北师大版九年级下册

合集下载

【北师大版】九年级语文下册 第四课 《出师表》 课件(40张PPT)

【北师大版】九年级语文下册  第四课 《出师表》 课件(40张PPT)

D.人之立志,顾不如蜀鄙之僧哉
(4)下列句中“以”的解释相同的两句是(AF ) A.先帝不以臣卑鄙 B.一儿以日初时远,而日中时近也
C.寡人欲以五百里之地易安陵 D.今以蒋氏观之
E.吾必尽吾力以拯吾村 F.不以物喜,不以己悲 (5)“不求闻达于诸侯”这句话的意思是( B ) A.不谋求听到关于诸侯的事情 B.不谋求在诸侯中做官扬名 C.不谋求让人知道我到诸侯那里去了 D.不想与诸侯商量大事
第二单元 · 个性光彩
出师表
新课导入
诸葛亮是中国人民智慧的化身。“三顾茅 庐”“火烧赤壁”“六出祁山”等脍炙人口的故 事在中国是家喻户晓的。诸葛亮的文才韬略令人 倾倒。他撰写的《出师表》是汉末以来表的第一 流杰作,文章质朴诚挚,志尽文畅,为后人所钦 仰,正所谓“出师一表真名世,千载谁堪伯仲间” (陆游《书愤》),“或为出师表,鬼神泣壮烈” (文天祥《正气歌》)。今天,我们就来学习这 篇杰作。
不尽 今当远离,临表涕零,不知所言。 观察采纳
落泪
以咨诹善道,察纳雅言,深追先帝遗诏: 以,表示目的,译为“来”。
首先,严于律己;
其次,严格要求朝廷诸臣;
最后,向后主提出希望。
合作探究
主题归纳
本文以恳切的言辞劝告刘禅继承先帝遗志 ,开张圣听、赏罚分明、亲贤远佞,修明政治 ,从而完成“兴复汉室”的大业。也比表达了 诸葛亮“北定中原”的坚强意志和对先主感恩 图报的一片深情。
可计日而待也。 计算着时间而到来,指为期不远
此皆良实:良,善良;实,诚实。这里指善良、诚实的人。形容词作动词。 以遗陛下:以之遗陛下,省略句。 裨补阙漏:裨、补,同义词,补助、弥补。阙漏,缺点和疏漏之处。阙,同 “缺”。 有所广益:广和益都是形容词作动词,扩大增多。全句的意思是:得到更多 的成效。 悉以咨之:悉,全部,都;咨,询问。悉以咨之,即“悉以之咨之”,都拿 来问他们。

北师大版九年级数学下册《30°,45°,60°角的三角函数值》

北师大版九年级数学下册《30°,45°,60°角的三角函数值》

= −+
=2 −


课堂练习
6.升国旗时,小明站在操场上离国旗20m处行注目礼.当国旗升至
顶端时,小明看国旗视线的仰角为45°(如图所示),若小明双眼
离地面1.60m,你能帮助小明求出旗杆AB的高度吗?
解:由已知得DC=EB=20m

∵tan∠ADC=tan45°=

∴AC=DC∙tan45°
°
(3)

+

°
课堂练习
解: (1)1-2 sin30°cos30°


=1-2× ×
=1-


°
(3)

=


+

+
+



=2- +
=2



°
(2)3tan30°-tan45°+2sin60°
=3×


−+×
O
C
B
A
D
答:最高位置与最低位置的高度差约为0.34m。
随堂练习P12
8
驶向胜利
的彼岸
八仙过海,尽显才能
某商场有一自动扶梯,其倾斜角为300,高为7m,
B
扶梯的长度是多少?
3.如图,在Rt△ABC中,∠C=90°,
∠A,∠B ,∠C的对边分别是a,b,c.
求证:sin2A+cos2A=1
老师期望:
sin30°=
sin60°=
=
2a
2
2a
a
3a 3
1
=2
cos30°=

北师大版 九年级数学下册 教案(全册优质教案精选)

北师大版 九年级数学下册 教案(全册优质教案精选)

北师大版九年级数学下册教案第一章直角三角形的边角关系1.1锐角三角函数第1课时正切教学目标1.经历探索直角三角形中某锐角确定后其对边与邻边的比值也随之确定的过程,理解正切的意义.2.能够用表示直角三角形中两边的比,表示生活中物体的倾斜程度,并能够用正切进行简单的计算.教学重点理解锐角三角函数正切的意义,用正切表示倾斜程度、坡度.教学难点从现实情境中理解正切的意义.教学过程一、创设情景明确目标我们都有过走上坡路的经验,坡面有陡有平,在数学上该如何衡量坡面的倾斜程度呢?如图所示,哪个坡面更陡一些?想一想:如图所示的两个坡面,哪个更陡一些?你是怎么做的?二、自主学习指向目标阅读预习教材第2页至第4页的内容;完成《名师学案》“课前预习”部分.三、合作探究达成目标探究点一正切的定义活动:1.想一想:当直角三角形的一个锐角的大小确定时,其对边与邻边比值会确定的吗?2.如图所示:在锐角A的一边上任意取点B,B1,B2,过这些点分别作CB⊥AC,C1B1⊥AC ,C 2B 2⊥AC ,垂足分别是C ,C 1,C 2.展示点评:证明:△ABC ∽△AB 1C 1,从而得出BC ∶B 1C 1=AC ∶AC 1,进一步转化成BC ∶AC =B 1C 1∶AC 1,同理可以证明:BC ∶AC =B 2C 2∶AC 2.反思小结:(1)通过以上论证,引导学生总结:在直角三角形中,当锐角A 的度数一定时,不管三角形的大小如何,∠A 的对边与邻边的比是一个固定值.(2)直角三角形中边与角的关系:在直角三角形中,如果一个锐角确定,那么这个角的对边与邻边的比便随之确定.在Rt △ABC 中,锐角A 的对边与邻边的比叫做∠A 的正切,记作tan A ,即tan A =∠A 的对边∠A 的邻边例题讲解:见教材例1.针对训练:教材第4页《课堂练习》第1题. 探究点二 坡度活动:阅读教材第4页内容.反思小结:坡面的铅直高度与水平宽度的比称为坡度(坡比),可以写成i =tan α. 针对训练:《名师学案》当堂练习部分. 四、总结梳理 内化目标本节课从梯子的倾斜程度谈起,通过探索直角三角形中边角关系,得出了直角三角形中的锐角确定后,它的对边比邻边的比也随之确定,在直角三角形中定义了正切的概念,接着,了解了坡面的倾斜程度与正切的关系.五、达标检测 反思目标1.如图所示,∠ACB =90°,CD ⊥AB ,垂足为D ,指出∠A 和∠B 的对边,邻边:(1)tan A =( )∶AC =CD ∶( ) (2)tan B =( )∶BC =CD ∶( ) 2.在Rt △ABC 中,∠C =90°.(1)AC =3,AB =6,求tan A 和tan B ; (2)BC =3,tan A =34,求34AC 和AB.3.在等腰△ABC 中,AB =AC =13,BC =10,求tan B.作业布置教材第4页习题1,2题. 教学反思________________________________________________________________________________________________________________________________________________________________________________________________________________________第2课时正弦和余弦教学目标1.经历探索知道直角三角形中某锐角确定后,它的对边、邻边和斜边的比值也随之确定,能够根据直角三角形中的边角关系,进行简单的计算.2.能够正确地运用sin A,cos A,tan A表示直角三角形中两边之比.教学重点正确地运用三角函数值表示直角三角形中两边之比.教学难点理解角度与数值之间一一对应的函数关系.教学过程一、创设情景明确目标1.锐角∠A的正切符号分别如何表示?2.它等于哪两边的比?3.求出如图所示的Rt△ABC中∠A的正切值.二、自主学习指向目标阅读教材第5页至第6页的内容;完成《名师学案》“课前预习”部分.三、合作探究达成目标探究点正弦和余弦的定义活动:(1)如图,当Rt△ABC中的一个锐角A确定时,它的对边与邻边的比随之确定.此时,其他边之间的比值也确定吗?(2)可以让学生再画一个Rt△ABC,使之与上图相似,然而再求出对边与斜边,邻边与斜边,比较与上图所求出对边与斜边,邻边与斜边的比相等吗?展示点评:两个相似三角形的对边与斜边之比相等,邻边与斜边的比也相等,据相似三角形的比例而得到的.反思小结:(1)在Rt△ABC中,如果锐角A确定时,那么∠A的对边与斜边的比,邻边与斜边的比也随之确定.(2)在Rt△ABC中,锐角A的对边与斜边的比叫做∠A的正弦,记作sin A,即sin A=∠A的对边斜边(3)在Rt △ABC 中,锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cos A ,即cos A =∠A 的邻边斜边(4)锐角A 的正弦,余弦和正切都是做∠A 的三角函数. 例题讲解:见教材例2.针对练习:教材随堂练习第1,2题. 四、总结梳理 内化目标 1.锐角三角函数定义:sin A =∠A 的对边斜边tan A =∠A 的对边∠A 的邻边cos A =∠A 的邻边斜边2.定义中应该注意的几个问题:(1)sin A ,cos A ,tan A 是在直角三角形中定义的,∠A 是锐角(注意数形结合,构造直角三角形);(2)sin A ,cos A ,tan A 是一个完整的符号,表示∠A 的正弦,余弦,正切,习惯省去“∠”号;(3)sin A ,cos A ,tan A 是一个比值.注意比的顺序,且sin A ,cos A ,tan A 均﹥0,无单位; (4)sin A ,cos A ,tan A 的大小只与∠A 的大小有关,而与直角三角形的边长无关; (5)两个锐角相等,则其三角函数值相等;两锐角的三角函数值相等,则这两个锐角相等. 五、达标检测 反思目标1.在Rt △ABC 中,锐角A 的对边和斜边同时扩大100倍,sin A 的值( ) A .扩大100倍 B .缩小100倍 C .不变 D .不能确定2.已知Rt △ABC 中,∠C =90°.(1)若AC =4,AB =5,求sin A 与sin B ; (2)若AC =5,AB =12,求sin A 与sin B ; (3)若BC =m ,AC =n ,求sin B.3.在Rt △ABC 中,∠C =90°,AB =15,sin A =513,求AC 和BC.4.如图:在等腰△ABC 中,AB =AC =5,BC =6.求:sin B ,cos B ,tan B. 提示:过点A 作AD 垂直于BC 于D.作业布置教材第6页习题1,4题. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________1.2 30°,45°,60°角的三角函数值教学目标1.能推导并熟记30°、45°、60°角的三角函数值,并能根据这些值说出对应锐角度数. 2.能熟练计算含有30°、45°、60°角的三角函数的运算式. 教学重点熟记30°、45°、60°角的三角函数值,能熟练计算含有30°、45°、60°角的三角函数的运算式.教学难点30°、45°、60°角的三角函数值的推导过程. 教学过程一、创设情景 明确目标1.一个直角三角形中是怎么定义一个锐角的正弦、余弦和正切的?2.在Rt △ABC 中,∠C =90°,若tan A =512,则sin A =________,cos A =________.二、自主学习 指向目标阅读教材第8页至第9页的内容,完成《名师学案》的“课前预习”部分. 三、合作探究 达成目标探究点一 30°,45°,60°的特殊值活动:(1)思考两块三角尺有几个不同的锐角?分别是多少度?(可以通过量角器去度量) (2)你通过两块直角的各边长分别求出几个锐角的正弦值,余弦值和正切值.展示点评:如图(1),∵a =12c ,即c =2a ,据勾股定理可得到b =3a ,∴sin 30°=a c =12,cos 30°=b c =32;tan 30°=a b =33,依次可以用45°,60°的三角函数值.以上均属于特殊角,例如在直角三角形中,30°角所对直角边等于斜边的一半,可以通过勾股定理求出它的邻边的长,即可求出30°的角所有三角函数值,同理45°,60°也可进行.反思小结:sin 30°=12,sin 45°=22,sin 60°=32,cos 30°=32,cos 45°=22,cos 60°=12,tan 30°=33,tan 45°=1,tan 60°= 3. 讲解例题:教材例1. 针对训练:(1)sin 30°=_______;cos 45°=_______;tan 30°=________;sin 60°=________;cos A =32,则∠A =________;tan A =33,则∠A =________;sin A =12,则∠A =________. (2)教材随堂练习1.探究点二 特殊值的应用活动:教材例2 例2:一个小孩荡秋千,秋千链子的长度为2.5m ,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差(结果精确到0.01m ).展示点评:解:如图,据题意可知:∠AOD =12×60°=30°,OD =2.5m∴OC =OD·cos 30°=2.5×32≈2.165(m ),∴AC =2.5-2.165≈0.34(m ) 反思小结:利用通过锐角三角函数在实际中的应用,得到与特殊角的三角函数值,尽量取值接近准确值.针对训练:教材随堂练习2. 四、总结梳理 内化目标(1)熟练30°,45°,60°的特殊三角函数值.(2)准确应用锐角三角函数在实际生活中,特殊值在实际生活中有很大的用途. 五、达标检测 反思目标1.已知:Rt △ABC 中,∠C =90°,cos A =35,AB =15,则AC 的长是( )A .3B .6C .9D .12 2.下列各式中不正确的是( )A .sin 260°+cos 260°=1B .sin 30°+cos 30°=1C .sin 35°=cos 55°D .tan 45°>sin 45°3.计算2sin 30°-2cos 60°+tan 45°的结果是( ) A .2 B . 3 C . 2 D .14.已知∠A 为锐角,且cos A ≤12,那么( )A .0°<∠A ≤60°B .60°≤∠A <90°C .0°<∠A ≤30°D .30°≤∠A <90°5.在△ABC 中,∠A 、∠B 都是锐角,且sin A =12,cos B =32,则△ABC 的形状是( )A .直角三角形B .钝角三角形C .锐角三角形D .不能确定6.如图Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,BC =3,AC =4,设∠BCD =α,则tan α的值为( )A .34B .43C .35D .457.当锐角α>60°时,cos α的值( ) A .小于12 B .大于12C .大于32D .大于1 作业布置教材第10页习题1,2题. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________1.3 三角函数的计算教学目标1.熟练运用计算器,求出锐角的三角函数值,或是根据三角函数值求出相应的锐角. 2.能够进行简单的三角函数式的运算,理解正弦值与余弦值都在0与1之间. 教学重点学会应用计算器求三角函数值. 教学难点能够进行简单的三角函数式的运算. 教学过程一、创设情景 明确目标(1)让学生熟练写出30°,45°,60°的三角函数的特殊值.(2)如图,∠C =90°,∠A =16°,则∠B =________(74°). 16°,74°的三角函数值是特殊值吗?可以直接求出来吗?还有16°32′的三角函数值怎么求?二、自主学习指向目标阅读教材第12页至第14页的内容,完成《名师学案》的“课前预习”部分.三、合作探究达成目标探究点一用科学计算器求锐角三角函数值活动:像这样的问题:如图,当登山缆车的吊箱经过点A到达点B时,它走过了200m.已知缆车行驶的路线与水平面的夹角为∠α=16°,那么缆车垂直上升的距离是多少?如图,在Rt△ABC中,∠C=90°,BC=AB sin16°,你知道sin16°等于多少吗?我们可以借助科学计算器求锐角的三角函数值?怎样用科学计算器求锐角的三角函数值呢?请与同伴交流你是怎么做的.展示点评:(1)用科学计算器求16°的三角函数值(sin16°):(2)操作顺序如下:∴据上表则可以求得BC=AB·sin16°≈200×0.2756≈55.12反思小结:利用科学计算器求锐角的三角函数值按键的顺序为:第一步按sin或cos或tan,第二步按数键?,第三步按=,即可出来数据;一般题中无特例说明,数据一般精确到万分位.例题讲解:例:用科学计算器计算cos42°,tan85°和sin72°38′5″的值.(学生动手操作) 针对训练:教材随堂练习1.探究点二用科学计算器求锐角的度数活动:教材第13页[想一想]展示点评:已知三角函数值求角度,要用到sin cos tan键的第二功能sin-1cos-1 tan-1和SHIFT键.例已知三角函数值,用计算器求锐角A:sin A=0.9816,cos A=0.8607,tan A=0.1890,tan A=56.78上表的显示结果是以“度”为单位的,再按.,,,键即可显示以“度,分,秒”为单位的结果.请你求出想一想中∠A的度数.反思小结:已知三角函数值求角度,要用到科学计算器中的sin,cos,tan键的第二功能键sin-1cos-1tan-1和SHIFT键.针对训练:教材随堂练习4.四、总结梳理内化目标利用科学计算器求已知角的三角函数值和已知三角函数值求角度的步骤.注意区分以上两种计算方式的步骤;在计算时注意精确值.五、达标检测反思目标1.用计算器求下列各式的值:(1)sin56°;(2)sin15°49′;(3)cos20°;(4)tan29°;(5)tan44°59′59″;(6)sin15°+cos61°+tan76°2.根据下列条件求∠θ的大小:(1)tanθ=2.9888;(2)sinθ=0.3957;(3)cosθ=0.7850;(4)tanθ=0.89723.求图中避雷针的长度(结果精确到0.01m)作业布置教材第15页习题2,3,4. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________1.4 解直角三角形教学目标1.熟练掌握直角三角形除直角外五个元素之间的关系. 2.学会根据题目要求正确地选用这些关系式解直角三角形. 教学重点会利用已知条件解直角三角形. 教学难点根据题目要求正确选用适当的三角关系式解直角三角形. 教学过程一、创设情景 明确目标(1)直角三角形三边的关系:勾股定理a 2+b 2=c 2.直角三角形两锐角的关系:两锐角互余∠A +∠B =90°. *直角三角形边与角之间的关系:锐角三角函数sin A =a c ,cos A =b c ,tan A =a b(2)特殊角30°,45°,60°角的三角函数值.(3)直角三角形中有6个元素,三个角和三条边,那么至少知道几个元素就可以求其他元素.二、自主学习 指向目标阅读教材第16页至第17页的内容,完成《名师学案》中的“课前预习”部分. 三、合作探究 达成目标 探究点 解直角三角形活动:想一想:在Rt △ABC 中,∠C =90°,(1)根据∠A =60°,斜边AB =30,你能求出这个三角形的其他元素吗? (2)根据AC =2,BC =6,你能求出这个三角形的其他元素吗? (3)根据∠A =60°,∠B =30°,你能求出这个三角形的其他元素吗? 展示点评:(1)∠B =90°-∠A =30°;AC =sin B ·AB ;BC =sin A ·AB. (2)AB =AC 2+BC 2;tan A =BCAC;∠B =90°-∠A ,以上可以根据所给出的等量关系分别求出(1)(2)中的未知元素.(3)不可以求出各边长.反思小结:(1)在直角三角形中由已知的元素,求出所有未知的元素,叫解直角三角形.(2)解直角三角形中,除直角外,其他五个元素中需要知道两个元素(至少有一个为边)可以求到其他三个元素.例题讲解:教材例1,例2针对训练:(1)教材随堂练习.(2)《名师学案》中“当堂练习”部分.四、总结梳理内化目标本节课主要学习了如何利用已知条件,选用合适的三角关系式解直角三角形,这是需要我们熟练掌握的,为后面学习解决实际问题提供打下基础.五、达标检测反思目标1.在下列直角三角形中不能求解的是()A.已知一直角边一锐角B.已知一斜边一锐角C.已知两边D.已知两角2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边.(1)已知∠B=45°,c=6解这个直角三角形(2)已知∠A=30°,b+c=30解这个直角三角形3.在Rt△ABC中,∠C=90°,AC=6,∠BAC的平分线AD=43,解此直角三角形.作业布置教材习题1.5第1,2题.教学反思________________________________________________________________________________________________________________________________________________________________________________________________________________________1.5三角函数的应用第1课时与方位角有关的实际问题教学目标1.理解航海方位角的概念,并学会画航行方位图,将航海问题转化成数学问题.2.通过航海问题的解决让学生体会船只在海上航行的实际情景,从而培养空间想象力.教学重点学会画航行的方位图,将航海问题转化成数学问题.教学难点将航海的实际情景用航行方位图表现出来.教学过程一、创设情景明确目标(1)回顾直角三角形边与角之间的关系.(2)让学生画出方位角的示意图,并给出定义.学生画图:二、自主学习指向目标阅读教材第19页图1-13有关的内容,并完成《名师学案》中的“课前预习”部分.三、合作探究达成目标探究点方位角的实际问题活动:出示幻灯片动画,动画内容如下:一渔船以20海里/小时的速度跟踪鱼群由西向东航行,在A处测得灯塔C在北偏东60°方向上,继续航行1小时到达B点,这时测得灯塔C在北偏东30°方向上,已知灯塔C的周围10海里范围内有暗礁,如果渔船不改变航线继续向东航行,有没有触礁的危险?展示点评:根据题中船的路径可以把它画成平面图,如图所示,根据实际问题,作CD⊥AD,在Rt△ACD中,求出CD的长度,然后比较CD与10海里的大小就可以确定此船有没有触礁的危险.解答如下:根据题意可知,∠BAC=30°,∠CBD=60°,AB=20×1=20(海里).则∠BAC=∠ACB=30°,故AB=BC=20海里.在直角三角形CBD中,∵sin60°=CD∶CB=3 2,∴CD=20×32=103>10所以,货轮继续向东航行途中没有触礁的危险.反思小结:(1)在这种航海问题上,首先通过方位角的定位画出平面示意图,用辅助线的方法把实际问题转化成数学问题(解直角三角形)(2)方位角的位置要精确.针对训练:《名师学案》中“当堂练习”部分.四、总结梳理内化目标本节课我们学习了航海方位角的概念,并学会根据航海实际情景来画航行方位图,将航海问题转化成数学问题来解决.五、达标检测反思目标如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距离灯塔P有多远?(精确到0.01海里)作业布置教材习题1.6第4题.教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________第2课时与仰角、俯角有关的实际问题教学目标1.了解仰角、俯角的概念,并弄清它们的意义.2.将实际问题转化成数学问题,并由实际问题画出平面图形,也能由平面图形想象出实际情景,再根据解直角三角形的方法来解决实际问题.教学重点将实际问题转化成数学问题且了解仰角、俯角的概念.教学难点实际情景和平面图形之间的转化.教学过程一、创设情景 明确目标(1)让学生熟练写出直角三角形中的边与角之间的关系:(①三边之间,②角之间,③锐角三角函数)(2)仰角与俯角 ①如图:②定义:在视线与水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角.二、自主学习 指向目标阅读教材第19页中想一想的内容,完成《名师学案》中“课前预习”部分. 三、合作探究 达成目标探究点 仰角、俯角的实际问题 活动:出示幻灯动画,动画内容如下:小明想测量塔CD 的高度.他在A 处仰望塔顶,测得仰角为30°,再往塔的方向前进50m 至B 处,测得仰角为60°,那么该塔有多高?(小明的身高忽略不计,结果精确到1m ).(1)你能完成这个任务吗?(2)请与同伴交流你是怎么想的? (3)准备怎么去做?展示点评:实物图可以建立成两个直角三角形模型,已知在Rt △ACD 中,AC =CD·tan 30°,同理BC =CD·tan 60°,于是AC -BC =AB ,可以得到关于CD 与已知量的关系,即可求出CD 的长.解答如下:解:如图,根据题意可知,∠A =30°,∠DBC =60°,AB =50m.求CD 的长设CD =x m ,则∠ADC =60°,∠BDC =30°,∵tan ∠ADC =AC x ,tan ∠BDC =BCx ,∴AC =xtan60°,BC =xtan30°,∴xtan60°-xtan30°=50.∴x =50tan60°-tan30°=503-33=253≈43(m )所以,该塔约有43m 高.反思小结:仰角、俯角的问题上的类型题,首先要据题意建立直角三角形模型,充分利用三角函数来解决此类实际问题.针对训练:《名师学案》中的“当堂练习”部分.四、总结梳理 内化目标本节课学习了解决实际问题的重要方法:实际问题数学化,由实际问题画出平面图形,也能由平面图形想象出实际情景,再根据解直角三角形的方法来解决实际问题.并且了解了仰角,俯角的概念.五、达标检测 反思目标两座建筑AB 及CD ,其地面距离AC 为50.4米,从AB 的顶点B 测得CD 的顶部D 的仰角β=25°,测得其底部C 的俯角α=50°,求两座建筑物AB 及CD 的高.(精确到0.1米)作业布置教材第21页习题2. 教学反思________________________________________________________________________ ________________________________________________________________________ ________________________________________________________________________第3课时 与坡角有关的实际问题教学目标1.加强对坡度、坡角、坡面概念的理解,了解坡度与坡面陡峭程度的关系. 2.能解决堤坝等关于斜坡的实际问题,提高解决实际问题的能力. 教学重点对堤坝等关于斜坡的实际问题的解决. 教学难点对坡度、坡角、坡面概念的理解. 教学过程一、创设情景 明确目标1.修路、挖河、开渠和筑坝时,设计图纸上都要注明斜坡的倾斜程度.什么叫坡度(坡比)?2.坡度等于什么?用什么表示? 3.坡度和坡角之间有什么关系?坡面的铅垂高度(h)和水平长度(l)的比叫做坡面坡度(或坡比).记作i ,即i =hl.坡度通常写成l ∶m 的形式,如i =1∶6.坡面与水平面的夹角叫做坡角,记作α,有i =tan α=hl 显然,坡度越大,坡角α就越大,坡面就越陡.4.利用解直角三角形的方法解决实际问题时应注意什么? 二、自主学习 指向目标阅读教材第19页做一做内容,完成《名师学案》“课前预习”部分. 三、合作探究 达成目标探究点 倾斜角有关的实际问题活动:出示幻灯动画,动画内容如下:如图,水库大坝的截面是梯形ABCD ,坝顶AD =6m ,坡长CD =8m .坡底BC =30m ,∠ADC =135°.(1)求坡角∠ABC 的大小;(2)如果坝长100m ,那么修建这个大坝共需多少土石料(结果精确到0.01m 3).展示点评:作AF ⊥BC ,DE ⊥BC 建立直角三角形模型,首先在Rt △DCE 中,EC =DE =DC·tan 45°,又可以得到四边形AFED 为矩形,即AF =DE ,再解Rt △ABF ,其中BF =BC -CF ,tan ∠ABC =AF BF.解:略反思小结:有关坡度(坡角)或倾斜角的实际问题,首先要通过作垂线把平面几何图形转化一个或者几个直角三角形来解.在解直角三角形中中主要利用公式i =tan α=hl 求题目中未知条件.针对训练:《名师学案》中“当堂练习”部分. 四、总结梳理 内化目标本节课从对坡度、坡角、坡面概念的复习,了解坡度与坡面陡峭程度的关系.学会解决堤坝等关于斜坡的实际问题,提高解决实际问题的能力.五、达标检测 反思目标 1.如图,拦水坝的横断面为梯形ABCD(图中i =1∶3是指坡面的铅直高度DE 与水平宽度CE 的比),根据图中数据求:(1)坡角α和β;(2)斜坡AB 的长(精确到0.1m )2.如图,燕尾槽的横断面是一个等腰梯形,其中燕尾角∠B =55°,外口宽AD =180mm ,燕尾槽的深度是70mm ,求它的里口宽BC(结果精确到1mm ).作业布置教材第21页习题3.教学反思________________________________________________________________________________________________________________________________________________________________________________________________________________________ 第二章二次函数2.1二次函数教学目标1.能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.2.注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯.教学重点能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围.教学难点根据实际问题,列出二次函数关系式.教学过程一、创设情景明确目标(1)什么叫一次函数?什么叫反比例函数,它们的一般形式各有什么特点?有定义中分别要注意什么?(2)下列关系式中:y=2x+1,y=-x-4,y=2x,y=5x2,y=-4x,y=ax+1,其中一次函数有哪些?反比例函数有哪些?二、自主学习指向目标阅读教材第29页至30页内容,完成《名师学案》中的“课前预习”部分.三、合作探究达成目标探究点一二次函数的定义活动:请用适当的函数解析式表示下列问题情境中的两个变量y与x之间的关系:(1)圆的面积y(cm2)与圆的半径x(cm)________.(2)正方形的边长为a,如果边长增加2,新图形的面积S与a之间的函数关系式为________.(3)果园里有100棵橙子树,每一棵树平均结600个橙子,现在准备多种一些果树以提高果园产量,但多种果树,那么树之间的距离和每棵树所接受的阳光就会减少,根据经验估计,每多种1棵树,平均每棵树就会少结5个橙子,假设果园增种x 棵果树,那么果园共有_______棵橙子树,这时平均每颗橙子树结_______个橙子,如果用y 表示橙子的总产量,那么y 与x 之间的关系式是:________.展示点评:(1)y =πx 2;(2)S =(a +2)2; (3)y =-5x 2+100x +60000思考:上面第(1)(2)(3)题中函数表达式有什么共同点?展示点评:归纳:二次函数定义:一般地,若两个变量x ,y 之间的对应关系可以表示成y =ax 2+bx +c(a ,b ,c 为常数,a ≠0)的形式,则称y 是x 的二次函数.能否抛开“a ≠0”理解二次函数的概念?为什么?对于b ,c 它们可否等于0?反思小结:判断一个函数是否为二次函数,关键是看它是否符合二次函数的特征,若形式比较复杂,则要先化简,再作出判断.具体地可从如下几点进行:(1)自变量的最高次数是2;(2)二次项系数不为0;(3)右边是整式;(4)判断时首先将右边化成一般式,不要看表面形式.针对训练:(1)教材随堂练习1.(2)《名师学案》中“当堂练习”有关部分. 探究点二 列出实际问题中的二次函数表达式 活动:某小区要修建一块矩形绿地,设矩形的边长为x 米,宽为y 米,面积为S 平方米,(x>y).(1)如果用18米的建筑材料来修建绿地的边框(即周长),求S 与x 的函数关系,并求出x 的了取值范围.(2)根据小区的规划要求,所修建的绿地面积必须是18平方米,在满足(1)的条件下,矩形的长和宽各为多少米?展示点评:题目中蕴涵的公式是什么?(S =18-2x2·x =(9-x)·x =-x 2+9x)第(2)问就是已知S(函数值),求x(自变量)的问题;即当S =18时,求x 的值.反思:根据实际问题列二次函数关系式的一般步骤有哪些?求自变量的值或二次函数值与以前学过的哪些知识相关?反思小结:一般地,列实际问题中的二次函数关系式可以按如下步骤进行:(1)审清题意,找出实际问题中的已知量,并分析它们之间的关系,将文字或图形语言转化成数字符号语言;(2)根据实际问题中存在的等量关系或客观存在的某种数量关系(如学过的公式等),建立二次函数关系式,并将之整理成一般形式为y =ax 2+bx +c(a ≠0);(3)联系实际,写出需要标明的自变量的取值范围.已知二次函数值求自变量的值可以化为解一元二次方程,而已知自变量的值求二次函数值实际上就是求代数式的值.针对训练:(1)教材第30页随堂练习2.(2)《名师学案》中“当堂练习”有关部分. 四、总结梳理 内化目标(1)一次函数与二次函数的区别与联系.(2)二次函数的定义?在定义中需注意些什么?二次函数的一般形式是:y =ax 2+bx +c(a ≠0)其中ax 2是二次项,bx 为一次项,c 为常数项.。

三角函数的计算-九年级数学下册课件(北师大版)

三角函数的计算-九年级数学下册课件(北师大版)
8
1
shift
6
=
cos-1
0
.
8
30.60473007
cosB=0.8607
6
tanC=56.78
shift
7
=
tan-1
5
6
.
88.99102049
7
还可以利用
0
8
=
键,进一步得到以“度、分、秒”显示的结果
课堂基础练
例1 用计算器求下列各式的值(精确到0.0001):
(1)tan47°;
(3)sin25°18′;
随堂测试
6.利用计算器求下列各角(精确到1′).
(1)sinA=0.75,求∠A的度数;
(2)cosB=0.888 9,求∠B的度数;
(3)tanC=45.43,求∠C的度数;
(4)tanD=0.974 2,求∠D的度数.
【详解】解:(1)∵sinA=0.75,
∴∠A≈48.59°≈48°35′24″≈48°35′;
例2 根据下列条件求锐角A的度数:(结果精确到1′)
(1)sin A=0.732 1;(2)cos A=0.218 7;(3)tan A=3.527.
解:(1)先按SHIFT sin 0.7321=键,显示:47.062 734 57,
再按°’”键,即可显示47°3′45.84″,所以∠A≈47°4′.
(5) 若cosα = 0.3145,则 α ≈
71.7°
(精确到 0.1°).
随堂测试
5.求满足下列条件的锐角θ的度数(精确到0.1°):
(1)sinθ=0.1426;
(2)cosθ=0.7845.
解:(1)∵sinθ=0.1426,∴∠θ≈8.2°;

新版北师大版数学九年级下册教案(全)

新版北师大版数学九年级下册教案(全)

第一章 直角三角形的边角关系第1课时§1.1.1 锐角三角函数教学目标1、 经历探索直角三角形中边角关系的过程2、 理解锐角三角函数(正切、正弦、余弦)的意义,并能够举例说明3、 能够运用三角函数表示直角三角形中两边的比4、 能够根据直角三角形中的边角关系,进行简单的计算 教学重点和难点重点:理解正切函数的定义 难点:理解正切函数的定义 教学过程设计➢ 从学生原有的认知结构提出问题直角三角形是特殊的三角形,无论是边,还是角,它都有其它三角形所没有的性质。

这一章,我们继续学习直角三角形的边角关系。

➢ 师生共同研究形成概念1、 梯子的倾斜程度在很多建筑物里,为了达到美观等目的,往往都有部分设计成倾斜的。

这就涉及到倾斜角的问题。

用倾斜角刻画倾斜程度是非常自然的。

但在很多实现问题中,人们无法测得倾斜角,这时通常采用一个比值来刻画倾斜程度,这个比值就是我们这节课所要学习的——倾斜角的正切。

1) (重点讲解)如果梯子的长度不变,那么墙高与地面的比值越大,则梯子越陡; 2) 如果墙的高度不变,那么底边与梯子的长度的比值越小,则梯子越陡; 3) 如果底边的长度相同,那么墙的高与梯子的高的比值越大,则梯子越陡;通过对以上问题的讨论,引导学生总结刻画梯子倾斜程度的几种方法,以便为后面引入正切、正弦、余弦的概念奠定基础。

2、 想一想(比值不变)☆ 想一想 书本P 2 想一想 通过对前面的问题的讨论,学生已经知道可以用倾斜角的对边与邻边之比来刻画梯子的倾斜程度。

当倾斜角确定时,其对边与邻边的比值随之确定。

这一比值只与倾斜角的大小有关,而与直角三角形的大小无关。

3、 正切函数 (1) 明确各边的名称 (2) 的邻边的对边A A A ∠∠=tan(3) 明确要求:1)必须是直角三角形;2)是∠A 的对边与∠A 的邻边的比值。

☆ 巩固练习a 、 如图,在△ACB 中,∠C = 90°, 1) tanA = ;tanB = ;2) 若AC = 4,BC = 3,则tanA = ;tanB ABCAB C∠A 的对边∠A 的邻边斜边ABC= ;3) 若AC = 8,AB = 10,则tanA = ;tanB = ; b 、 如图,在△ACB 中,tanA = 。

北师大版九年级数学下册2.4《二次函数的应用》课件(共18张PPT)

北师大版九年级数学下册2.4《二次函数的应用》课件(共18张PPT)

6050 0
60495
60480
6045 5
6042 0
60600 y/个
60500
60400
60300
60200
60100 60000
0 1 2 3 4 5 6 7 8 9 1011 1213 14 x/棵
议一议
何时橙子总产量最大
1.利用函数表达式描述橙子的总产量与增种橙子 树的棵数之间的关系.
(100+x)棵
这时平均每棵树结多少个橙子?
(600-5x)个
(2)如果果园橙子的总产量为y个, 那么请你写出y与x之间的关系式.
想一想
何时橙子总产量最大
果园共有(100+x)棵树,平均每棵树结(600-5x) 个橙子,因此果园橙子的总产量
y=(100+x)(600-5x)=-5x²+100x+60000. 在上述问题中,种多少棵橙子树,可以使果园橙子的总产量 最多?X/棵 1 2 3 4 5 6 7 8 9 10 11 12 13 14
点重合时,等腰△PQR以1cm/s的速度沿直线l向
左方向开始匀速运动,ts后正方形与等腰三角形
重合部分面积为Scm2,解答下列问题:
(1)当t=3s时,求S的值; (2)当t=3s时,求S的值; A
B
(3)当5s≤t≤8s时,求S 与t的函数关系式,并求
MP
S的最大值。
lD Q
C
R
做一做
何时橙子总产量最大
N
2y
xb
x
3
x
30
3
x2
30x
3 x 202
300.
4
4
4
或用公式 :当x

北师大版初中九年级数学下册第一章集体备课教案教学设计含教学反思

北师大版初中九年级数学下册第一章集体备课教案教学设计含教学反思

第一章直角三角形的边角关系1 锐角三角函数第1课时正切【知识与技能】让学生理解并掌握正切的含义,并能够举例说明;会在直角三角形中说出某个锐角的正切值;了解锐角的正切值随锐角的增大而增大.【过程与方法】让学生经历操作、观察、思考、求解等过程,感受数形结合的数学思想方法,培养学生理性思维的习惯,提高学生运用数学知识解决实际问题的能力.【情感态度】能激发学生学习的积极性和主动性,引导学生自主探索、合作交流,培养学生的创新意识.【教学重点】1.从现实情境中探索直角三角形的边角关系.2.理解正切、倾斜程度、坡度的数学意义,密切数学与生活的联系.【教学难点】理解正切的意义,并用它来表示两边的比.一、情景导入,初步认知你能比较两个梯子哪个更陡吗?你有哪些办法?【教学说明】通过实际问题,创设情境,引发学生产生认知盲点,激发学生学习的兴趣和探究的欲望。

.二、思考探究,获取新知(1)Rt△AB1C1和 Rt△AB2C2有什么关系?(2)111B CAC有什么关系(3)如果改变B2的位置(如B3C3)呢?(4)由此你得出什么结论?【教学说明】通过相似沟通了直角三角形中的边、角关系,从而变换角度继续探讨,符合学生的认知规律此时学生的思维豁然开朗,同时培养了学生思维的深刻性.此环节的设计正是数学思维的开阔性,多角度、多方位性的展现师生的共同努力,淋漓尽致地演绎了数学体现在思维艺术上的美,从而解决了本节课的第一个难点.【归纳结论】在Rt △ABC 中,如果锐角A 确定,那么∠A 的对边与邻边的比便随之确定.这个比叫做∠A 的正切.记作:tanA =A A ∠的对边∠的邻边当锐角A 变化时,tanA 也随之变化。

(5)梯子的倾斜度与tanA 有关系吗?【教学说明】借助几何画板,从运动的角度来实施动态化、形象化、直观化教学.【归纳结论】在这些直角三角形中,当锐角A 的大小确定后,无论直角三角形的大小怎样变化,∠A 的对边与∠A 的邻边的比值总是唯一确定的.所以,倾斜角的对边与邻边的比可以用来描述坡面的倾斜程度.三、运用新知,深化理解1. 见教材P 3上第1题.2. 如图,在 Rt △ABC 中,∠C= 90。

九年级数学北师大版初三下册--第一单元1.4 解直角三角形 课件

 九年级数学北师大版初三下册--第一单元1.4  解直角三角形 课件

∵AB=1,sin B=
2, 42
2
∴AD=AB·sin B=1×

4
. 4
∴BD=
AB2 AD2
12
2 2 4
14 , 4
CD= AC 2 AD2
2 2 2
30
2
4
. 4
∴BC= CD BD
30
14
30 14 .
44
4
总结
知3-讲
通过作垂线(高),将斜三角形分割成两个直角三角 形,然后利用解直角三角形来解决边或角的问题,这种 “化斜为直”的思想很常见.在作垂线时,要结合已知 条件,充分利用已知条件,如本题若过B点作AC的垂线, 则∠B的正弦值就无法利用.
A.2 3
B.2 2
C. 11
4
D. 5 5
4
(来自《典中点》 )
知2-导
知识点 2 已知一边及一锐角解直角三角形
已知直角三角形的一边和一锐角,解直角三角
形时,若已知一直角边a和一锐角A: ① ∠B=90 °-

A;②c=
a ;③b sin A
a tan
. A
若已知斜边c和一个锐角A: ① ∠ B=90°- ∠ A;
则∠A的度数为( D )
A.90°
B.60°
C.45°
D.30°
(来自《典中点》 )
知1-练
2 在△ABC中,∠C=90°,AB=4,AC=3,欲求 ∠A的值,最适宜的做法是( C ) A.计算tan A的值求出 B.计算sin A的值求出 C.计算cos A的值求出 D.先根据sin B求出∠B,再利用90°-∠B求出
解:在Rt△ABC中,∠B=90°,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整理
本电子书由语文迷网 (w w w .y u w e n m i .c o m )整理
本电子书由语文迷网 (w w w .y u w e n m i .c o m )整理
本电子书由语文迷网 (w w w .y u w e n m i .c o m )整理
本电子书由语文迷网 (w w w .y u w e n m i .c o m )整理
本电子书由语文迷网 (w w w .y u w e n m i .c o m )整理
本电子书由语文迷网 (w w w .y u w e n m i .c o m )整理
本电子书由语文迷网 (w w w .y u w e n m i .c o m )整理
本电子书由语文迷网 (w w w .y u w e n m i .c o m )整理
本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整

本电子书由语文迷网 (w w w .y u w e n m i .c o m )整
理。

相关文档
最新文档