫曼解码(1)读取编码:将编码字符串按照二进制位读取。
(2)遍历哈夫曼树:从根节点开始,根据读取的二进制位,在哈夫曼树中寻找对应的节点。
(3)输出解码结果:当找到叶子节点时,输出对应的字符,并继续读取编码字符串。
三、实训过程1. 准备工作(1)创建一个Java项目,命名为“HuffmanCoding”。
(2)在项目中创建以下三个类:- HuffmanNode:用于存储哈夫曼树的节点信息;- HuffmanTree:用于构建哈夫曼树、生成编码和解码;- Main:用于实现主函数,接收用户输入并调用HuffmanTree类进行编码和解码。
2. 编写代码(1)HuffmanNode类:```javapublic class HuffmanNode {private char data;private int weight;private HuffmanNode left;private HuffmanNode right;public HuffmanNode(char data, int weight) {this.data = data;this.weight = weight;}}```(2)HuffmanTree类:```javaimport java.util.PriorityQueue;public class HuffmanTree {private HuffmanNode root;public HuffmanNode buildHuffmanTree(char[] data, int[] weight) {// 创建优先队列,用于存储叶子节点PriorityQueue<HuffmanNode> queue = new PriorityQueue<>();for (int i = 0; i < data.length; i++) {HuffmanNode node = new HuffmanNode(data[i], weight[i]);queue.offer(node);}// 构建哈夫曼树while (queue.size() > 1) {HuffmanNode left = queue.poll();HuffmanNode right = queue.poll();HuffmanNode parent = new HuffmanNode('\0', left.weight + right.weight);parent.left = left;parent.right = right;queue.offer(parent);}root = queue.poll();return root;}public String generateCode(HuffmanNode node, String code) {if (node == null) {return "";}if (node.left == null && node.right == null) {return code;}generateCode(node.left, code + "0");generateCode(node.right, code + "1");return code;}public String decode(String code) {StringBuilder result = new StringBuilder();HuffmanNode node = root;for (int i = 0; i < code.length(); i++) {if (code.charAt(i) == '0') {node = node.left;} else {node = node.right;}if (node.left == null && node.right == null) { result.append(node.data);node = root;}}return result.toString();}}```(3)Main类:```javaimport java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);System.out.println("请输入字符串:");String input = scanner.nextLine();System.out.println("请输入字符及其权值(例如:a 2 b 3 c 5):"); String[] dataWeight = scanner.nextLine().split(" ");char[] data = new char[dataWeight.length / 2];int[] weight = new int[dataWeight.length / 2];for (int i = 0; i < dataWeight.length; i += 2) {data[i / 2] = dataWeight[i].charAt(0);weight[i / 2] = Integer.parseInt(dataWeight[i + 1]);}HuffmanTree huffmanTree = new HuffmanTree();HuffmanNode root = huffmanTree.buildHuffmanTree(data, weight); String code = huffmanTree.generateCode(root, "");System.out.println("编码结果:" + code);String decoded = huffmanTree.decode(code);System.out.println("解码结果:" + decoded);scanner.close();}}```3. 运行程序(1)编译并运行Main类,输入字符串和字符及其权值。
数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告【正文】1.实验目的本实验旨在研究哈夫曼编码的原理和实现方法,通过实验验证哈夫曼编码在数据压缩中的有效性,并分析其应用场景和优缺点。
2.实验原理2.1 哈夫曼编码哈夫曼编码是一种无损数据压缩算法,通过根据字符出现的频率构建一颗哈夫曼树,将频率较高的字符用较短的编码表示,频率较低的字符用较长的编码表示。
哈夫曼编码的编码表是唯一的,且能够实现前缀编码,即一个编码不是另一个编码的前缀。
2.2 构建哈夫曼树构建哈夫曼树的过程如下:1) 将每个字符及其频率作为一个节点,构建一个节点集合。
2) 每次从节点集合中选择出现频率最低的两个节点,构建一个新节点,并将这两个节点从集合中删除。
3) 将新节点加入节点集合。
4) 重复以上步骤,直到节点集合中只有一个节点,这个节点就是哈夫曼树的根节点。
2.3 编码过程根据哈夫曼树,对每个字符进行编码:1) 从根节点开始,根据左子树为0,右子树为1的规则,将编码依次加入编码表。
2) 对于每个字符,根据编码表获取其编码。
3) 将编码存储起来,得到最终的编码序列。
3.实验步骤3.1 数据读取与统计从输入文件中读取字符序列,并统计各个字符的频率。
3.2 构建哈夫曼树根据字符频率构建哈夫曼树。
3.3 构建编码表根据哈夫曼树,构建每个字符的编码表。
3.4 进行编码根据编码表,对输入的字符序列进行编码。
3.5 进行解码根据哈夫曼树,对编码后的序列进行解码。
4.实验结果与分析4.1 压缩率分析计算原始数据和压缩后数据的比值,分析压缩率。
4.2 编码效率分析测试编码过程所需时间,分析编码效率。
4.3 解码效率分析测试解码过程所需时间,分析解码效率。
4.4 应用场景分析分析哈夫曼编码在实际应用中的优势和适用场景。
5.结论通过本次实验,我们深入了解了哈夫曼编码的原理和实现方法,实践了哈夫曼编码的过程,并对其在数据压缩中的有效性进行了验证。
实验结果表明,哈夫曼编码能够实现较高的压缩率和较高的编解码效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《用哈夫曼编码实现文件压缩》实验报告
《用哈夫曼编码实现文件压缩》
实验报告
课程名称
数据结构 B
实验学期 2017 至 2018 学年 第 一 学期
学生所在院部 计算机学院
年级 2016 专业班级 信管 B162
学生姓名 学号
成绩评定:
1、工作量: A( ),B( ),C( ),D( ),F( ) 2、难易度: A( ),B( ),C( ),D( ),F( )
//将选取根结点权值最小的树作为左右子树 (*HT)[i].weight=(*HT)[s1].weight+(*HT)[s2].weight;
//置新二叉树的根结点权值为其左,右子树上根结点之和 printf("\nselect: s1=%d s2=%d\n",s1,s2);
//根结点权值最小的树在 HT 中的位置 printf(" 结点 weight parent lchild rchild "); for(j=1;j<=i;j++) //输出选取根结点权值最小的树的过程
fflush(stdin);
scanf("%d",&wei);
w[i]=wei;
}
HuffmanCoding(&HTree,&HCode,w,n);
return 1;
} 2.输出 HT 初态(每个字符的权值)
华北科技学院
《用哈夫曼编码实现文件压缩》实验报告
相应代码 void HuffmanCoding(HuffmanTree *HT,HuffmanCode *HC,int *w,int n){
for(i=1;i<=n;i++) {
(*HT)[i].weight=w[i]; (*HT)[i].parent=0; (*HT)[i].lchild=0; (*HT)[i].rchild=0; } for(i=n+1;i<=m; i++) { (*HT)[i].weight=0; (*HT)[i].parent=0; (*HT)[i].lchild=0; (*HT)[i].rchild=0; }
//从叶子到根逆向求编码
else cd[--start] ='1';
(*HC)[i]=(char*)malloc((n-start)*sizeof(char)); strcpy((*HC)[i],&cd[start]);
//为第 i 个字符编码分配空间 //从 Cd 复制编码(串)到 HC
} free(cd);
//从叶子到根逆向求每个字符的哈弗曼编码 *HC=(HuffmanCode)malloc((n+1)*sizeof(char*)); cd=(char*)malloc(n*sizeof(char));
//分配 n 个编码的头指针 //分配求编码的工作空间
华北科技学院
《用哈夫曼编码实现文件压缩》实验报告
流程图如下
开始(主函数)
输入字符个数 及相应权值
输出每个字符的权值
建立哈夫曼树
输出哈夫曼树,并显示 双亲权值和左右孩子
输出哈夫曼编码 六、系统实现及测试结果:
1.输入哈夫曼字数及相应权值
华北科技学院
《用哈夫曼编码实现文件压缩》实验报告
相应代码
int main()
{
HuffmanTree HTree;
三、实验设备与环境:
微型计算机、Windows 7 操作系统 、Visual C++6.0 软件 四、实验内容:
输入的字符创建 Huffman 树,并输出各字符对应的哈夫曼编码。
五. 系统设计 输入字符的个数和各个字符以及权值,将每个字符的出现频率作为叶子结点构建 Huffman 树,规定哈夫曼树的左分支为 0,右分支为 1,则从根结点到每个叶子 结点所经过的分支对应的 0 和 1 组成的序列便为该结点对应字符的哈夫曼编码。
cd[n-1]='\0'; for(i=1;i<=n;++i)
//编码结束符 //逐个字符求哈弗曼编码
{ start=n-1;
//编码结束位置
for(c=i,f=(*HT)[i].parent; f!=0; c=f,f=(*HT)[f].parent)
if((*HT)[f].lchild==c) cd[--start] = '0';
printf(" 按任意键,继续....."); getch();
3.建立哈夫曼树
华北科技学院
中间一些截图此处省略
《用哈夫曼编码实现文件压缩》实验报告
相应代码 void Select(HuffmanTree *HT, int m, int *s1,int *s2) { int i,min; for(i=1;i<=m;i++) { //在(*HT) [1..i-1]中选择 parent 为 0 且 weight 最小的二个结点 if ((*HT)[i].parent==0) { min=i; i=m+1; } } for(i=1;i<=m;i++) { //parent 为 0 且 weight 最小的二个结点,第一个序号为 s1 if((*HT)[i].parent==0) { if((*HT)[i].weight<(*HT)[min].weight) min=i; } } *s1=min; for(i=1;i<=m;i++) { //在(*HT) [1..i-1]中选择 parent 为 0 且 weight 最小的二个结点 if((*HT)[i].parent==0 && i!=(*s1)) { min=i; i=m+i; } } for(i=1;i<=m;i++)
//w 存放 n 个字符的权值(均>0),构造赫夫曼树 HT,并求出 n 个字符的赫夫曼 编码 HC.
int i,j,m,s1,s2,start; char *cd; unsigned int c,f; if(n<=1) return; m=2*n-1; *HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode)); //0 号单元未用
//释放工作空间
for(i=1;i<=n;i++) printf("<%2d>编码:%s\n",(*HT)[i].weight,(*HC)[i]);
}//HuffmanCoding
七、实验结果分析:
编程过程遇到很多问题,一些知识掌握不够全面,好多细节考虑的也不是 很周到,尤其是遍历查找最小权值的过程,心里只有个大概思路,但总是写不对, 后来查了资料和向同学请求帮助,对这个有了更好的掌握,同时分析问题的能力 也略有提高。所以在以后的学习中,要更加认真,细心,不断地练习,努力。
} *s2=min; }//endSelect
for(i=n+1;i<=m;i++) {
Select(HT,i-1,&s1,&s2); //在 HT[1..i-1]中选择 parent 为 0 且 weight 最小的二个结点
(*HT)[s1].parent=i; (*HT)[s2].parent=i; (*HT)[i].lchild=s1; (*HT)[i].rchild=s2;
3、答辩情况:
基本操作: A( ),B( ),C( ),D( ),F( ) 代码理解: A( ),B( ),C( ),D( ),F( ) 4、报告规范度: A( ),B( ),C( ),D( ),F( ) 5、学习态度: A( ),B( ),C( ),D( ),F( )
总评成绩:_________________________________
华北科技学院
《用哈夫曼编码实现文件压缩》实验报告
{ //parent 为 0 且 weight 最小的二个结点,第二个序号为 s2 if((*HT)[i].parent==0 && i!=(*s1)) { if((*HT)[i].weight<(*HT)[min].weight) min=i; }
printf("\n%4d%8d%8d%8d%8d",j,(*HT)[j].weight,(*HT)[j].parent,(*HT)[j].lchild,(*HT)[j].r
child); printf("
按任意键,继续.....");
getch();
}
4.输出哈弗曼编码
相应代码 printf("\n%d 个字符的哈弗曼编码如下:\n",n);
指导教师:
兰芸
华北科技学院
《用哈夫曼编码实现文件压缩》实验报告
一、 实验题目:
用哈夫曼编码实现文件压缩
二、实验目的:
1、了解文件的概念。 2、掌握线性链表的插入、删除等算法。 3、掌握 Huffman 树的概念及构造方法。 4、掌握二叉树的存储结构及遍历算法。 5、利用 Huffman 树及 Huffman 编码,掌握实现文件压缩的一般原理。
HuffmanCode HCode;
int *w, i;
int n,wei;
//编码个数及权值
printf("请输入需要哈夫曼编码的字符个数:");
scanf("%d",&n);
w=(int*)malloc((n+1)*sizeof(int));
for(i=1; i<=n;i++)