哈夫曼树实验报告
哈夫曼树实验报告

数据结构实验报告实验名称:实验三哈夫曼树学生姓名:班级:班内序号:学号:日期:程序分析:2.1 存储结构:二叉树2.2 程序流程:template <class T>class BiTree{public:BiTree(); //构造函数,其前序序列由键盘输入 ~BiTree(void); //析构函数BiNode<T>* Getroot(); //获得指向根结点的指针protected:BiNode<T> *root; //指向根结点的头指针};//声明类BiTree及定义结构BiNodeData:二叉树是由一个根结点和两棵互不相交的左右子树构成二叉树中的结点具有相同数据类型及层次关系哈夫曼树类的数据域,继承节点类型为int的二叉树class HuffmanTree:public BiTree<int>data:HCode* HCodeTable;//编码表int tSize; //编码表中的总字符数二叉树的节点结构template <class T>struct BiNode //二叉树的结点结构{T data; //记录数据T lchild; //左孩子T rchild; //右孩子T parent; //双亲};编码表的节点结构struct HCode{char data; //编码表中的字符char code[100]; //该字符对应的编码};待编码字符串由键盘输入,输入时用链表存储,链表节点为struct Node{char character; //输入的字符unsigned int count;//该字符的权值bool used; //建立树的时候该字符是否使用过Node* next; //保存下一个节点的地址};示意图:2.3 关键算法分析:1.初始化函数(void HuffmanTree::Init(string Input))算法伪代码:1.初始化链表的头结点2.获得输入字符串的第一个字符,并将其插入到链表尾部,n=1(n记录的是链表中字符的个数)3.从字符串第2个字符开始,逐个取出字符串中的字符3.1 将当前取出的字符与链表中已经存在的字符逐个比较,如果当前取出的字符与链表中已经存在的某个字符相同,则链表中该字符的权值加1。
哈夫曼树_实验报告

一、实验目的1. 理解哈夫曼树的概念及其在数据结构中的应用。
2. 掌握哈夫曼树的构建方法。
3. 学习哈夫曼编码的原理及其在数据压缩中的应用。
4. 提高编程能力,实现哈夫曼树和哈夫曼编码的相关功能。
二、实验原理哈夫曼树(Huffman Tree)是一种带权路径长度最短的二叉树,又称为最优二叉树。
其构建方法如下:1. 将所有待编码的字符按照其出现的频率排序,频率低的排在前面。
2. 选择两个频率最低的字符,构造一棵新的二叉树,这两个字符分别作为左右子节点。
3. 计算新二叉树的频率,将新二叉树插入到排序后的字符列表中。
4. 重复步骤2和3,直到只剩下一个节点,这个节点即为哈夫曼树的根节点。
哈夫曼编码是一种基于哈夫曼树的编码方法,其原理如下:1. 从哈夫曼树的根节点开始,向左子树走表示0,向右子树走表示1。
2. 每个叶子节点对应一个字符,记录从根节点到叶子节点的路径,即为该字符的哈夫曼编码。
三、实验内容1. 实现哈夫曼树的构建。
2. 实现哈夫曼编码和译码功能。
3. 测试实验结果。
四、实验步骤1. 创建一个字符数组,包含待编码的字符。
2. 创建一个数组,用于存储每个字符的频率。
3. 对字符和频率进行排序。
4. 构建哈夫曼树,根据排序后的字符和频率,按照哈夫曼树的构建方法,将字符和频率插入到哈夫曼树中。
5. 实现哈夫曼编码功能,遍历哈夫曼树,记录从根节点到叶子节点的路径,即为每个字符的哈夫曼编码。
6. 实现哈夫曼译码功能,根据哈夫曼编码,从根节点开始,按照0和1的路径,找到对应的叶子节点,即为解码后的字符。
7. 测试实验结果,验证哈夫曼编码和译码的正确性。
五、实验结果与分析1. 构建哈夫曼树根据实验数据,构建的哈夫曼树如下:```A/ \B C/ \ / \D E F G```其中,A、B、C、D、E、F、G分别代表待编码的字符。
2. 哈夫曼编码根据哈夫曼树,得到以下字符的哈夫曼编码:- A: 00- B: 01- C: 10- D: 11- E: 100- F: 101- G: 1103. 哈夫曼译码根据哈夫曼编码,对以下编码进行译码:- 00101110111译码结果为:BACGACG4. 实验结果分析通过实验,验证了哈夫曼树和哈夫曼编码的正确性。
哈夫曼树实验报告

2.首先选择主控菜单中的把持1, 即建表, 然后进行其它把持.
六.实验截图
七实验体会
1、构建哈夫曼树的关键在于找最小树;在F中选择两棵根结点权值最小的树作为左右子树构造一棵新的二叉树, 且至新的二叉树的根结点的权值为其左右子树上根结点的权值之和.
2、由于学习的缺乏没有实现编码文件的译码, 今后会加以改进 (╯﹏╰)
3、在逆向求编码的for循环里犯了一个逻辑毛病招致求出来的3、4位编码串行, 检验考试了多钟数据输入才找到原因所在, 并加以改正, 编写法式需一步一步的去调试并找到毛病所在.
附源法式:
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<malloc.h>
typedef struct
{
char data; //结点字符
int weight; //结点权值
int parent,lchild,rchild; //父子结点
}HTNode,* HuffmanTree;
typedef char * *HuffmanCode;
void Select(HuffmanTree HT, int m, int& s1, int& s2)
{
int i;
s1 = s2 = 1;
for(i=1; i<=m; i++)
{
if (HT[i].parent==0)
{
s1=i;
break;
}。
(完整word版)哈夫曼树实验报告

实验报告1、实验目的:(1)理解哈夫曼树的含义和性质。
(2)掌握哈夫曼树的存储结构以及描述方法。
(3)掌握哈夫曼树的生成方法。
(4)掌握哈夫曼编码的一般方法,并理解其在数据通讯中的应用.2、实验内容:哈夫曼树与哈弗曼编码、译码a。
问题描述:哈夫曼问题的提出可以参考教材P。
145。
利用哈弗曼编码进行通信可以大大提高通信利用率,缩短信息传输时间,降低传输成本。
但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将传来的数据进行译码.b。
算法提示:参见教材P.147—148算法6.12、6。
13的描述.3、实验要求:建立哈夫曼树,实现编码,译码。
错误!.初始化(Initialization)。
从终端读入字符集大小n,以及n个字符和n个权值,建立哈夫曼树,并将它存于文件hfmTree中。
○2。
编码(Encoding).利用已建好的哈夫曼树(如不在内存,则从文件hfmTree中读入),对文件ToBeTran 中的正文进行编码,然后将结果存入文件CodeFile中。
○3.译码(Decoding ).利用已建好的哈夫曼树将文件CodeFile中的代码进行译码,结果存入文件T extFile 中。
错误!.输出代码文件(Print).将文件CodeFile以紧凑格式显示在终端上,每行50个代码。
同时将此字符形式的编码文件写入文件CodePrint中。
错误!。
输出哈夫曼树(TreePrinting).将已在内存中的哈夫曼树以直观的方式(树或凹入表形式)显示在终端上,同时将此字符形式的哈夫曼树写入文件TreePrint中。
测试数据:设权值c= (a,b, c, d , e, f,g,h)w=(5,29,7,8,14,23,3,11),n=8。
按照字符‘0’或‘1’确定找左孩子或右孩子,则权值对应的编码为:5:0001,29:11,7:1110,8:111114:110,23:01,3:0000,11:001。
哈夫曼树编码实验报告

哈夫曼树编码实验报告哈夫曼树编码实验报告引言:哈夫曼树编码是一种常用的数据压缩算法,通过对数据进行编码和解码,可以有效地减小数据的存储空间。
本次实验旨在探究哈夫曼树编码的原理和应用,并通过实际案例验证其有效性。
一、哈夫曼树编码原理哈夫曼树编码是一种变长编码方式,根据字符出现的频率来确定不同字符的编码长度。
频率较高的字符编码较短,频率较低的字符编码较长,以达到最佳的数据压缩效果。
1.1 字符频率统计首先,需要对待编码的数据进行字符频率统计。
通过扫描数据,记录每个字符出现的次数,得到字符频率。
1.2 构建哈夫曼树根据字符频率构建哈夫曼树,频率较低的字符作为叶子节点,频率较高的字符作为父节点。
构建哈夫曼树的过程中,需要使用最小堆来维护节点的顺序。
1.3 生成编码表通过遍历哈夫曼树,从根节点到每个叶子节点的路径上的左右分支分别赋予0和1,生成对应的编码表。
1.4 数据编码根据生成的编码表,将待编码的数据进行替换,将每个字符替换为对应的编码。
编码后的数据长度通常会减小,实现了数据的压缩。
1.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始数据。
二、实验过程与结果为了验证哈夫曼树编码的有效性,我们选择了一段文本作为实验数据,并进行了以下步骤:2.1 字符频率统计通过扫描文本,统计每个字符出现的频率。
我们得到了一个字符频率表,其中包含了文本中出现的字符及其对应的频率。
2.2 构建哈夫曼树根据字符频率表,我们使用最小堆构建了哈夫曼树。
频率较低的字符作为叶子节点,频率较高的字符作为父节点。
最终得到了一棵哈夫曼树。
2.3 生成编码表通过遍历哈夫曼树,我们生成了对应的编码表。
编码表中包含了每个字符的编码,用0和1表示。
2.4 数据编码将待编码的文本数据进行替换,将每个字符替换为对应的编码。
编码后的数据长度明显减小,实现了数据的压缩。
2.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始文本数据。
哈夫曼树实验报告

哈夫曼树实验报告一、问题描述利用哈夫曼编码进行通信可以大大提高信道利用率,缩短信息传输时间,降低传输成本。
但是,这要求在发送端通过一个编码系统对待传数据预先编码,在接收端将穿来的数据进行译码,此试验即设计这样的一个简单的编/译码系统。
系统应该具有如下的几个功能。
1. 接受原始数据从终端任意读入字母,求出其各自的权重值,建立哈夫曼树,并将它存于hfmtree.dat文件中。
2. 编码利用已建好的哈夫曼树,对文件中的正文进行编码,然后将结果存入codefile.dat中。
3. 译码利用已建好的哈夫曼树将文件codefile.dat中的代码进行译码,结果存入文件textfile.dat中。
4. 打印编码规则即字符与编码的一一对应关系。
5. 打印哈夫曼树将已存在内存中的哈夫曼树以直观的方式显示在终端上。
二、数据结构设计1. 构造哈夫曼树时使用静态量表作为哈夫曼树的存储。
在构造哈夫曼树时,设计一个结构体数组HuffNode保存哈夫曼树中各节点的信息,根据二叉树的性质可知,具有n个叶子节点的哈夫曼树共有2n-1个结点,所以数组HuffNode的大小设置为2n-1,描述节点的数据类型为:typedef struct{int weight; //结点权值int parent;int lchild;int rchild;}HNodeType;2. 求哈夫曼编码时使用一位结构数组HuffCode作为哈腹满编码信息的存储。
求哈夫曼编码,实质上就是在以建立的哈夫曼树中,从叶子结点开始,沿结点的双亲链域退到根结点,每退回一步,就走过了哈夫满树的一个分支,从而得到一位哈夫曼码值,由于一个字符的哈夫曼编码是从根结点到相应叶子结点所经过的路径上各分支所组成的0、1序列,因此先得到的分支代码为所求编码的低位码,后得到的分支代码为所求编码的高位码,所以设计如下数据类型:typedef struct{int bit[26];int start;}HCodeType;3. 文件hfmtree.dat、codefile.dat、和textfile.dat。
数据结构哈夫曼树实验报告

数据结构哈夫曼树实验报告一、实验内容本次实验的主要内容是哈夫曼树的创建和编码解码。
二、实验目的1. 理解并掌握哈夫曼树的创建过程;2. 理解并掌握哈夫曼编码的原理及其实现方法;3. 掌握哈夫曼树的基本操作,如求哈夫曼编码和哈夫曼解码等;4. 学习如何组织程序结构,运用C++语言实现哈夫曼编码和解码。
三、实验原理哈夫曼树的创建:哈夫曼树的创建过程就是一个不断合并权值最小的两个叶节点的过程。
具体步骤如下:1. 将所有节点加入一个无序的优先队列里;2. 不断地选出两个权值最小的节点,并将它们合并成为一个节点,其权值为这两个节点的权值之和;3. 将新的节点插入到队列中,并继续执行步骤2,直到队列中只剩下一棵树,这就是哈夫曼树。
哈夫曼编码:哈夫曼编码是一种无损压缩编码方式,它根据字符出现的频率来构建编码表,并通过编码表将字符转换成二进制位的字符串。
具体实现方法如下:1. 统计每个字符在文本中出现的频率,用一个数组记录下来;2. 根据字符出现的频率创建哈夫曼树;3. 从根节点开始遍历哈夫曼树,给左分支打上0的标记,给右分支打上1的标记。
遍历每个叶节点,将对应的字符及其对应的编码存储在一个映射表中;4. 遍历文本中的每个字符,查找其对应的编码表,并将编码字符串拼接起来,形成一个完整的编码字符串。
哈夫曼解码就是将编码字符串还原为原始文本的过程。
具体实现方法如下:1. 从根节点开始遍历哈夫曼树,按照编码字符串的位数依次访问左右分支。
如果遇到叶节点,就将对应的字符记录下来,并重新回到根节点继续遍历;2. 重复步骤1,直到编码字符串中的所有位数都被遍历完毕。
四、实验步骤1. 定义编码和解码的结构体以及相关变量;3. 遍历哈夫曼树,得到每个字符的哈夫曼编码,并将编码保存到映射表中;4. 将文本中的每个字符用其对应的哈夫曼编码替换掉,并将编码字符串写入到文件中;5. 使用哈夫曼编码重新构造文本,并将结果输出到文件中。
五、实验总结通过本次实验,我掌握了哈夫曼树的创建和哈夫曼编码的实现方法,也学会了如何用C++语言来组织程序结构,实现哈夫曼编码和解码。
哈夫曼树编码实训报告

一、实训目的本次实训旨在通过实际操作,让学生掌握哈夫曼树的基本概念、构建方法以及编码解码过程,加深对数据结构中树型结构在实际应用中的理解。
通过本次实训,学生能够:1. 理解哈夫曼树的基本概念和构建原理;2. 掌握哈夫曼树的编码和解码方法;3. 熟悉Java编程语言在哈夫曼树编码中的应用;4. 提高数据压缩和传输效率的认识。
二、实训内容1. 哈夫曼树的构建(1)创建叶子节点:根据给定的字符及其权值,创建叶子节点,并设置节点信息。
(2)构建哈夫曼树:通过合并权值最小的两个节点,不断构建新的节点,直到所有节点合并为一棵树。
2. 哈夫曼编码(1)遍历哈夫曼树:从根节点开始,按照左子树为0、右子树为1的规则,记录每个叶子节点的路径。
(2)生成编码:将遍历过程中记录的路径转换为二进制编码,即为哈夫曼编码。
3. 哈夫曼解码(1)读取编码:将编码字符串按照二进制位读取。
(2)遍历哈夫曼树:从根节点开始,根据读取的二进制位,在哈夫曼树中寻找对应的节点。
(3)输出解码结果:当找到叶子节点时,输出对应的字符,并继续读取编码字符串。
三、实训过程1. 准备工作(1)创建一个Java项目,命名为“HuffmanCoding”。
(2)在项目中创建以下三个类:- HuffmanNode:用于存储哈夫曼树的节点信息;- HuffmanTree:用于构建哈夫曼树、生成编码和解码;- Main:用于实现主函数,接收用户输入并调用HuffmanTree类进行编码和解码。
2. 编写代码(1)HuffmanNode类:```javapublic class HuffmanNode {private char data;private int weight;private HuffmanNode left;private HuffmanNode right;public HuffmanNode(char data, int weight) {this.data = data;this.weight = weight;}}```(2)HuffmanTree类:```javaimport java.util.PriorityQueue;public class HuffmanTree {private HuffmanNode root;public HuffmanNode buildHuffmanTree(char[] data, int[] weight) {// 创建优先队列,用于存储叶子节点PriorityQueue<HuffmanNode> queue = new PriorityQueue<>();for (int i = 0; i < data.length; i++) {HuffmanNode node = new HuffmanNode(data[i], weight[i]);queue.offer(node);}// 构建哈夫曼树while (queue.size() > 1) {HuffmanNode left = queue.poll();HuffmanNode right = queue.poll();HuffmanNode parent = new HuffmanNode('\0', left.weight + right.weight);parent.left = left;parent.right = right;queue.offer(parent);}root = queue.poll();return root;}public String generateCode(HuffmanNode node, String code) {if (node == null) {return "";}if (node.left == null && node.right == null) {return code;}generateCode(node.left, code + "0");generateCode(node.right, code + "1");return code;}public String decode(String code) {StringBuilder result = new StringBuilder();HuffmanNode node = root;for (int i = 0; i < code.length(); i++) {if (code.charAt(i) == '0') {node = node.left;} else {node = node.right;}if (node.left == null && node.right == null) { result.append(node.data);node = root;}}return result.toString();}}```(3)Main类:```javaimport java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner = new Scanner(System.in);System.out.println("请输入字符串:");String input = scanner.nextLine();System.out.println("请输入字符及其权值(例如:a 2 b 3 c 5):"); String[] dataWeight = scanner.nextLine().split(" ");char[] data = new char[dataWeight.length / 2];int[] weight = new int[dataWeight.length / 2];for (int i = 0; i < dataWeight.length; i += 2) {data[i / 2] = dataWeight[i].charAt(0);weight[i / 2] = Integer.parseInt(dataWeight[i + 1]);}HuffmanTree huffmanTree = new HuffmanTree();HuffmanNode root = huffmanTree.buildHuffmanTree(data, weight); String code = huffmanTree.generateCode(root, "");System.out.println("编码结果:" + code);String decoded = huffmanTree.decode(code);System.out.println("解码结果:" + decoded);scanner.close();}}```3. 运行程序(1)编译并运行Main类,输入字符串和字符及其权值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
for(i=n+1;i<=m;++i) i-1]选择 parent 为 0 且 weight 最小的两个节点,其
序号分别为 s1,s2.
Select(HT,i-1,s1,s2);
HT[s1].parent=i;HT[s2].parent=i;
HT[i].lchild=s1;HT[i].rchild=s2;
三、实验要求
设计思路:
数据结构:
Huffman
#define n 100
H编uf码fm文an件树的的译建码使立用说明
序 1编.运行环境:VC++ 码
从Hu叶ff子ma到n 编根码逆的向 求编码生成
2程.首先选择主控菜单中的操作1,即建表,然后进行其它操作.
六.实验截图 七 实验体会
退出
1、构建哈夫曼树的关键在于找最小树;在 F 中选择两棵根结点权值最小的树 作为左右子树构造一棵新的二叉树,且至新的二叉树的根结点的权值为其左 右子树上根结点的权值之和。 2、由于学习的不足没有实现编码文件的译码,今后会加以改进 (╯﹏╰) 3、在逆向求编码的 for 循环里犯了一个逻辑错误导致求出来的 3、4 位编码 串行,尝试了多钟数据输入才找到原因所在,并加以改正,编写程序需一步 一步的去调试并找到错误所在。 附源程序:
}
}
void HuffmanCoding(HuffmanTree &HT,HuffmanCode &HC,int* w,int n)
{
eight=*w;
(*p).parent=0;
(*p).lchild=0;
(*p).rchild=0;
}
for( ;i<=m;++i,++p)
(*p).parent=0;
实
验
报
告
实验名称
专业班级 指导教师
Huffman 编码
计科三班
姓名
日期
学号
一、实验目的
熟练掌握二叉树应用(Huffman 编码)的基本算法实现。
二、实验内容
1.对输入的一串电文字符实现 Huffman 编码,再对 Huffman 编码生成 的代码串进行译码,输出电文字符串。实现功能如下: Huffman 树的建立 Huffman 编码的生成 编码文件的译码
HT[i].weight=HT[s1].weight+HT[s2].weight;
}
arent;f!=0;c=f,f=HT[f].parent) child==Байду номын сангаас)
cd[--start]='0';
else cd[--start]='1';
HC[i]=(char *)malloc((n-start)*sizeof(char)); //为第 i 个字符编码分
#include<> #include<> #include<> #include<> typedef struct { char data; arent==0)
{ s1=i; break;
} } for(i=i+1; i<=m; i++)
{
if (HT[i].parent==0 && HT[s1].weight>HT[i].weight)
配空间
strcpy(HC[i],&cd[start]);
//从 cd 复制编码(串)到 HC
}
free(cd);
//释放空间
}
void main()
{ HuffmanTree HT; HuffmanCode HC; int *w,n,i; printf("请输入权值的个数(): "); scanf ("%d",&n); w=(int *)malloc(n*sizeof(int)); printf("请依次输入%d 个权值(整型):\n",n); for(i=0;i<=n-1;i++) scanf ("%d",w+i); HuffmanCoding(HT,HC,w,n); for(i=1;i<=n;i++){ printf("对应的编码为:"); puts(HC[i]);} }
s1=i;
}
for(i=1; i<=m; i++)
{
if(HT[i].parent==0&&i!=s1)
{
s2=i;
break;
}
}
for(i=i+1; i<=m; i++)
{
if(HT[i].parent==0 && HT[i].weight<HT[s2].weight &&
i!=s1)
s2=i;