哈夫曼树实验报告

合集下载

哈夫曼树的实验报告1

哈夫曼树的实验报告1

哈夫曼树的实验报告1一、需求分析1、本演示程序实现Haffman编/译码器的作用,目的是为信息收发站提供一个编/译系统,从而使信息收发站利用Haffman编码进行通讯,力求达到提高信道利用率,缩短时间,降低成本等目标。

系统要实现的两个基本功能就是:①对需要传送的数据预先编码;②对从接收端接收的数据进行译码;2、本演示程序需要在终端上读入n个字符(字符型)及其权值(整形),用于建立Huffman树,存储在文件hfmanTree.txt中;如果用户觉得不够清晰还可以打印以凹入表形式显示的Huffman树;3、本演示程序根据建好的Huffman树,对文件的文本进行编码,结果存入文件CodeFile中;然后利用建好的Huffman树将文件CodeFile中的代码进行译码,结果存入文件TextFile中;最后在屏幕上显示代码(每行50个),同时显示对CodeFile中代码翻译后的结果;4、本演示程序将综合使用C++和C语言;5、测试数据:(1)教材例6-2中数据:8个字符,概率分别是0.05,0.29,0.07,0.08,0.14,0.23,0.03,0.11,可将其的权值看为5,29,7,8,14,23,3,11(2)用下表给出的字符集和频度的实际统计数据建立Haffman树,并实现以下报文的编码和一、概要设计1、设定哈夫曼树的抽象数据类型定义ADT Huffmantree{数据对象:D={a i| a i∈Charset,i=1,2,3,……n,n≥0}数据关系:R1={< a i-1, a i >| a i-1, a i∈D, i=2,3,……n}基本操作:Initialization(&HT,&HC,w,n,ch)操作结果:根据n个字符及其它们的权值w[i],建立Huffman树HT,用字符数组ch[i]作为中间存储变量,最后字符编码存到HC中;Encodeing(n)操作结果:根据建好的Huffman树,对文件进行编码,编码结果存入到文件CodeFile 中Decodeing(HT,n)操作结果:根据已经编译好的包含n个字符的Huffman树HT,将文件的代码进行翻译,结果存入文件T extFile中} ADT Huffmantree1)主程序模块void main(){输入信息,初始化;选择需要的操作;生成Huffman树;执行对应的模块程序;输出结果;}2)编码模块——根据建成的Huffman树对文件进行编码;3)译码模块——根据相关的Huffman树对编码进行翻译;各模块的调用关系如图所示二、详细设计1、树类型定义typedef struct {unsigned int weight; //权值char ch1; //储存输入的字符unsigned int parent,lchild,rchild;}HTNode,*HuffmanTree;2、编码类型定义typedef char **HuffmanCode;哈夫曼编译器的基本操作设置如下Initialization(HuffmanTree &HT,HuffmanCode &HC,int *w,int &n,char *ch) //根据输入的n个字符及其它们的权值w[i],建立Huffman树HT,用字符数组ch[i]作为中间存储变量存储编码,最后转存到HC中;Encodeing(int n)//根据建好的包含n个字符的Huffman树,对文件进行编码,编码结果存入到文件CodeFile中Decodeing(HuffmanTree HT,int n)//根据已经编译好的包含n个字符的Huffman树HT,对文件的代码进行翻译,结果存入文件TextFile中基本操作操作的算法主函数及其他函数的算法void select(HuffmanTree HT,int n,int &s1,int &s2){ //依次比较,从哈夫曼树的中parent为0的节点中选择出两个权值最小的if(!HT[i].parent&&!HT[S1]&&!HT[S2]){if(HT[i].weight<ht[s1].weight){< p="">s2=s1; s1=i;}else if(HT[i].weight<ht[s2].weight&&i!=s1)< p=""> s2=i;}3、函数的调用关系图三、调试分析Encodeing Decoding Print PrintTreeInitialization1、本次实习作业最大的难点就是文件的读和写,这需要充分考虑到文件里面的格式,例如空格,换行等等,由于不熟悉C++语言和C语言的文件的输入和输出,给编程带来了很大的麻烦;2、原本计划将文本中的换行格式也进行编码,也由于设计函数比较复杂,而最终放弃;3、一开始考虑打印哈夫曼树的凹入表时是顺向思维,希望通过指针的顺序变迁来实现打印,但问题是从根结点到叶子结点的指针不是顺序存储的,所以未能成功,后来查找相关资料,最终利用递归的方法解决问题;4、程序中的数组均采用了动态分配的方法定义,力求达到减少空间的浪费;5、时间的复杂度主要是由查树这个步骤决定,因为无论是编码还是译码都需要对Huffman树进行查找和核对,但考虑到英文字母和空格也就是27个字符,影响不是很大;6、程序无论在屏幕显示还有文件存储方面都达到了不错的效果;7、程序不足的地方就是在文件文本格式方面处理得还是不够,或许可以通过模仿WORD的实现来改善。

哈夫曼树_实验报告

哈夫曼树_实验报告

一、实验目的1. 理解哈夫曼树的概念及其在数据结构中的应用。

2. 掌握哈夫曼树的构建方法。

3. 学习哈夫曼编码的原理及其在数据压缩中的应用。

4. 提高编程能力,实现哈夫曼树和哈夫曼编码的相关功能。

二、实验原理哈夫曼树(Huffman Tree)是一种带权路径长度最短的二叉树,又称为最优二叉树。

其构建方法如下:1. 将所有待编码的字符按照其出现的频率排序,频率低的排在前面。

2. 选择两个频率最低的字符,构造一棵新的二叉树,这两个字符分别作为左右子节点。

3. 计算新二叉树的频率,将新二叉树插入到排序后的字符列表中。

4. 重复步骤2和3,直到只剩下一个节点,这个节点即为哈夫曼树的根节点。

哈夫曼编码是一种基于哈夫曼树的编码方法,其原理如下:1. 从哈夫曼树的根节点开始,向左子树走表示0,向右子树走表示1。

2. 每个叶子节点对应一个字符,记录从根节点到叶子节点的路径,即为该字符的哈夫曼编码。

三、实验内容1. 实现哈夫曼树的构建。

2. 实现哈夫曼编码和译码功能。

3. 测试实验结果。

四、实验步骤1. 创建一个字符数组,包含待编码的字符。

2. 创建一个数组,用于存储每个字符的频率。

3. 对字符和频率进行排序。

4. 构建哈夫曼树,根据排序后的字符和频率,按照哈夫曼树的构建方法,将字符和频率插入到哈夫曼树中。

5. 实现哈夫曼编码功能,遍历哈夫曼树,记录从根节点到叶子节点的路径,即为每个字符的哈夫曼编码。

6. 实现哈夫曼译码功能,根据哈夫曼编码,从根节点开始,按照0和1的路径,找到对应的叶子节点,即为解码后的字符。

7. 测试实验结果,验证哈夫曼编码和译码的正确性。

五、实验结果与分析1. 构建哈夫曼树根据实验数据,构建的哈夫曼树如下:```A/ \B C/ \ / \D E F G```其中,A、B、C、D、E、F、G分别代表待编码的字符。

2. 哈夫曼编码根据哈夫曼树,得到以下字符的哈夫曼编码:- A: 00- B: 01- C: 10- D: 11- E: 100- F: 101- G: 1103. 哈夫曼译码根据哈夫曼编码,对以下编码进行译码:- 00101110111译码结果为:BACGACG4. 实验结果分析通过实验,验证了哈夫曼树和哈夫曼编码的正确性。

哈夫曼树编码译码实验报告

哈夫曼树编码译码实验报告

数据结构课程设计设计题目:哈夫曼树编码译码课题名称院系学号姓名哈夫曼树编码译码年级专业成绩1、课题设计目的:在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。

哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,时常应用于数据压缩。

哈弗曼编码使用一张特殊的编码表将源字符(例如某文件中的一个符号)进行编码。

这张编码表的特殊之处在于,它是根据每一个源字符浮现的估算概率而建立起来的。

课题设计目的与设计意义2、课题设计意义:哈夫曼编码的应用很广泛,利用哈夫曼树求得的用于通信的二进制编码称为哈夫曼编码。

树中从根到每一个叶子都有一条路径,对路径上的各分支约定:指向左子树的分支表示“0”码,指向右子树的分支表示“1”码,取每条路径上的“0”或者“1”的序列作为和各个叶子对应的字符的编码,这就是哈夫曼编码。

哈弗曼译码输入字符串可以把它编译成二进制代码,输入二进制代码时可以编译成字符串。

指导教师:年月日第一章需求分析 (1)第二章设计要求 (1)第三章概要设计 (2)(1)其主要流程图如图 1-1 所示。

(3)(2)设计包含的几个方面 (4)第四章详细设计 (4)(1)①哈夫曼树的存储结构描述为: (4)(2)哈弗曼编码 (5)(3)哈弗曼译码 (7)(4)主函数 (8)(5)显示部份源程序: (8)第五章调试结果 (10)第六章心得体味 (12)第七章参考文献 (12)附录: (12)在当今信息爆炸时代,如何采用有效的数据压缩技术节省数据文件的存储空间和计算机网络的传送时间已越来越引起人们的重视,哈夫曼编码正是一种应用广泛且非常有效的数据压缩技术。

哈夫曼编码是一种编码方式,以哈夫曼树—即最优二叉树,带权路径长度最小的二叉树,时常应用于数据压缩。

哈弗曼编码使用一张特殊的编码表将源字符 (例如某文件中的一个符号) 进行编码。

哈夫曼树编码实验报告

哈夫曼树编码实验报告

哈夫曼树编码实验报告哈夫曼树编码实验报告引言:哈夫曼树编码是一种常用的数据压缩算法,通过对数据进行编码和解码,可以有效地减小数据的存储空间。

本次实验旨在探究哈夫曼树编码的原理和应用,并通过实际案例验证其有效性。

一、哈夫曼树编码原理哈夫曼树编码是一种变长编码方式,根据字符出现的频率来确定不同字符的编码长度。

频率较高的字符编码较短,频率较低的字符编码较长,以达到最佳的数据压缩效果。

1.1 字符频率统计首先,需要对待编码的数据进行字符频率统计。

通过扫描数据,记录每个字符出现的次数,得到字符频率。

1.2 构建哈夫曼树根据字符频率构建哈夫曼树,频率较低的字符作为叶子节点,频率较高的字符作为父节点。

构建哈夫曼树的过程中,需要使用最小堆来维护节点的顺序。

1.3 生成编码表通过遍历哈夫曼树,从根节点到每个叶子节点的路径上的左右分支分别赋予0和1,生成对应的编码表。

1.4 数据编码根据生成的编码表,将待编码的数据进行替换,将每个字符替换为对应的编码。

编码后的数据长度通常会减小,实现了数据的压缩。

1.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始数据。

二、实验过程与结果为了验证哈夫曼树编码的有效性,我们选择了一段文本作为实验数据,并进行了以下步骤:2.1 字符频率统计通过扫描文本,统计每个字符出现的频率。

我们得到了一个字符频率表,其中包含了文本中出现的字符及其对应的频率。

2.2 构建哈夫曼树根据字符频率表,我们使用最小堆构建了哈夫曼树。

频率较低的字符作为叶子节点,频率较高的字符作为父节点。

最终得到了一棵哈夫曼树。

2.3 生成编码表通过遍历哈夫曼树,我们生成了对应的编码表。

编码表中包含了每个字符的编码,用0和1表示。

2.4 数据编码将待编码的文本数据进行替换,将每个字符替换为对应的编码。

编码后的数据长度明显减小,实现了数据的压缩。

2.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始文本数据。

哈夫曼树设计性实验报告

哈夫曼树设计性实验报告
计算机与信息技术学院综合性、设计性实验报告
专业:计算机科学与技术年级/班级:10级2011—2012学年第一学期
课程名称
数据结构
指导教师
王岁花
本组成员
学号姓名
1008114082左雪敬
实验地点
215机房
实验时间
ห้องสมุดไป่ตู้第12、13、14周
项目名称
哈夫曼编/译码系统的设计与实现
实验类型
设计性
一、实验目的
1:理解哈夫曼树的特征及其应用;在对哈夫曼树进行理解的基础上,构造哈夫曼树,并用构造的哈夫曼树进行编码和译码;通过该实验,使学生对数据结构的应用有更深层次的理解。
2:结果要求达到输入一串字符可以对应显示相应的编码。
二、实验仪器或设备:
一台微型计算机
三、总体设计(设计原理、设计方案及流程等)
1:总体设计
构建整体框架选择程序需要使用的变量以及算法
编码译码。
四、实验步骤(包括主要步骤、代码分析等)
五、结果分析与总结
教师签名:
年月日

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告

数据结构哈夫曼编码实验报告【正文】1.实验目的本实验旨在研究哈夫曼编码的原理和实现方法,通过实验验证哈夫曼编码在数据压缩中的有效性,并分析其应用场景和优缺点。

2.实验原理2.1 哈夫曼编码哈夫曼编码是一种无损数据压缩算法,通过根据字符出现的频率构建一颗哈夫曼树,将频率较高的字符用较短的编码表示,频率较低的字符用较长的编码表示。

哈夫曼编码的编码表是唯一的,且能够实现前缀编码,即一个编码不是另一个编码的前缀。

2.2 构建哈夫曼树构建哈夫曼树的过程如下:1) 将每个字符及其频率作为一个节点,构建一个节点集合。

2) 每次从节点集合中选择出现频率最低的两个节点,构建一个新节点,并将这两个节点从集合中删除。

3) 将新节点加入节点集合。

4) 重复以上步骤,直到节点集合中只有一个节点,这个节点就是哈夫曼树的根节点。

2.3 编码过程根据哈夫曼树,对每个字符进行编码:1) 从根节点开始,根据左子树为0,右子树为1的规则,将编码依次加入编码表。

2) 对于每个字符,根据编码表获取其编码。

3) 将编码存储起来,得到最终的编码序列。

3.实验步骤3.1 数据读取与统计从输入文件中读取字符序列,并统计各个字符的频率。

3.2 构建哈夫曼树根据字符频率构建哈夫曼树。

3.3 构建编码表根据哈夫曼树,构建每个字符的编码表。

3.4 进行编码根据编码表,对输入的字符序列进行编码。

3.5 进行解码根据哈夫曼树,对编码后的序列进行解码。

4.实验结果与分析4.1 压缩率分析计算原始数据和压缩后数据的比值,分析压缩率。

4.2 编码效率分析测试编码过程所需时间,分析编码效率。

4.3 解码效率分析测试解码过程所需时间,分析解码效率。

4.4 应用场景分析分析哈夫曼编码在实际应用中的优势和适用场景。

5.结论通过本次实验,我们深入了解了哈夫曼编码的原理和实现方法,实践了哈夫曼编码的过程,并对其在数据压缩中的有效性进行了验证。

实验结果表明,哈夫曼编码能够实现较高的压缩率和较高的编解码效率。

哈夫曼树 实验报告

哈夫曼树 实验报告

哈夫曼树实验报告哈夫曼树实验报告引言:哈夫曼树是一种经典的数据结构,广泛应用于数据压缩、编码和解码等领域。

本次实验旨在通过构建哈夫曼树,探索其原理和应用。

一、哈夫曼树的定义和构建方法哈夫曼树是一种特殊的二叉树,其叶子节点对应于待编码的字符,而非叶子节点则是字符的编码。

构建哈夫曼树的方法是通过贪心算法,即每次选择权值最小的两个节点合并,直到构建出完整的哈夫曼树。

二、哈夫曼编码的原理和实现哈夫曼编码是一种可变长度编码,即不同字符的编码长度不同。

其原理是通过构建哈夫曼树来确定字符的编码,使得频率较高的字符编码较短,频率较低的字符编码较长。

这样可以有效地减少编码的长度,从而实现数据的压缩。

三、实验过程和结果在本次实验中,我们选择了一段文本作为输入数据,通过统计每个字符的频率,构建了对应的哈夫曼树。

然后,根据哈夫曼树生成了字符的编码表,并将原始数据进行了编码。

最后,我们通过对编码后的数据进行解码,验证了哈夫曼编码的正确性。

实验结果显示,通过哈夫曼编码后,原始数据的长度明显减少,达到了较好的压缩效果。

同时,解码后的数据与原始数据完全一致,证明了哈夫曼编码的可靠性和正确性。

四、哈夫曼树的应用哈夫曼树在实际应用中有着广泛的用途。

其中,最典型的应用之一是数据压缩。

通过使用哈夫曼编码,可以将大量的数据压缩为较小的存储空间,从而节省了存储资源。

此外,哈夫曼树还被广泛应用于网络传输、图像处理等领域,提高了数据传输的效率和图像的质量。

五、对哈夫曼树的思考哈夫曼树作为一种经典的数据结构,其优势在于有效地减少了数据的冗余和存储空间的占用。

然而,随着技术的不断发展,现代的数据压缩算法已经不再局限于哈夫曼编码,而是采用了更为复杂和高效的算法。

因此,我们需要在实际应用中综合考虑各种因素,选择合适的压缩算法。

六、总结通过本次实验,我们深入了解了哈夫曼树的原理和应用。

哈夫曼编码作为一种重要的数据压缩算法,具有广泛的应用前景。

在实际应用中,我们需要根据具体情况选择合适的压缩算法,以达到最佳的压缩效果和性能。

哈夫曼树实验报告

哈夫曼树实验报告

哈夫曼树实验报告一、实验目的1.理解哈夫曼树的概念和实现原理;2.掌握使用哈夫曼树进行编码和解码的方法;3.熟悉哈夫曼树在数据压缩中的应用。

二、实验原理哈夫曼树是一种用于数据压缩的树形结构,通过将出现频率较高的数据项用较短的编码表示,从而达到压缩数据的目的。

哈夫曼树的构建过程如下:1.统计字符出现的频率,并按照频率从小到大排序;2.将频率最低的两个字符合并为一个节点,节点的频率为两个字符的频率之和;3.将新节点插入频率表,并将频率表重新排序;4.重复步骤2和3,直到频率表中只剩下一个节点,该节点即为哈夫曼树的根节点。

三、实验步骤1.统计输入的字符序列中每个字符出现的频率;2.根据频率构建哈夫曼树;3.根据哈夫曼树生成字符的编码表;4.将输入的字符序列编码为哈夫曼编码;5.根据哈夫曼树和编码表,解码得到原始字符序列。

四、实验结果以字符序列"abacabad"为例进行实验:1.统计字符频率的结果为:a-4次,b-2次,c-1次,d-1次;```a-4/\b-2c-1/\d-1空节点```3.根据哈夫曼树生成的编码表为:a-0,b-10,c-110,d-111;5. 根据哈夫曼树和编码表进行解码得到原始字符序列:"abacabad"。

五、实验总结通过本次实验,我深入了解了哈夫曼树的原理和实现方法,掌握了使用哈夫曼树进行字符编码和解码的过程。

哈夫曼树在数据压缩中的应用非常广泛,能够有效地减小数据的存储空间,提高数据传输效率。

在实际应用中,我们可以根据不同字符出现的频率构建不同的哈夫曼树,从而实现更高效的数据压缩和解压缩算法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

//求每个结点的哈弗曼编码
cd.start=n-1; c=i; p=hufftree[c].parent;
while(p!=-1){
//由叶子结点向上直到树根
if(hufftree[p].lchild==c) cd.bit[cd.start]=0;
else cd.bit[cd.start]=1;
cd.start--; c=p; p=hufftree[c].parent; }
typedef struct{ char ch; int num; }inf;
p=&hufftree[p->rchild];
//从根向下
if(p->lchild==-1 && p->rchild==-1){ //如果到达叶子结点
t=p->weight;
for(int j=0;j<n;j++) if(hufftree[j].weight==t){
//保存叶子结点的权值
cout<<info[j].ch; //输出权值的对应的字母
2、 功能(函数)设计
一1一 统计字母种类和个数模块
此模块的功能为从键盘接受一个字符串,统计字符串中字母种类即 结点个数,每种字母出现次数即各叶子结点的权值。全局变量s保存 输入的字符串,将种类和个数保存到info[maxleaf]中。 函数原型:void fundchar() 如输入的字符串是“sddfffgggg”则显示如下。
return hufftree;
//返回数组首地址
}
(一) 函数功能:打印哈弗曼树的功能模块
void print(Hnodetype *hufftree){ cout<<endl<<endl<<endl; //界面优化
cout<<"哈弗曼树----"<<endl;
cout<<" "<<"rchild"<<"
}
for(m=0;m<n;m++)
//输出种类和个数
cout<<"字符"<<info[m].ch<<"有"<<info[m].num<<"个"<<endl; }
(一) 函数功能:哈弗曼树的建立模块
Hnodetype* huffmantree(){ Hnodetype *hufftree=new Hufftree;
沿着结点的双亲链表域退回到根节点,每退回一步,就走过了哈夫曼树的一
个分支,从而得到一位哈夫曼值,由于一个字符的哈夫曼编码是从根结点所
经过的路径上各分支所组成的0、1序列,因此先得到的分支代码为所求编码
的低位码,后得到的分支代码为所求编码的高位码,所以设计如下的数据类
型: const int maxbit=10; typedef struct{
num++;
//确定0,1代码长度
Hnodetype *p=&hufftree[2*n-2]; cout<<endl<<endl<<endl;
cout<<"译码结果----"<<endl;
for(int i=0;i<num;i++){ if(code[i]=='0')
p=&hufftree[p->lchild]; else
二、实验问题描述
利用哈夫曼编码进行通信可以大大提高通信利用率,缩短信息传输时间, 降低传输成本。但是,这要求在发送端通过一个编码系统对待传数据预先编码, 在接收端将传来的数据进行译码,此试验即设计这样的一个简单的编/译码系统 。系统应该具备如下的几个功能。
1、求出各个叶子节点的权重值 输入一个字符串,统计其中各个字母的个数和总的字母个数。
for(j=cd.start+1;j<n;j++)
//将结果保存
huffcode[i].bit[j]=cd.bit[j];//保存每位号码
huffcode[i].start=cd.start; } cout<<endl<<endl<<endl;
cout<<"哈弗曼编码"<<endl;
//保存开始位置
"<<"weight"<<"
"<<"lchild" <<"
"<<"parent"<<endl;
//界面优化
for(int i=0;i<2*n-1;i++)
cout<<"
"<<hufftree[i].weight<<"
"
<<hufftree[i].lchild<<"
"<<hufftree[i].rchild
2、构造哈夫曼树 统计出的字母种类为叶子结点个数,每个字母个数为相应的权值,建立哈 夫曼树。
3、打印哈弗曼树的功能模块 按照一定形式打印出哈夫曼树。
4、编码 利用已经建立好的哈夫曼树进行编码。
5、译码 根据编码规则对输入的代码进行翻译并将译码。
1、实验问题分析
三、实验步骤
一1一 设计一个结构体数组保存字母的类型和个数。
// v是全局变量
info[0].ch=s[0];info[0].num=1; for(k=1;k<=v;k++)
//统计s中字母种类和个数
{ for(m=0;m<=n;m++) {if(info[m].ch==s[k]){++info[m].num;break;}} if(m>n){info[++n].ch=s[k];info[n].num=1;}
} for(i=0;i<n;i++)
//将每个字母的个数当做叶子 结点的权值
hufftree[i].weight=info[i].num; for(i=0;i<n-1;i++){
m1=m2=maxvalue; x1=x2=0; for(j=0;j<n+i;j++){
if(hufftree[j].parent==-1 && hufftree[j].weight<m1){ m2=m1; x2=x1; m1=hufftree[j].weight; x1=j;
四、实验结果(程序)及分析
1、实验主要模块代码
(一) 函数功能:统计字母种类和个数模块
void fundchar() {
int k,m; cout<<"请输入字符串"<<endl;
cin>>s;
//s为输入的字符串
while(s[v]){v++;} cout<<"共有字符"<<v<<"个"<<endl;
typedef struct{ int weight;
//权值
int parent;
int lchild; int rchild;
//双亲
//左孩子 //右孩子
}Hnodetype; typedef Hnodetype Hufftree[maxnode];
//定义此类型的数组
、3、 求哈夫曼编码,实质上是在已经建立的哈夫曼树中,从叶子结点开始,
一5一 译码的功能模块 此模块的功能为接收需要译码的0和1代码串,按照(4)中建立的编码 规则将其翻译成字符集中字符所组成的字符串形式,并将翻译的结 果在屏幕上打印出来。
函数原型:void translation(Hnodetype *hufftree) 如输入的代码串是“110111100”,则对应的字符串是“sdfg”
break; } p=&hufftree[2*n-2]; } } cout<<endl; }
2、测试数据
sfddaaassss 实验结果截图
//重新从根节点开始
3、 调试过程中出现的问题以及解决策略
译码模块中,如果输入的代码串无对应的字母,则会出错。 解决办法:提示用户输入时注意
附最终代码:
#include<iostream> #include<string> #define maxvalue 12 #define maxleaf 12 #define maxnode 23 using namespace std; int n=0; int v=0; string s;
int i,j,m1,m2,x1,x2;
//m1记录最小的重权值,m2为次小
for(i=0;i<2*n-1;i++){
hufftree[i].parent=-1; hufftree[i].weight=0; hufftree[i].lchild=-1; hufftree[i].rchild=-1;
//结点初始化
数学与计算机学院 数据结构 实验报告
年级 09数计 学号 2009432125 姓名 刘宝 成绩 专业 数电 实验地点 主楼401 指导教师 苗秀芬 实验项目 哈夫曼树解决编码解码 实验日期 10年12月24日
相关文档
最新文档