一次函数的应用题分类总结整理(优选.)

合集下载

一次函数的应用题型总结(经典实用!!!!)

一次函数的应用题型总结(经典实用!!!!)

一次函数的应用题型总结(经典实用)用一次函数的解决实际问题。

类型一根据题目中信息建立一次函数关系式或找出符合题意的图像,再根据函数的性质解决问题;1、学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的()2、.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()3.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的()1/ 74、从甲地到乙地,汽车先以速度,行驶了路程的一半,随后又以速度()行驶了余下的一半,则下列图象,能反应汽车离乙地的距离(s)随时间(t)变化的函数图象的应为()5.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )(A)(B)(C)(6、为加强公民的节水意识,某市对用水制定了如下的收费标准,每户每月用水量不超过l0吨时,水价每吨l.2元,超过l0吨时,超过部分按每吨1.8元收费。

该市某户居民,8月份用水吨(),应交水费元,则与的关系式为__________7、购买作业本每个0.6元,若数量不少于13本,则按8折优惠.(1)写出应付金额y元与购买数量元之间的函数关系式:(2)求购买5本、20本的金额;(3)若需12本作业本,怎样购买合算?8、一个蓄水池有153m的水,用每分钟35.0m的水泵抽水,设蓄水池的含水量为)(3mQ,抽水时间为分钟)(t。

⑴写出Q关于t的函数关系式⑵求自变量t的取值范围⑶画出函数图象2/ 73 / 79.某城市为了尽快改善职工住房条件,积极鼓励个人购房和积累建房基金,决定住公房的职工按基本工资的高低交纳建房公积金,办法如下:(2)设每月基本工资为x 元,交纳公积金后实得金额为y 元,试写出当100<x ≤200时,y 与x 之间的关系式.10、已知雅美服装厂现有A 种布料70米,B 种布料52米,•现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.•1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.•9米,可获利45元.设生产M 型号的时装套数为x ,用这批布料生产两种型号的时装所获得的总利润为y 元.①求y (元)与x (套)的函数关系式,并求出自变量的取值范围; ②当M 型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?11、.为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a 元收费,超过6立方米时,不超过的部分每立方米仍按a 元收费,超过的部分每立方米按c 元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:设某户每月用水量x(立方米),应交水费y(元) (1) 求a,c 的值(2) 当x ≤6,x ≥6时,分别写出y 于x 的函数关系式(3) 若该户11月份用水量为8立方米,求该4 / 7户11月份水费是多少元?类型二 根据函数图像先求出各段函数的解析式,然后根据实际意义解决问题。

一次函数实际应用题归纳

一次函数实际应用题归纳

一次函数实际应用题归纳一次函数,听起来有点学术,但其实在生活中随处可见。

就像你和朋友约好一起去吃饭,路上那条长长的直线,车速一快,距离一缩,这就是一次函数的魅力呀!简单来说,一次函数就是一种线性关系。

说得直白点,就是“走得越快,离目的地越近”,这不就是咱们每天都在经历的事情吗?想象一下,你跟朋友去咖啡店,点了两杯拿铁,结果发现一杯要25块,另一杯也是25块。

那你们的总花费就是两杯乘以单价,哎呀,这不就是简单的数学嘛!我们常常说“钱没了就没了”,但这个公式却让我们轻松搞定了账单。

其实生活中的许多场景都能用一次函数来解释,比如说你每天上班的路程。

如果你骑自行车,骑得快一点,路上不堵车,那你很快就能到达公司,反之就得在车流中慢慢等。

再说说购物的事儿。

谁不喜欢逛街呢?你去超市买苹果,标价每斤10块,结果你一买就是三斤,嘿嘿,这个时候你就知道,三斤苹果的价格是30块。

这就是一次函数在你买买买的瞬间大显身手。

真是让人感慨万千,花钱的速度和回家的距离,都是成正比的嘛。

再聊聊你请朋友吃饭的故事。

大家一起聚餐,点了满桌的菜,最后结账的时候,常常是一人一半。

如果你们一共花了400块,那每个人就是200块。

简单吧?这就像是在学校学的数学题,虽然一开始可能会觉得复杂,但慢慢琢磨,就会觉得原来真没那么难。

就像“好事成双”,花钱的同时也收获了友情,这才是最重要的。

说到这里,我们不得不提一下交通。

你在高速公路上开车,车速越快,油耗越高。

一次函数在这里也同样适用。

你开了120公里的速度,油表一下子就掉得快,等到油箱见底,你就得停下来加油。

这种直线的关系,让你无时无刻不在感受到生活的规律。

朋友们总说,开车上路,别急,慢慢来,其实也是在告诉我们,有时候慢就是快,心态才最重要。

当然了,生活中还有许多有趣的例子。

比如说你做运动,越勤奋,越能瘦下来。

一次函数也告诉我们,努力和成果成正比。

每天跑步半小时,体重就能慢慢下降,这种感觉可比买到打折商品还要爽。

初二一次函数题型汇总

初二一次函数题型汇总

一次函数题型汇总一、利用一次函数的概念求字母例1. 已知32-+=-a x y x y a 的函数解析式为关于,若函数是一次函数,则=a ,若函数是正比例函数,则=a 。

例2. 当k 为何值时,函数)0(84)3(1≠-++=+x x x k y k 是一次函数?二、求一次函数的解析式例3. 若一次函数的图象经过A (2,1),B (-1,-3),C (m ,3),则m = 。

例4. 已知一次函数b kx y += 的自变量的取值范围是63-≤≤x ,相应的函数的取值范围是25-≤≤y ,求一次函数的解析式。

例5. 已知直线b kx y +=经过点A (0,-6),且平行于直线x y 2-=.(1) 求直线b kx y +=对应的函数解析式;(2) 如果直线b kx y +=经过点P (m ,2),求m 的值。

例6. 已知2-y 与1+x 成正比例关系,且当62=-=y x 时,.(1) 写出y x 与之间的解析式;(2) 求当3-=x 时,y 的值;(3) 求当的值时,x y 4=。

例7. 已知成正比例与成正比例,与x z z y 1+,且当11==y x 时,;当时0=x ,3-=y ,求x y 与的函数解析式。

三、直线的平移例8.(1) 直线轴的交点坐标个单位长度后,与轴向下平移沿x y x y 622+=是多少?(2) 将直线12+=x y 向右平移3个单位长度,则这时直线对应的函数解析式为 。

知识点扩展: 将b kx y +=上下平移m 个单位长度,则)(m ±+=b kx y (b 上加下减)将b kx y +=左右平移n 个单位长度,则b n x k y +±=)( (x 左加右减)例9. 将直线12+=x y 先向上平移2个单位长度,再向左平移1个单位长度后,求平移后的函数解析式。

四、一次函数性质的运用例10. 已知一次函数)1()14(+-+=m x m y(1) 当m 为何值时,x y 随的增大而减小?(2) 当m 为何值时,函数图象与y 轴的交点在x 轴下方?(3) 当m 为何值时,函数图象经过第二、三、四象限?知识点补充:K 决定一次函数的增减性,b 决定一次函数与y 轴的交点位置。

一次函数的应用问题归纳总结

一次函数的应用问题归纳总结

一次函数的应用问题归纳总结一、求表达式:1、已知两点坐标例:在平面直角坐标系中,已知直线经过点A(4,4),B(﹣2,1).求直线AB所对应的函数表达式。

2、通过文字叙述例:从地面竖直向上抛射一个小球,在落地之前,物体向上的速度v(m/s)是运动时间t(s)的一次函数.经测量,该物体的初始速度(t=0时物体的速度)为25m/s,经过2s物体的速度为5m/s.(1)请你求出v与t之间的函数关系式;(2)经过多长时间,物体将达到最高点?(此时物体的速度为0)3、通过图像(表格)例:去年入夏以来,全国大部分地区发生严重干旱,某市自来水公司为了鼓励市民节约用水,采取分段收费标准.若某户居民每月应缴水费y(元),用水量x(吨)的函数,其图象如图所示,(1)分别写出x≤5和x>5的函数解析式.(2)观察函数图象,利用函数解析式,回答自来水公司采取的收费标准.(3)若某户居民该月用水3.5吨,则应交水费多少元?若某户居民该月交水费9元,则用水多少吨?二、求面积例1、已知一次函数y=kx+b的图象平行于直线y=﹣3x,且经过点(2,﹣3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积.例2、如图:已知一次函数的图象与x轴交于点A,与y轴交于点B(0,2),且与正比例函数y=x的图象交于点C(m,4)(1)求m的值;(2)求一次函数表达式;(3)求这两个函数图象与x轴所围成的△AOC的面积.例3、如图,一次函数y=﹣x+m的图象与x轴和y轴分别交于点A和点B,与正比例函数y=x图象交于点P(2,n).(1)求m和n的值;(2)求△POB的面积;(3)在直线OP上是否存在异于点P的另一点C,使得△OBC与△OBP的面积相等?若存在,请求出C点的坐标;若不存在,请说明理由.例4、如图,直线l1:y1=﹣x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(﹣2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)求两直线交点D的坐标;(2)求△ABD的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.三.求两直线的交点例:如图,直线l1:y1=﹣x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(﹣2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)求两直线交点D的坐标;(2)求△ABD的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.四.性质的应用例1、已知一次函数y=kx+b的图象平行于直线y=﹣3x,且经过点(2,﹣3).(1)求这个一次函数的解析式;(2)求这个一次函数与两坐标轴所围成的图形面积.例2、在平面直角坐标系中,已知一次函数y=1-x的图象经过P1(2,y1)、2+P2(4,y2)两点,则y1y2(填“>”或“<”).例3、如图,直线l1:y1=﹣x+m与y轴交于点A(0,6),直线l2:y2=kx+1分别与x轴交于点B(﹣2,0),与y轴交于点C.两条直线相交于点D,连接AB.(1)求两直线交点D的坐标;(2)求△ABD的面积;(3)根据图象直接写出y1>y2时自变量x的取值范围.一次函数在近3年中考中的应用2019年成都考点:求两个一次函数的交点,求一次函数和反比例函数的交点,求三角形的面积。

一次函数应用题知识点总结

一次函数应用题知识点总结

一次函数应用题知识点总结一次函数是数学中的基础函数之一,其形式为y = kx + b,其中k和b为常数,x为自变量,y为因变量。

一次函数的图像是一条直线,其特点是斜率为k,截距为b。

在生活中,一次函数具有丰富的应用场景,例如经济学中的成本和收益分析、物理学中的速度和加速度问题、工程学中的线性规划问题等。

因此,掌握一次函数的知识对于解决实际问题具有重要意义。

本文将对一次函数的应用进行详细总结,包括经济学、物理学、工程学等方面的具体应用案例和解题方法。

经济学中的应用1. 成本和收益分析在经济学中,企业通常需要对生产成本和收益进行分析,以便制定合理的生产策略。

一次函数可以用来描述成本和收益的关系,其中斜率代表每单位产量的成本变化率,截距代表固定成本。

假设某企业生产某种产品,设生产成本C与产量x之间的关系为C = kx + b,其中k为单位产量成本,b为固定成本。

企业的总成本可以表示为C = kx + b,总收益可以表示为R = px,其中p为产品的售价。

则企业的利润为P = R - C = px - (kx + b) = (p - k)x - b,由于p - k为单位产量利润,因此利润与产量的关系是一次函数。

企业如果要最大化利润,可以通过求解一次函数的最大值来确定最优产量。

假设一次函数P = (p - k)x - b,当x达到最大值时,利润P也达到最大值。

2. 税收和福利分析在宏观经济学中,政府税收政策对社会福利的影响是一个重要的研究课题。

一次函数可以用来描述税收和福利之间的关系,其中斜率代表福利变化率,截距代表固定福利。

假设政府对某种商品征税,税收收入T与商品销量x之间的关系为T = kx + b,其中k为单位销量税收,b为固定税收。

利用一次函数可以进行福利分析,例如探讨税收调整对社会福利的影响。

物理学中的应用1. 速度和加速度问题在物理学中,一次函数可以描述物体的运动情况。

假设某物体在t时刻的位移为s(t),速度为v(t),加速度为a(t),则s(t)、v(t)和a(t)之间的关系可以用一次函数来描述。

一次函数的应用题分类总结整理

一次函数的应用题分类总结整理

实际问题中构建“一次函数”模型的常见方法一、确定解析式的几种方法:1. 根据实际意义直接写出一次函数表达式,然后解决相应问题;(直表法)2. 已经明确函数类型,利用待定系数法构建函数表达式;(待定系数法)3. 利用问题中各个量之间的关系,变形推导所求两个变量之间的函数关系式;(等是变形法) 二、重点题型1. 根据各类信息猜测函数类型为一次函数,并验证猜想;2.运用函数思想,构建函数模型解决(最值、决策)问题(一)、根据实际意义直接写出一次函数表达式,然后解决相应问题特点:当所给问题中的两个变量间的关系非常明了时,可以根据二者之间的关系直接写出关系式,然后解决问题,1.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支). (1)分别写出两种优惠方法购买费用y (元)与所买水性笔支数x (支)之间的函数关系式; (2)对x 的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.2,某实验中学组织学生到距学校6千米的光明科技馆去参观,学生王琳因事没能乘上学校的校车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准为:3千米以下(含3千米)收费8元,3千米以上,每增加1千米,收费1.8元。

(1)写出出租车行驶的里程数x 与费用y 之间的解析式。

(2)王彬身上仅有14元,乘出租车到科技馆的车费够不够?请你说明理由。

3、 某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。

(1)写出每月电话费y (元)与通话次数x 之间的函数关系式;(分段函数)(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。

4、我市某地一家农工商公司收获的一种绿色蔬菜,共140吨,若在市场上直接销售,每吨利润为1000元,经粗加工后,每吨利润可达4500元,经细加工后,每吨利润为6500元。

《一次函数》知识点归纳和题型归类

《一次函数》知识点归纳和题型归类

O c(件)t(月)12345一次函数知识点归纳和题型归类一、知识回顾1.一次函数定义形如y=的函数(其中k,b是常数,且k 0)叫做一次函数.特别地,当b=0时,一次函数y= (k≠0),这时y叫做x的正比例函数. 正比例函数一次函数。

2.一次函数图象一次函数y=kx+b(k≠0)的图象是一条经过( ,0)和(0, )的直线.正比例函数y=kx 是一条经过的直线.3.一次函数性质在一次函数y=kx+b(k≠0)(1)当k>0时,y随x的增大而 .(2)当k<0时,y随x的增大而 .(34(1)将方程组的每个方程都化为 .(2)在同一直角坐标系中画出这两个一次函数的 .(3)这两条直线的的坐标,就是这个二元一次方程组的解.5.一次函数与一元一次不等式的关系一次一次不等式kx+b>0(或kx+b<0)的解集,就是使一次函数中y>0(或y<0)的` 的取值范围.反映在图象上是一次函数图象在x轴上方部分(或x轴下方部分)对应的6.一次函数的应用在实际生活中,如何应用函数知识解决实际问题,关键是建立函数模型,即列出符合题意的函数解析式,再利用方程(组)求解.二、基础演练二.典型题训练题型一、点的坐标方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A(m,n)在第二象限,则点(|m|,-n)在第____象限;2、若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为______________________;3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_______,b=_________;若A,B关于y轴对称,则a=_______,b=__________;若若A,B关于原点对称,则a=_______,b=_________;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第______象限。

中考数学考点分析:一次函数的应用题分类总结

中考数学考点分析:一次函数的应用题分类总结

中考数学考点分析:一次函数的应用题分类总结形如y=kx+b(k,b为常数,k≠0)的函数叫一次函数。

y=kx(常数k≠0)是正比例函数,是专门的一次函数。

下文就一次函数的应用题分类进行归类总结,期望能关心大伙儿应对此类问题。

【一次函数难点】依照解析式中待定字母的取值研究函数图象在坐标系中的位置,要进行讨论,要运用数形结合的思想。

【表达式】(斜截式较常用。

仅当斜率k存在时才能使用斜截式和点斜式)一样式:ax+by+c=0斜截式:y=kx+b点斜式:y-y0=k(x-x0)截距式:x/a+y/b=1(a,b分别为x,y轴上的截距)两点式:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)【一次函数图像】2021中考数学考点:一次函数的图像分析【一次函数常用公式】1.求函数图像的k值:(y1-y2)/(x1-x2)。

2.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]。

我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。

什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在19 78年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。

专门是写议论文,初中水平以上的学生都明白议论文的“三要素”是论点、论据、论证,也通晓议论文的差不多结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。

明白“是如此”,确实是讲不出“什么缘故”。

全然缘故依旧无“米”下“锅”。

因此便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就专门难写出像样的文章。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改赠人玫瑰,手留余香。

实际问题中构建“一次函数”模型的常见方法一、确定解析式的几种方法:1.根据实际意义直接写出一次函数表达式,然后解决相应问题;(直表法)2. 已经明确函数类型,利用待定系数法构建函数表达式;(待定系数法)3. 利用问题中各个量之间的关系,变形推导所求两个变量之间的函数关系式;(等是变形法)二、重点题型1. 根据各类信息猜测函数类型为一次函数,并验证猜想;2.运用函数思想,构建函数模型解决(最值、决策)问题(一)、根据实际意义直接写出一次函数表达式,然后解决相应问题特点:当所给问题中的两个变量间的关系非常明了时,可以根据二者之间的关系直接写出关系式,然后解决问题,1.某办公用品销售商店推出两种优惠方法:①购1个书包,赠送1支水性笔;②购书包和水性笔一律按9折优惠.书包每个定价20元,水性笔每支定价5元.小丽和同学需买4个书包,水性笔若干支(不少于4支).(1)分别写出两种优惠方法购买费用y(元)与所买水性笔支数x(支)之间的函数关系式;(2)对x的取值情况进行分析,说明按哪种优惠方法购买比较便宜;(3)小丽和同学需买这种书包4个和水性笔12支,请你设计怎样购买最经济.2,某实验中学组织学生到距学校6千米的光明科技馆去参观,学生王琳因事没能乘上学校的校车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准为:3千米以下(含3千米)收费8元,3千米以上,每增加1千米,收费1.8元。

(1)写出出租车行驶的里程数x与费用y之间的解析式。

(2)王彬身上仅有14元,乘出租车到科技馆的车费够不够?请你说明理由。

3、某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。

(1)写出每月电话费y(元)与通话次数x之间的函数关系式;(分段函数)(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。

4、我市某地一家农工商公司收获的一种绿色蔬菜,共140吨,若在市场上直接销售,每吨利润为1000元,经粗加工后,每吨利润可达4500元,经细加工后,每吨利润为6500元。

该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨;如果对蔬菜进行精加工,每天可加工6吨;但两种加工方式不能同时进行,受季节等条件限制,公司必须在15天内(含15天)将这批蔬菜全部销售或加工完毕。

为此公司研制了两种可行方案:方案一:尽可能多地对蔬菜进行精加工,没有来得及进行加工的蔬菜,在市场上直接出售。

方案二:将一部分蔬菜进行精加工,其余蔬菜进行粗加工。

⑴写出方案一所获利润W 1;⑵求出方案二所获利润W 2(元)与精加工蔬菜数x(吨)之间的函数关系式;⑶你认为任何安排加工(或直接销售)使公司获利最多?最大利润是多少?5、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费,超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x(立方米),应交水费为y(元)(1)分别写出用水未超过7立方米和多于7立方米时,y与x之间的函数关系式;(2)如果某单位共有用户50户,某月共交水费514.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?6、已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。

已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。

若设生产N种型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元。

(1)求y与x的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?7、荆门火车货运站现有甲种货物1530吨,乙种货物1150吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢50节,已知用一节A型货厢的运费是0.5万元,用一节B型货厢的运费是0.8万元。

(1)设运输这批货物的总运费为y(万元),用A型货厢的节数为x(节),试写出y与x之间的函数关系式;(2)已知甲种货物35吨和乙种货物15吨,可装满一节A型货厢,甲种货物25吨和乙种货物35吨可装满一节B型货厢,按此要求安排A、B两种货厢的节数,有哪几种运输方案?请你设计出来。

(3)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多少万元?8、某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品,共50件。

已知生产一件A种产品,需用甲种原料9千克、乙种原料3千克,可获利润700元;生产一件B 种产品,需用甲种原料4千克、乙种原料10千克,可获利润1200元。

(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;(2)设生产A、B两种产品获总利润为y(元),生产A种产品x件,试写出y与x之间的函数关系式,并利用函数的性质说明(1)中哪种生产方案获总利润最大?最大利润是多少?9/杨嫂在再就业中心的支持下,创办了“润扬”报刊零售点,对经营的某种晚报,杨嫂提供了如下信息.①买进每份0.2元,卖出每份0.3元;②一个月(以30天计)内,有20天每天可以卖出200份,其余10天每天只能卖出120份.③一个月内,每天从报社买进的报纸份数必须相同,当天卖不掉的报纸,以每份0.1元退回给报社.(1)填表:(2)设每天从报社买进这种晚报x份(120≤x≤200)时,月利润为y元,试求y与x之间的函数关系式,并求月利润的最大值.10.A市和B市分别库存某种机器12台和6台,现决定支援给C市10台和D市8台.•已知从A市调运一台机器到C市和D市的运费分别为400元和800元;从B市调运一台机器到C市和D市的运费分别为300元和500元.(1)设B市运往C市机器x台,•求总运费W(元)关于x的函数关系式.(2)若要求总运费不超过9000元,问共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?(二)、明确函数类型,利用待定系数法构建函数表达式;关系或者给出函数的图像为直线或直线的一部分时,就等于特点:所给问题中已经明确告知为一次函数....告诉我们此函数为“一次函数”,此时可以利用待定系数法,设关系式为:y=kx+b ,然后寻找满足关系式的两个x与y的值或两个图像上的点,代入求解即可。

1、某地上年度电价为0.8元,年用电量为1亿度。

本年计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则本年度新增用电量y (亿度)与(x – 0.4 )(元)成反比例,又当x = 0.65时,y = 0.8。

(1)、求y与x之间的函数关系式;(2)、若每度电的成本价为0.3元,则电价调至多少元时,本年度电力部门的收益将比上年度增加20%?[ 收益 = 用电量× ( 实际电价–成本价 )]2.为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.•小明对学校所添置的一批课桌、凳进行观察研究,发现它们可以根据人的身高调节高度.于是,他测量了一套课桌、凳上相对应的四档高度,得到如下数据:(1(不要求写出x 的取值范围);(2)小明回家后,•测量了家里的写字台和凳子,写字台的高度为77cm ,凳子的高度为43.5cm ,请你判断它们是否配套?说明理由.3.我市某工艺品厂生产一款工艺品.已知这款工艺品的生产成本为每件60元.经市场调研发现:该款工艺品每天的销售量y (件)与售价x (元)之间存在着如下表所示的一次函数关系.(1)求销售量y (件)与售价x (元)之间的函数关系式;(2)你认为如何定价才能使工艺品厂每天获得的利润为40 000 元?4、某地长途汽车客运公司规定,旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用y (元)是行李重量x (公斤)的一次函数,其图象如图所示。

求 (1)y 与x 之间的函数关系式⑵ 旅客最多可免费携带行李的公斤数。

行李票费用︵元︶行李重量(公斤5、在抗击“非典”中,某医药研究所开发了一种预防“非典”的药品.经试验这种药品的效果得知:当成人按规定剂量服用该药后1小时时,血液中含药量最高,达到每毫升5微克,接着逐步衰减,至8小时时血液中含药量为每毫升1.5微克.每毫升血液中含药量y(微克)随时间x(小时)的变化如图所示.在成人按规定剂量服药后:(1)分别求出x≤1,x≥1时y与x之间的函数关系式;(2)如果每毫升血液中含药量为2微克或2微克以上,对预防“非典”是有效的,那么这个有效时间为多少小时?6、.已知A、B两城相距600千米,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即沿原路返回.下图是它们离A城的距离y(千米)与行驶时间x(小时)之间的函数图像。

(1)求甲车在行驶过程中y与x之间的函数关系式;(分段函数)(2)当它们行驶了7小时时,两车相遇.求乙车的速度.7、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:(1)分别求出表示甲、乙两同学登山过程中路程s(千米)与时间t(时)的函数解析式;(不要求写出自变量t的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点A处,求A点距山顶的距离;(3)在(2)的条件下,设乙同学从A处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B处与乙相遇,此时点B与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?8.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像。

9.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y (人)与售票时间x (分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a 的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?10.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.图15单位:cm(三)、利用问题中各个量之间的关系,变形推导所求两个变量之间的函数关系式;特点:所给题目一般涉及三个以上的量,而这些数量之间往往互相牵制,互有联系,因此要有足够耐心审题并逐个理清两两之间的关系,书写所要求的函数关系时要注意适当的等量代换!1.某公司装修需用A 型板材240块、B 型板材180块,A 型板材规格是60 cm×30 cm ,B 型板材规格是40 cm×30 cm .现只能购得规格是150 cm×30 cm 的标准板材.一张标准板材尽可能多地裁出A 型、B 型板材,共有下列三种裁法:(图15是裁法一的裁剪示意图)设所购的标准板材全部裁完,其中按裁法一裁x 张、按裁法二裁y张、按裁法三裁z 张,且所裁出的A 、B 两种型号的板材刚好够用. (1)上表中,m = ,n = ;(2)分别求出y 与x 和z 与x 的函数关系式;(3)若用Q 表示所购标准板材的张数,求Q 与x 的函数关系式,并指出当x 取何值时Q 最小,此时按三种裁法各裁标准板材 多少张?2.“一方有难,八方支援”.在抗击“5.12”汶川特大地震灾害中,某市组织20辆汽车装运食品、药品、生活用品三种救灾物资共100吨到灾民安置点.按计划20辆汽车都要装运,每辆汽车只能装运同一甲 乙种救灾物资且必须装满.根据表中提供的信息,解答下列问题:(1(2)如果装运食品的车辆数不少于5辆,装运药品的车辆数不少于4辆,那么车辆的安排有哪几种方案?(3)在(2)的条件下,若要求总运费最少,应采用哪种安排方案?并求出最少总运费.3、辽南素以“苹果之乡”著称,某乡组织20辆汽车装运三种苹果42吨到外地销售。

相关文档
最新文档