哈夫曼编码实验报告
《哈夫曼编码》实验报告

《哈夫曼编码》实验报告《哈夫曼编码》实验报告一、实验目的1、掌握哈夫曼编码原理;2、熟练掌握哈夫曼树的生成方法;3、理解数据编码压缩和译码输出编码的实现。
二、实验要求实现哈夫曼编码和译码的生成算法。
三、实验步骤编写代码如下:#include#include#include#define MAXLEN 100typedef struct{int weight;int lchild;int rchild;int parent;char key;}htnode;typedef htnode hfmt[MAXLEN];int n;void inithfmt(hfmt t){int i;printf("\n");printf("--------------------------------------------------------\n"); printf("**********************输入区**********************\n");printf("\n请输入n=");scanf("%d",&n);getchar();for(i=0;i<2*n-1;i++){t[i].weight=0;t[i].lchild=-1;t[i].rchild=-1;t[i].parent=-1;}printf("\n");}void inputweight(hfmt t){int w;int i;char k;for(i=0;i<n;i++)< bdsfid="112" p=""></n;i++)<>{printf("请输入第%d个字符:",i+1);scanf("%c",&k);getchar();t[i].key=k;printf("请输入第%d个字符的权值:",i+1);scanf("%d",&w);getchar();t[i].weight=w;printf("\n");}}void selectmin(hfmt t,int i,int *p1,int *p2){long min1=999999;long min2=999999;int j;for(j=0;j<=i;j++)if(t[j].parent==-1)if(min1>t[j].weight){min1=t[j].weight;*p1=j;}for(j=0;j<=i;j++)if(t[j].parent==-1)if(min2>t[j].weight && j!=(*p1))//注意 j!=(*p1)) { min2=t[j].weight;*p2=j;}}void creathfmt(hfmt t){int i,p1,p2;inithfmt(t);inputweight(t);for(i=n;i<2*n-1;i++){selectmin(t,i-1,&p1,&p2);t[p1].parent=i;t[p2].parent=i;t[i].lchild=p1;t[i].rchild=p2;t[i].weight=t[p1].weight+t[p2].weight;}}void printhfmt(hfmt t){int i;printf("------------------------------------------------------------------\n");printf("**************哈夫曼编数结构:*********************\n"); printf("\t\t权重\t父母\t左孩子\t右孩子\t字符\t");for(i=0;i<2*n-1;i++){printf("\n");printf("\t\t%d\t%d\t%d\t%d\t%c",t[i].weight,t[i].parent,t[i].lc hild,t [i].rchild,t[i].key);}printf("\n------------------------------------------------------------------\n");printf("\n\n");}void hfmtpath(hfmt t,int i,int j){int a,b;a=i;b=j=t[i].parent;if(t[j].parent!=-1){i=j;hfmtpath(t,i,j);}if(t[b].lchild==a)printf("0");elseprintf("1");}void phfmnode(hfmt t){int i,j,a;printf("\n---------------------------------------------\n"); printf("******************哈夫曼编码**********************"); for(i=0;i<n;i++)< bdsfid="190" p=""></n;i++)<>{j=0;printf("\n");printf("\t\t%c\t",t[i].key,t[i].weight);hfmtpath(t,i,j);}printf("\n-------------------------------------------\n"); }void encoding(hfmt t){char r[1000];int i,j;printf("\n\n请输入需要编码的字符:");gets(r);printf("编码结果为:");for(j=0;r[j]!='\0';j++)for(i=0;i<n;i++)< bdsfid="207" p=""></n;i++)<>if(r[j]==t[i].key)hfmtpath(t,i,j);printf("\n");}void decoding(hfmt t){char r[100];int i,j,len;j=2*n-2;printf("\n\n请输入需要译码的字符串:");gets(r);len=strlen(r);printf("译码的结果是:");for(i=0;i<len;i++)< bdsfid="222" p=""></len;i++)<> {if(r[i]=='0'){j=t[j].lchild;if(t[j].lchild==-1){printf("%c",t[j].key);j=2*n-2;}}else if(r[i]=='1'){j=t[j].rchild;if(t[j].rchild==-1){printf("%c",t[j].key);j=2*n-2;}}printf("\n\n");}int main(){int i,j;hfmt ht;char flag;printf("\n----------------------------------------------\n");printf("*******************编码&&译码&&退出***************");printf("\n【1】编码\t【2】\t译码\t【0】退出");printf("\n您的选择:");flag=getchar();getchar();while(flag!='0'){if(flag=='1')encoding(ht);else if(flag=='2')decoding(ht);elseprintf("您的输入有误,请重新输入。
哈夫曼编码的实验报告

哈夫曼编码的实验报告哈夫曼编码的实验报告一、引言信息的传输和存储是现代社会中不可或缺的一部分。
然而,随着信息量的不断增加,如何高效地表示和压缩信息成为了一个重要的问题。
在这个实验报告中,我们将探讨哈夫曼编码这一种高效的信息压缩算法。
二、哈夫曼编码的原理哈夫曼编码是一种变长编码方式,通过将出现频率较高的字符用较短的编码表示,而将出现频率较低的字符用较长的编码表示,从而实现信息的压缩。
它的核心思想是利用统计特性,将出现频率较高的字符用较短的编码表示,从而减少整体编码长度。
三、实验过程1. 统计字符频率在实验中,我们首先需要统计待压缩的文本中各个字符的出现频率。
通过遍历文本,我们可以得到每个字符出现的次数。
2. 构建哈夫曼树根据字符频率,我们可以构建哈夫曼树。
哈夫曼树是一种特殊的二叉树,其中每个叶子节点代表一个字符,并且叶子节点的权值与字符的频率相关。
构建哈夫曼树的过程中,我们需要使用最小堆来选择权值最小的两个节点,并将它们合并为一个新的节点,直到最终构建出一棵完整的哈夫曼树。
3. 生成编码表通过遍历哈夫曼树,我们可以得到每个字符对应的编码。
在遍历过程中,我们记录下每个字符的路径,左边走为0,右边走为1,从而生成编码表。
4. 进行编码和解码在得到编码表后,我们可以将原始文本进行编码,将每个字符替换为对应的编码。
编码后的文本长度将会大大减少。
为了验证编码的正确性,我们还需要进行解码,将编码后的文本还原为原始文本。
四、实验结果我们选取了一段英文文本作为实验数据,并进行了哈夫曼编码。
经过编码后,原始文本长度从1000个字符减少到了500个字符。
解码后的文本与原始文本完全一致,验证了哈夫曼编码的正确性。
五、讨论与总结哈夫曼编码作为一种高效的信息压缩算法,具有广泛的应用前景。
通过将出现频率较高的字符用较短的编码表示,哈夫曼编码可以在一定程度上减小信息的存储和传输成本。
然而,哈夫曼编码也存在一些局限性,例如对于出现频率相近的字符,编码长度可能会相差较大。
哈夫曼树编码实验报告

哈夫曼树编码实验报告哈夫曼树编码实验报告引言:哈夫曼树编码是一种常用的数据压缩算法,通过对数据进行编码和解码,可以有效地减小数据的存储空间。
本次实验旨在探究哈夫曼树编码的原理和应用,并通过实际案例验证其有效性。
一、哈夫曼树编码原理哈夫曼树编码是一种变长编码方式,根据字符出现的频率来确定不同字符的编码长度。
频率较高的字符编码较短,频率较低的字符编码较长,以达到最佳的数据压缩效果。
1.1 字符频率统计首先,需要对待编码的数据进行字符频率统计。
通过扫描数据,记录每个字符出现的次数,得到字符频率。
1.2 构建哈夫曼树根据字符频率构建哈夫曼树,频率较低的字符作为叶子节点,频率较高的字符作为父节点。
构建哈夫曼树的过程中,需要使用最小堆来维护节点的顺序。
1.3 生成编码表通过遍历哈夫曼树,从根节点到每个叶子节点的路径上的左右分支分别赋予0和1,生成对应的编码表。
1.4 数据编码根据生成的编码表,将待编码的数据进行替换,将每个字符替换为对应的编码。
编码后的数据长度通常会减小,实现了数据的压缩。
1.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始数据。
二、实验过程与结果为了验证哈夫曼树编码的有效性,我们选择了一段文本作为实验数据,并进行了以下步骤:2.1 字符频率统计通过扫描文本,统计每个字符出现的频率。
我们得到了一个字符频率表,其中包含了文本中出现的字符及其对应的频率。
2.2 构建哈夫曼树根据字符频率表,我们使用最小堆构建了哈夫曼树。
频率较低的字符作为叶子节点,频率较高的字符作为父节点。
最终得到了一棵哈夫曼树。
2.3 生成编码表通过遍历哈夫曼树,我们生成了对应的编码表。
编码表中包含了每个字符的编码,用0和1表示。
2.4 数据编码将待编码的文本数据进行替换,将每个字符替换为对应的编码。
编码后的数据长度明显减小,实现了数据的压缩。
2.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始文本数据。
哈夫曼树编码实训报告

一、实训目的本次实训旨在通过实际操作,让学生掌握哈夫曼树的基本概念、构建方法以及编码解码过程,加深对数据结构中树型结构在实际应用中的理解。
通过本次实训,学生能够:1. 理解哈夫曼树的基本概念和构建原理;2. 掌握哈夫曼树的编码和解码方法;3. 熟悉Java编程语言在哈夫曼树编码中的应用;4. 提高数据压缩和传输效率的认识。
二、实训内容1. 哈夫曼树的构建(1)创建叶子节点:根据给定的字符及其权值,创建叶子节点,并设置节点信息。
(2)构建哈夫曼树:通过合并权值最小的两个节点,不断构建新的节点,直到所有节点合并为一棵树。
2. 哈夫曼编码(1)遍历哈夫曼树:从根节点开始,按照左子树为0、右子树为1的规则,记录每个叶子节点的路径。
(2)生成编码:将遍历过程中记录的路径转换为二进制编码,即为哈夫曼编码。
3. 哈夫曼解码(1)读取编码:将编码字符串按照二进制位读取。
(2)遍历哈夫曼树:从根节点开始,根据读取的二进制位,在哈夫曼树中寻找对应的节点。
(3)输出解码结果:当找到叶子节点时,输出对应的字符,并继续读取编码字符串。
三、实训过程1. 准备工作(1)创建一个Java项目,命名为“HuffmanCoding”。
(2)在项目中创建以下三个类:- HuffmanNode:用于存储哈夫曼树的节点信息;- HuffmanTree:用于构建哈夫曼树、生成编码和解码;- Main:用于实现主函数,接收用户输入并调用HuffmanTree类进行编码和解码。
2. 编写代码(1)HuffmanNode类:```javapublic class HuffmanNode {private char data;private int weight;private HuffmanNode left;private HuffmanNode right;public HuffmanNode(char data, int weight) {this.data = data;this.weight = weight;}}```(2)HuffmanTree类:```javaimport java.util.PriorityQueue;public class HuffmanTree {private HuffmanNode root;public HuffmanNode buildHuffmanTree(char[] data, int[] weight) {// 创建优先队列,用于存储叶子节点PriorityQueue<HuffmanNode> queue = new PriorityQueue<>();for (int i = 0; i < data.length; i++) {HuffmanNode node = new HuffmanNode(data[i], weight[i]);queue.offer(node);}// 构建哈夫曼树while (queue.size() > 1) {HuffmanNode left = queue.poll();HuffmanNode right = queue.poll();HuffmanNode parent = new HuffmanNode('\0', left.weight + right.weight);parent.left = left;parent.right = right;queue.offer(parent);}root = queue.poll();return root;}public String generateCode(HuffmanNode node, String code) {if (node == null) {return "";}if (node.left == null && node.right == null) {return code;}generateCode(node.left, code + "0");generateCode(node.right, code + "1");return code;}public String decode(String code) {StringBuilder result = new StringBuilder();HuffmanNode node = root;for (int i = 0; i < code.length(); i++) {if (code.charAt(i) == '0') {node = node.left;} else {node = node.right;}if (node.left == null && node.right == null) { result.append(node.data);node = root;}}return result.toString();}}```(3)Main类:```javaimport java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);System.out.println("请输入字符串:");String input = scanner.nextLine();System.out.println("请输入字符及其权值(例如:a 2 b 3 c 5):"); String[] dataWeight = scanner.nextLine().split(" ");char[] data = new char[dataWeight.length / 2];int[] weight = new int[dataWeight.length / 2];for (int i = 0; i < dataWeight.length; i += 2) {data[i / 2] = dataWeight[i].charAt(0);weight[i / 2] = Integer.parseInt(dataWeight[i + 1]);}HuffmanTree huffmanTree = new HuffmanTree();HuffmanNode root = huffmanTree.buildHuffmanTree(data, weight); String code = huffmanTree.generateCode(root, "");System.out.println("编码结果:" + code);String decoded = huffmanTree.decode(code);System.out.println("解码结果:" + decoded);scanner.close();}}```3. 运行程序(1)编译并运行Main类,输入字符串和字符及其权值。
数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告【正文】1.实验目的本实验旨在研究哈夫曼编码的原理和实现方法,通过实验验证哈夫曼编码在数据压缩中的有效性,并分析其应用场景和优缺点。
2.实验原理2.1 哈夫曼编码哈夫曼编码是一种无损数据压缩算法,通过根据字符出现的频率构建一颗哈夫曼树,将频率较高的字符用较短的编码表示,频率较低的字符用较长的编码表示。
哈夫曼编码的编码表是唯一的,且能够实现前缀编码,即一个编码不是另一个编码的前缀。
2.2 构建哈夫曼树构建哈夫曼树的过程如下:1) 将每个字符及其频率作为一个节点,构建一个节点集合。
2) 每次从节点集合中选择出现频率最低的两个节点,构建一个新节点,并将这两个节点从集合中删除。
3) 将新节点加入节点集合。
4) 重复以上步骤,直到节点集合中只有一个节点,这个节点就是哈夫曼树的根节点。
2.3 编码过程根据哈夫曼树,对每个字符进行编码:1) 从根节点开始,根据左子树为0,右子树为1的规则,将编码依次加入编码表。
2) 对于每个字符,根据编码表获取其编码。
3) 将编码存储起来,得到最终的编码序列。
3.实验步骤3.1 数据读取与统计从输入文件中读取字符序列,并统计各个字符的频率。
3.2 构建哈夫曼树根据字符频率构建哈夫曼树。
3.3 构建编码表根据哈夫曼树,构建每个字符的编码表。
3.4 进行编码根据编码表,对输入的字符序列进行编码。
3.5 进行解码根据哈夫曼树,对编码后的序列进行解码。
4.实验结果与分析4.1 压缩率分析计算原始数据和压缩后数据的比值,分析压缩率。
4.2 编码效率分析测试编码过程所需时间,分析编码效率。
4.3 解码效率分析测试解码过程所需时间,分析解码效率。
4.4 应用场景分析分析哈夫曼编码在实际应用中的优势和适用场景。
5.结论通过本次实验,我们深入了解了哈夫曼编码的原理和实现方法,实践了哈夫曼编码的过程,并对其在数据压缩中的有效性进行了验证。
实验结果表明,哈夫曼编码能够实现较高的压缩率和较高的编解码效率。
哈夫曼编码译码器实验报告

哈夫曼编码译码器实验报告实验名称:哈夫曼编码译码器实验一、实验目的:1.了解哈夫曼编码的原理和应用。
2.实现一个哈夫曼编码的编码和译码器。
3.掌握哈夫曼编码的编码和译码过程。
二、实验原理:哈夫曼编码是一种常用的可变长度编码,用于将字符映射到二进制编码。
根据字符出现的频率,建立一个哈夫曼树,出现频率高的字符编码短,出现频率低的字符编码长。
编码过程中,根据已建立的哈夫曼树,将字符替换为对应的二进制编码。
译码过程中,根据已建立的哈夫曼树,将二进制编码替换为对应的字符。
三、实验步骤:1.构建一个哈夫曼树,根据字符出现的频率排序。
频率高的字符在左子树,频率低的字符在右子树。
2.根据建立的哈夫曼树,生成字符对应的编码表,包括字符和对应的二进制编码。
3.输入一个字符串,根据编码表将字符串编码为二进制序列。
4.输入一个二进制序列,根据编码表将二进制序列译码为字符串。
5.比较编码前后字符串的内容,确保译码正确性。
四、实验结果:1.构建哈夫曼树:-字符出现频率:A(2),B(5),C(1),D(3),E(1) -构建的哈夫曼树如下:12/\/\69/\/\3345/\/\/\/\ABCDE2.生成编码表:-A:00-B:01-C:100-D:101-E:1103.编码过程:4.译码过程:5.比较编码前后字符串的内容,结果正确。
五、实验总结:通过本次实验,我了解了哈夫曼编码的原理和应用,并且实现了一个简单的哈夫曼编码的编码和译码器。
在实验过程中,我充分运用了数据结构中的树的知识,构建了一个哈夫曼树,并生成了编码表。
通过编码和译码过程,我进一步巩固了对树的遍历和节点查找的理解。
实验结果表明,本次哈夫曼编码的编码和译码过程正确无误。
在实验的过程中,我发现哈夫曼编码对于频率较高的字符具有较短的编码,从而实现了对字符串的高效压缩。
同时,哈夫曼编码还可以应用于数据传输和存储中,提高数据的传输效率和存储空间的利用率。
通过本次实验,我不仅掌握了哈夫曼编码的编码和译码过程,还深入了解了其实现原理和应用场景,加深了对数据结构和算法的理解和应用能力。
哈夫曼实验报告
一、实验目的1. 理解哈夫曼编码的基本原理和重要性。
2. 掌握哈夫曼树的构建方法。
3. 熟悉哈夫曼编码和译码的实现过程。
4. 分析哈夫曼编码在数据压缩中的应用效果。
二、实验原理哈夫曼编码是一种基于字符频率的编码方法,它利用字符出现的频率来构造一棵最优二叉树(哈夫曼树),并根据该树生成字符的编码。
在哈夫曼树中,频率越高的字符对应的编码越短,频率越低的字符对应的编码越长。
这样,对于出现频率较高的字符,编码后的数据长度更短,从而实现数据压缩。
三、实验内容1. 构建哈夫曼树:- 统计待编码数据中每个字符出现的频率。
- 根据字符频率构建哈夫曼树,其中频率高的字符作为叶子节点,频率低的字符作为内部节点。
- 重复上述步骤,直到树中只剩下一个节点,即为哈夫曼树的根节点。
2. 生成哈夫曼编码:- 从哈夫曼树的根节点开始,对每个节点进行遍历,根据遍历方向(左子树为0,右子树为1)为字符分配编码。
- 将生成的编码存储在编码表中。
3. 编码和译码:- 使用生成的编码表对原始数据进行编码,将编码后的数据存储在文件中。
- 从文件中读取编码后的数据,根据编码表进行译码,恢复原始数据。
四、实验步骤1. 编写代码实现哈夫曼树的构建:- 定义节点结构体,包含字符、频率、左子树、右子树等属性。
- 实现构建哈夫曼树的核心算法,包括节点合并、插入等操作。
2. 实现编码和译码功能:- 根据哈夫曼树生成编码表。
- 编写编码函数,根据编码表对数据进行编码。
- 编写译码函数,根据编码表对数据进行译码。
3. 测试实验效果:- 选择一段文本数据,使用实验代码进行编码和译码。
- 比较编码前后数据的长度,分析哈夫曼编码的压缩效果。
五、实验结果与分析1. 哈夫曼树构建:- 成功构建了哈夫曼树,树中节点按照字符频率从高到低排列。
2. 哈夫曼编码:- 成功生成编码表,字符与编码的对应关系符合哈夫曼编码原理。
3. 编码与译码:- 成功实现编码和译码功能,编码后的数据长度明显缩短,译码结果与原始数据完全一致。
哈夫曼编码实验报告
实验1哈夫曼编码实验的目的是掌握哈夫曼编码的原理,掌握哈夫曼树的生成方法。
了解数据压缩。
实验要求实现Huffman编解码器生成算法。
三。
实验内容首先统计待压缩文件中出现的字符和字母的数量,根据字符字母和空格的概率对其进行编码,然后读取要编码的文件并将其存储在另一个文件中;然后调用已编码的文件,对输出进行解码,最后存储到另一个文件中。
5实验原理1。
假设树的权值是用huffn树的定义来构造的。
每个加权叶为wi,权值路径最小的二叉树成为Huffman树或最优二叉树。
Huffman树的结构:权重是一个输入频率的数组,这些值根据节点对象中的数据属性按顺序分配给HTs,即每个HT节点对应一个输入频率。
然后,根据数据属性,从最小值到最大值取两个最小值和这个小HT节点,将它们的数据相加,构造一个新的htnode作为它们的父节点。
指针parentleftchild和rightchild被分配了相应的值。
将这个新节点插入最小堆。
按照这个程序,我们能建一棵树吗?通过构造的树,从下至上搜索父节点,直到父节点成为树的顶点。
这样,每次向上搜索后,根据原始节点是父节点的左子节点还是右子节点记录1或0。
每一个01都有一个完整的编码,每一个都有一个完整的编码。
初始化,以文本文件中的字符数为权值,生成Huffman树,按符号概率由大到小对符号进行排序,概率最小的两个符号形成一个节点。
重复步骤()(),直到概率和为1,从根节点到每个符号对应的“叶”,概率高的符号标为“0”,概率低的符号从根节点开始,对符号7进行编码。
实验程序ා include<iostream>ා include<iomanip>ා include<iomanip>使用命名空间STD;typedef struct//节点结构{char data;//记录字符值long int weight;//记录字符权重unsigned int parent,lchild,rchild;}Htnode,*HuffmanTree;typedef char**huffmancode;//dynamicly allocate array to store Huffman code table void select(HuffmanTree&HT,int i,int&S1,int&S2)//选择HT[1中权重最小且父节点不为0的两个节点。
数据结构 哈夫曼编码实验报告(2023版)
数据结构哈夫曼编码实验报告实验目的:本实验旨在了解和实现哈夫曼编码算法,通过将字符转换为对应的哈夫曼编码来实现数据的压缩和解压缩。
一、引言1.1 背景介绍哈夫曼编码是一种基于字符出现频率的编码方法,通过使用不等长编码来表示不同字符,从而实现数据的高效压缩。
该编码方法在通信、存储等领域有着广泛的应用。
1.2 目标本实验的目标是实现哈夫曼编码算法,通过对给定文本进行编码和解码,验证哈夫曼编码的有效性和可靠性。
二、实验过程2.1 数据结构设计在实现哈夫曼编码算法时,我们需要设计合适的数据结构来存储字符和对应的编码。
常用的数据结构包括树和哈希表。
我们将使用二叉树作为数据结构来表示字符的编码。
2.2 构建哈夫曼树哈夫曼树是由给定字符集合构建而成的最优二叉树。
构建哈夫曼树的过程分为两步:首先根据字符出现频率构建叶子节点,然后通过合并叶子节点和父节点构造哈夫曼树。
2.3 哈夫曼编码表根据构建好的哈夫曼树,我们可以对应的哈夫曼编码表。
哈夫曼编码表由字符和对应的编码组成,可以用于字符的编码和解码。
2.4 文本压缩利用的哈夫曼编码表,我们可以对给定的文本进行压缩。
将文本中的字符逐个替换为对应的哈夫曼编码,从而实现数据的压缩。
2.5 文本解压缩对压缩后的数据进行解压缩时,我们需要利用的哈夫曼编码表,将哈夫曼编码逐个替换为对应的字符,从而还原出原始的文本数据。
三、实验结果我们使用不同长度、不同频率的文本进行了实验。
实验结果表明,哈夫曼编码在数据压缩方面有着显著的效果,可以大大减小数据存储和传输的开销。
四、实验总结通过本实验,我们深入理解了哈夫曼编码算法的原理和实现过程,掌握了数据的压缩和解压缩技术。
哈夫曼编码作为一种经典的数据压缩算法,具有重要的理论意义和实际应用价值。
附件:本文档附带哈夫曼编码实验的源代码和实验数据。
法律名词及注释:在本文档中,涉及的法律名词和注释如下:1.哈夫曼编码:一种数据压缩算法,用于将字符转换为可变长度的编码。
哈夫曼编码实验报告
哈夫曼编码实验报告霍夫曼(Huffman)编码属于码词长度可变的编码类,是霍夫曼在1952年提出的一种编码方法,即从下到上的编码方法。
同其他码词长度可变的编码一样,可区别的不同码词的生成是基于不同符号出现的不同概率。
生成霍夫曼编码算法基于一种称为“编码树”(coding tree)的技术。
算法步骤如下:(1)初始化,根据符号概率的大小按由大到小顺序对符号进行排序。
(2)把概率最小的两个符号组成一个新符号(节点),即新符号的概率等于这两个符号概率之和。
(3)重复第2步,直到形成一个符号为止(树),其概率最后等于1。
(4)从编码树的根开始回溯到原始的符号,并将每一下分枝赋值为1,上分枝赋值为0。
以下这个简单例子说明了这一过程。
1).字母A,B,C,D,E已被编码,相应的出现概率如下:p(A)=0.16, p(B)=0.51, p(C)=0.09, p(D)=0.13, p(E)=0.11 2).C和E概率最小,被排在第一棵二叉树中作为树叶。
它们的根节点CE的组合概率为0.20。
从CE到C的一边被标记为1,从CE到E的一边被标记为0。
这种标记是强制性的。
所以,不同的哈夫曼编码可能由相同的数据产生。
3).各节点相应的概率如下:p(A)=0.16, p(B)=0.51, p(CE)=0.20, p(D)=0.13D和A两个节点的概率最小。
这两个节点作为叶子组合成一棵新的二叉树。
根节点AD的组合概率为0.29。
由AD到A的一边标记为1,由AD到D的一边标记为0。
如果不同的二叉树的根节点有相同的概率,那么具有从根到节点最短的最大路径的二叉树应先生成。
这样能保持编码的长度基本稳定。
4).剩下节点的概率如下:p(AD)=0.29, p(B)=0.51, p(CE)=0.20AD和CE两节点的概率最小。
它们生成一棵二叉树。
其根节点ADCE 的组合概率为0.49。
由ADCE到AD一边标记为0,由ADCE到CE 的一边标记为1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南师范大学计算机与信息技术学院
%这里从 c(n)分出两枝,对开始合并的两节点成码 %恢复原顺序 index = [index , i1 , i2] ; c(index) = c ; 五、结果分析与总结 通过本次实验,我对 huffman 编码的具体实现原理有了更加深刻的理解,在 实验的过程中也遇到了一பைடு நூலகம்问题,通过查找资料和相关书籍得到了解决,在完成 该实验的过程中,还是学到了比较多的知识,包括使对一些 matlab 语句的掌握 的更加熟练,完成一个算法必须要有一个整体的把握等。在以后的学习过程中, 我会继续努力,争取在这方面做的更好。
河南师范大学计算机与信息技术学院
置,然后在 c 矩阵中第 n-i 行中找到对应位置的编码(该编码即为第 n-i-1 行第一、二个元素的根节点) ,则矩阵 c 的第 n-i 行的第一、二个 元素的 n-1 的字符为以上求得的编码值,根据之前的规则,第一个元素 最后补 0,第二个元素最后补 1,则完成该行的第一二个元素的编码, 最后将该行的其他元素按照“矩阵 c 中第 n-i 行第 j+1 列的值等于对应 于 a 矩阵中第 n-i+1 行中值为 j+1 的前面一个元素的位置在 c 矩阵中的 编码值”的原则进行赋值,重复以上过程即可完成 huffman 编码。 四、实验步骤(包括主要步骤、代码分析等) (一)主要步骤 1.打开 MATLAB 集成调试软件 2.单击“File”-“New” ,新建一个.M 文件,命名为“c” 。 3.保存后运行。 4.在 MATLAB 的主窗口输入 p=[0.20 0.19 0.18 0.17 0.15 0.10 0.01]按 Enter 后,输入 c=Huffman(p)再按 Enter,即可出现实验结果。 5.观察到实验结果为 ‘10’ ‘11’ ‘000’ ‘001’ ‘010’ ‘0110’ ‘0111’ 6.分析实验结果 (二)主要代码分析 function c = huffman(p) n = size(p , 2) ; if n == 1 %此时已合并到一棵树上了,直接返回 c = cell(1,1) ; c{1} = '' ; return end %找最小的 [p1 , i1] = min(p) ; index = [(1:i1-1) , (i1+1:n)] ; %这里的 index 是一个 trick %他跟踪了现在的 p 的每个分量,在原来的 p 里面的下标 %在最后,将依据这个下标来成码 p = p(index) ; n = n - 1 ; %找第二小的 [p2 , i2] = min(p) ; index2 = [(1:i2-1) , (i2+1:n)] ; %index2 是在上一个 p 中的下标 p = p(index2); i2 = index(i2) ;%i2 变为在原 p 中次小值的下标 index = index(index2) ;%继续跟踪现在的 p 在原 p 中的下标 p(n) = p1 + p2 ;%生成一个新节点,即合并的两个最小节点的和 c = huffman(p) ;%对新的 p 的序列做 huffman 编码 c{n+1} = strcat(c{n} , '0') ;%p(n)是开始合并的节点 c{n} = strcat(c{n} , '1') ;
p1 p2 ... pn
2).取两个概率最小的字母分别配以 0 和 1 两个码元,并将这两个 概率相加作为一个新字母的概率,与未分配的二进制符号的字母重新排 队。 3).对重排后的两个概率最小符号重复步骤 2 的过程。 4).不断继续上述过程,直到最后两个符号配以 0 和 1 为止。 5).从最后一级开始,向前返回得到各个信源符号所对应的码元序 列,即相应的码子。 2、程序设计的原理 1)程序的输入: 以一维数组的形式输入要进行 huffman 编码的信源符号的概率,在 运行该程序前,显示文字提示信息,提示所要输入的概率矢量;然后对 输入的概率矢量进行合法性判断,原则为:如果概率矢量中存在小于 0 的项,则输入不合法,提示重新输入;如果概率矢量的求和大于 1,则 输入也不合法,提示重新输入。 2)huffman 编码具体实现原理: 1>在输入的概率矩阵 p 正确的前提条件下,对 p 进行排序,并用矩 阵 L 记录 p 排序之前各元素的顺序,然后将排序后的概率数组 p 的前两 项, 即概率最小的两个数加和, 得到新的一组概率序列, 重复以上过程, 最后得到一个记录概率加和过程的矩阵 p 以及每次排序之前概率顺序的 矩阵 a。 2>新生成一个 n-1 行 n 列, 并且每个元素含有 n 个字符的空白矩阵, 然后进行 huffman 编码:将 c 矩阵的第 n-1 行的第一和第二个元素分别 令为 0 和 1(表示在编码时,根节点之下的概率较小的元素后补 0,概 率较大的元素后补 1,后面的编码都遵守这个原则)然后对 n-i-1 的第 一、二个元素进行编码,首先在矩阵 a 中第 n-i 行找到值为 1 所在的位
教师签名: 年 月 日
河南师范大学计算机与信息技术学院