7.2 矩阵的初等行变换

合集下载

矩阵的初等变换

矩阵的初等变换

二、消元法解线性方程组
同解方程组
分析:用消元法解下列方程组的过程.
引例 求解线性方程组
2 x1 x2 x3 x4 2, 1
4
x1 x2 2 x3 x1 6 x2 2 x3
x4 2 x4
4, 4,
2
32
(1)
3 x1 6 x2 9 x3 7 x4 9, 4
一、矩阵的初等变换
1、定义1 下面三种变换称为矩阵的初等行变换:
1 对调两行(对调i, j 两行,记作ri rj); 2以数 k 0 乘以某一行的所有元素;
(第 i 行乘 k,记作 ri k)
3 把某一行所有元素的k 倍加到另一行
对应的元素上去(第 j 行的 k 倍加到第i 行上 记作ri krj).
由于三种变换都是可逆的,所以变换前的 方程组与变换后的方程组是同解的.故这三种 变换是同解变换.
因为在上述变换过程中,仅仅只对方程组
的系数和常数进行运算,未知量并未参与运
算.
若记
2 1 1 1 2
B

(
A
b)


1 4
1 6
2 2
1 2
4 4
3 6 9 7 9
3、定义3 如果矩阵A经有限次初等变换变成矩 阵B,就称矩阵A与B等价,记作A ~ B
r
A~B ,
c
A~B ,
等价关系的性质: (1) 反身性 A A; (2)对称性 若 A B ,则 B A; (3)传递性 若 A B, B C,则 A C. 具有上述三条性质的关系称为等价.
(1)交换方程次序; ( i 与 j 相互替换)

逆矩阵及初等变换

逆矩阵及初等变换

先假设n阶矩阵A, 满足 A ≠ 0, 即 矩阵A是可逆的
则有下列公式: 则有下列公式:
( A | E ) n×2 n ( E | A ) n×2 n →
行初等变换
1
施行初等行变换, 即对 n × 2n 矩阵 ( A E ) 施行初等行变换, 当把 A 变成 E 时,原来的 E 就变成 A1 .
例3
6 4 2 * 得 A = 3 6 5 , 所以 2 2 2
1 3 2 1 * 3 5 1 . A = A = 3 A 2 2 1 1 1
上页
下页
返回
例2 设
1 2 3 1 3 2 1 A = 2 2 1, B = 5 3, C = 2 0, 3 4 3 3 1
1 1 1
(4).若A可逆 则A 也可逆 且( A ) = ( A ) . , ,
T
T 1
1 T
上页
下页
返回
例1 解
1 2 3 . 求方阵 A = 2 2 1的逆阵 3 4 3 ≠0, 可逆。 经计算可得: |A| = 2 ≠0,知A可逆。 经计算可得: | 可逆
A11= 2,A21= 6,A31=-4, 2, 6, A12=-3,A22=-6,A32=5, =5, A13= 2,A23= 2,A33=-2, 2, 2,
1 * A = A, A
1
A A . 其中 *为方阵 的伴随阵
上页
下页
返回
由定理1和定理2可得:矩阵 由定理1和定理2可得:矩阵A 是可逆方阵的充 分必要条件是 |A| ≠ 0 。 | 称为奇异方阵 否则称为非 奇异方阵, 当 |A| = 0 时,A 称为奇异方阵,否则称为非 | 奇异阵。 奇异阵。 推论 ),则 若 AB = E(或 BA = E),则B = A -1 。 ( ),

矩阵的初等变换及应用的总结

矩阵的初等变换及应用的总结

矩阵的初等变换及应用内容摘要:矩阵是线性代数的重要研究对象。

矩阵初等变换是线性代数中一种重要的计算工具,利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系。

一矩阵的概念定义:由于m×n个数aij(i=1,2,….,m;j=1,2,….,n)排成的m行n列的数表,称为m行n列,简称m×n矩阵二矩阵初等变换的概念定义:矩阵的初等行变换与初等列变换,统称为初等变换1.初等行变换矩阵的下列三种变换称为矩阵的初等行变换:(1) 交换矩阵的两行(交换两行,记作);(2) 以一个非零的数乘矩阵的某一行(第行乘数,记作);(3) 把矩阵的某一行的倍加到另一行(第行乘加到行,记为).1.初等列变换把上述中“行”变为“列”即得矩阵的初等列变换3 ,如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A 与矩阵B等价,记作A~B矩阵之间的等价关系具有下列基本性质:(1) 反身性;(2) 对称性若,则;(3) 传递性若,,则.三矩阵初等变换的应用1.利用初等变换化矩阵为标准形定理:任意一个m×n矩阵A,总可以经过初等变换把它化为标准形2.利用初等变换求逆矩阵求n阶方阵的逆矩阵:即对n×2n矩阵(A¦E)施行初等行变换,当把左边的方阵A变成单位矩阵E的同时,右边的单位矩阵也就变成了方阵A的逆矩阵A^(-1)即(A|E)经过初等变换得到(E|A^(-1))这种计算格式也可以用来判断A是否可逆,当我们将A化为行阶梯形矩阵时,若其中的非零行的个数等于n时,则A可逆,否则A不可逆。

设矩阵可逆,则求解矩阵方程等价于求矩阵,为此,可采用类似初等行变换求矩阵的逆的方法,构造矩阵,对其施以初等行变换将矩阵化为单位矩阵,则上述初等行变换同时也将其中的单位矩阵化为,即.这样就给出了用初等行变换求解矩阵方程的方法.同理, 求解矩阵方程等价于计算矩阵亦可利用初等列变换求矩阵. 即.3.利用矩阵初等变换求矩阵的秩矩阵的秩的概念是讨论向量组的线性相关性、深入研究线性方程组等问题的重要工具. 从上节已看到,矩阵可经初等行变换化为行阶梯形矩阵,且行阶梯形矩阵所含非零行的行数是唯一确定的, 这个数实质上就是矩阵的“秩”,鉴于这个数的唯一性尚未证明,在本节中,我们首先利用行列式来定义矩阵的秩,然后给出利用初等变换求矩阵的秩的方法.定理:矩阵的初等变换不改变矩阵的秩,即若A~B则R(A)=R(B)为求矩阵的秩,只要把矩阵用初等行变换变成阶梯矩阵解体矩阵中非零行的行数即是该矩阵的秩利用矩阵值得概念,能够讨论线性方程组有解的条件,然后通过研究向量组的线性相关性,向量组的秩等重要概念,讨论线性方程组的结构。

矩阵的初等变换

矩阵的初等变换
定义:如果矩阵A经过有限次初等行变换变成矩阵B,就 定义 称矩阵 与B行等价 矩阵A与 行等价 行等价,记作A~B ; 矩阵
定义:如果矩阵A经过有限次初等列变换变成矩阵B,就 定义 称矩阵 与B列等价 矩阵A与 列等价 列等价,记作A~B ; 矩阵
定义:如果矩阵A经过有限次初等变换变成矩阵B,就称 定义 矩阵A与 等价 等价,记作A~B . 矩阵 与B等价
§1 矩阵的初等变换

1 2 A= 1 2
2 3 4 5 1 4 6 8 10 r2 −2r1 0 1 3 3 4 5 4 5 8 10 2
2 3 4 0 0 0
5 0 = A3 3 3 4 5 4 5 8 10
§1 矩阵的初等变换
§1
矩阵的初等变换
主要内容: 主要内容: 一、矩阵的初等行变换 二、矩阵的初等变换 三、矩阵之间等价 四、行阶梯形矩阵 五、行最简形矩阵
§1
矩阵的初等变换
定义:下面三种变换称为矩阵的初等行变换 初等行变换: 定义 初等行变换 (1) 对调两行 (对调i , j 两行,记作ri↔rj ); (2)以数k≠0乘某一行中的所有元素 (第i行乘k,记作ri×k) ; (3)把某一行中的所有元素的k倍加到另一行对应的元素上 去(第j行的k倍加到第i行上,记作ri+krj) .
r 2 − 2 r1 r3 − r1 r 4 − 2 r1
§1 矩阵的初等变换
r 2 ↔ r3
A1
− 1 × r4

1 0 0 0 2 1 0 0
2 1 0 0 3 0 1 0
3 0 0 1 4 0 0 0
4 0 0 0
5 0 = A2 0 0 5 0 = A3 0 0

第三节 矩阵的初等变换

第三节 矩阵的初等变换

6 3 9 3
(2) A r113
2 0
1 3 1 1 3 4
2 3 9 6
0 (3)A r13r3 0

6 18 21 1 3 4

定义2 矩阵的初等列变换:
设A是m n矩 阵,
(i) 对调A的两列(对调 i, j 两列, 记作 ci cj );
设A是m n矩阵,
(i) 对调A的两行(对调 i, j 两行, 记作 ri rj );
(ii) 以一个非零数 k 乘以A的某一行中的所有元素 (第 i 行乘以 k , 记作 kri );
(iii) 把A的某一行所有元素的 k倍加到另一行 对应的元素上去 (第 j 行的 k倍加到第 i 行上,记作 ri +krj).


其 中r就 是 行 阶 梯 形 矩 阵 中 非零 行 的 行 数.
(2)所 有与A矩 阵等 价 的 矩阵 组 成 的一 个集 合 , 称 为一 个 等 价类. 标 准形F 是 这个 等 价 类中 形 状最 简 单 的矩 阵.
(3) 矩阵A可以 只通过初等行变换 化为 行阶梯形、行最简单形. 再通过初等列变换 化 为 标 准 形.
1 6 4 1 4


r2 r4
0 2 3
4 0 2
3 1 0
1 1
5 5
03
1 6 4 1 4


rr43 32rr11
0 0 0
4 12 16
3 9 12
1 7 8
1

1121
1 6 4 1 4
(ii) 以非零数k 乘以A的某一列中的所有元素 (第 i 列乘以 k , 记作 kci );

矩阵的初等行变换

矩阵的初等行变换

矩阵的初等行变换初等行变换是一种矩阵的基本运算,它的目的是改变这个矩阵的上三角部分,如下所示:1. 换行:把矩阵的任意一行乘以一个非零常数,然后加到其他行中。

2. 乘法:在矩阵的某一行中乘以一个非零常数,然后加到其他行中。

3. 交换行:把矩阵的任意一行和另一行交换。

4. 加减:把一个矩阵中的任意一行,乘以一个非零常数,然后加到另一行中,或者把一行减去另一行,使得两个矩阵有相同的值。

5. 换列:把矩阵的任意一列与另一列交换。

6. 合并列:将一个矩阵的任意一列乘以一个非零常数,然后加到另一列中,或者把一列减去另一列,使得两个矩阵有同样的值。

7. 增行:把一个矩阵中的任意一行,乘以一个非零常数,然后加到另一行中,或者把一行减去另一行,使得两个矩阵有相同的值。

通常,初等行变换是使一个矩阵通过上述一系列的运算,转换成上三角矩阵,或者降低它的行数和列数在线性方程组中可以采用初等行变换求解,或者为将数学问题转化为方便的表达形式做准备。

初等行变换的应用:1. 用来解决线性方程组:利用初等行变换,可以将原矩阵中的不等式或者不等式变形成有条件地等式,从而解决线性方程组。

2. 求解矩阵的行列式:利用初等行变换,可以将原矩阵分解成上三角形矩阵,这时行列式只是系数的乘积,从而计算出矩阵的行列式。

3. 将非行列式矩阵转换成行列式:利用初等行变换,可以对原矩阵的每一行的向量做合并操作,使得矩阵变形成行列式矩阵,从而可以求出行列式的值。

4. 特征值与特征向量:利用初等行变换,可以将矩阵的特征多项式变形成八阶多项式,从而求出其特征值与特征向量。

5. 矩阵的相关运算:利用初等行变换,可以将原矩阵对角化,从而帮助解决其他矩阵问题,比如最小二乘问题,线性回归问题,数据处理等。

总之,初等行变换是一种非常有用的数学运算,可以帮助我们轻松解决矩阵运算的难题。

矩阵的初等变换

矩阵的初等变换
r
m n 矩阵A,B
1)A ~ B 可逆阵Pmm , 使PA B 2)A ~ B 可逆阵Pnn , 使AP B 3) A ~ B 的充要条件是 : 存在 m 阶可逆方阵 P 及 n 阶可逆方阵 Q, 使 PAQ B.
推论 : A可逆 A ~ E,
r
c
-5 3 1 例1 设A= , 求可逆阵P,使 2 -1 1 PA为行最简形.
初等方阵的逆及行列式
E(i, j)1 E(i(k))
1
E(i, j)
1 E(i( )) k
. ; .

E(i, j) | | E(i(k)) |
-1
; ; .
k
| E(i, j(k)) | 1
a11 a 21 例4 设A= a 31 a 41 0 0 0 0 1 0 P1 0 0 1 1 0 0
1 如上例中,A可化为 0 F 0 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0
特点:F的左上角是一个单位矩阵,其余元素全
为零. m n 矩阵 A 总可经过初等变换化为标准形
Er O F O O m n 此标准形由 m , n, r 三个数唯一确定,其中r 就是
a13 a 23 a 33 a 43
a12 a 22 a 32 a 42
a11 a 21 a 31 a 41
其中A可逆, 则B 1 __ A)A 1P1P2 ; B)P1A 1P2 ; C)P1P2 A 1; D)P2A 1P1
3.初等变换求逆 converse matrix by elementary operation 性质1 设 A 是一个 m n 矩阵,对 A 施行一

矩阵的初等变换及其应用

矩阵的初等变换及其应用

㊀㊀㊀㊀㊀㊀矩阵的初等变换及其应用矩阵的初等变换及其应用Һ顾江永㊀(宿迁学院文理学院,江苏㊀宿迁㊀223800)㊀㊀ʌ摘要ɔ矩阵的初等变换在代数学中具有重要的地位,本文给出了运用初等变换求解方程组的基础解系㊁特征值㊁多项式的最大公因式和Jordan标准形相似变换矩阵等方法,这些方法具有直观㊁简捷㊁有效等特点.ʌ关键词ɔ初等变换;基础解系;最大公因式;相似变换矩阵ʌ基金项目ɔ2019江苏省高校教学研究一般项目(2019SJA1997)一㊁引㊀言矩阵的初等变换包括矩阵的初等行变换和矩阵的初等列变换,矩阵的初等行(列)变换有三种形式[1]:(1)交换两行(列);(2)任一行(列)的k倍(kʂ0);(3)任一行(列)的k倍加到另一行(列).在代数学中,矩阵的初等变换有着非常重要且广泛的应用,它常被应用于行列式的计算㊁方程组以及矩阵方程的求解㊁向量线性关系的判定㊁求矩阵的秩以及逆㊁λ-矩阵的不变因子和矩阵的Jordan标准形等.张家宝给出了初等变换求逆的几种方法[2];石擎天等研究了初等变换求解方程组的特殊方法[3];于莉琦等介绍了初等变换在行列式㊁矩阵和方程组中的应用[4].本文给出了矩阵的初等变换求解方程组的基础解系㊁最大公因式和Jordan标准形的相似变换矩阵等方法及应用.二㊁预备知识引理1[5]㊀设矩阵Amˑn的秩为r,且Amˑn=PEr000æèçöø÷Q,其中Pmˑm,Qnˑn为可逆矩阵,则有P-100Enæèçöø÷AEnæèçöø÷Q-1=Er000Q-1æèççöø÷÷.证明㊀因为Amˑn=PEr000æèçöø÷Q,所以Er000æèçöø÷=P-1AmˑnQ-1,故P-100Enæèçöø÷AEnæèçöø÷Q-1=P-1AEnæèçöø÷Q-1=P-1AQ-1Q-1æèçöø÷=Er000Q-1æèççöø÷÷,注:引理1给出了化一个矩阵为标准形的求Q-1的方法.引理2㊀设矩阵Amˑn的秩为r,则矩阵AEnæèçöø÷仅经初等列变换可以化为β1,β2, ,βr,0, ,0Q-1æèçöø÷,其中β1,β2, ,βr线性无关,且AQ=β1,β2, ,βr,0, ,0().证明㊀因为Amˑn的秩为r,所以Amˑn的列秩等于r,即矩阵Amˑn列向量组的最大线性无关组由r个向量构成,不妨设为β1,β2, ,βr,故由初等变换的性质可得AEnæèçöø÷仅经初等列变换可以化为β1,β2, ,βr,0, ,0Q-1æèçöø÷.引理3[6]㊀设A是数域P上的n阶方阵,将矩阵λE-A经初等变换化为上三角形矩阵f1(λ)0 0∗f2(λ)0︙︙⋱︙∗∗fn(λ)æèççççöø÷÷÷÷,则fi(λ)=0(i=1,2, ,n)在数域P上的根即为矩阵A的全部特征根.证明㊀根据初等变换的性质可知,初等变换不改变λE-A=0的根,故f1(λ)0 0∗f2(λ) 0︙︙⋱︙∗∗fn(λ)=f1(λ)f2(λ) fn(λ)=0的根即为矩阵A的全部特征根.引理4㊀设f1(x),f2(x), ,fs(x)是数域P上的多项式,且f1(x),f2(x), ,fs(x)()T经初等行变换化为d(x),0, ,0()T,则d(x)即为f1(x),f2(x), ,fs(x)的最大公因式.证明㊀由辗转相除法原理直接可得[1].三㊁主要结论定理1㊀设齐次线性方程组Amˑnx=0,其系数矩阵Amˑn的秩为r,且Amˑn=PEr000æèçöø÷Q,又设Q-1=(η1, ,ηr,ηr+1, ,ηn),则ηr+1,ηr+2, ,ηn是线性方程组Amˑnx=0的基础解系.证明㊀设Qx=y1︙yr︙ynæèçççççöø÷÷÷÷÷=YrYn-ræèçöø÷,由Amˑnx=PEr000æèçöø÷Qx=PEr000æèçöø÷YrYn-ræèçöø÷=0,可得Yr=y1︙yræèççöø÷÷=0,所以x=Q-1YrYn-ræèçöø÷=Q-10︙0yr+1︙ynæèççççççöø÷÷÷÷÷÷.㊀㊀㊀㊀㊀令Q-1=(η1, ,ηr,ηr+1, ,ηn),则x=yr+1ηr+1+yr+2ηr+2+ +ynηn.因为Q是可逆矩阵,则ηr+1,ηr+2, ,ηn线性无关,所以ηr+1,ηr+2, ,ηn为方程组的一个基础解系.定理2[7]㊀设A是数域P上的n阶方阵,矩阵λEn-AEnæèçöø÷经初等变换化为φ1(λ)0⋱0φn(λ)Q(λ)æèççççöø÷÷÷÷(其中初等行变换只能在前n行进行).设Q(λ)的第j列为qj(λ),若λ-λ0()k为φj(λ)的初等因子,则Aqj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!æèçöø÷=qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!æèçöø÷λ0100λ00︙︙⋱100λ0æèççççöø÷÷÷÷.证明㊀由题设知,存在可逆矩阵P(λ),Q(λ),使得P(λ)λEn-A()Q(λ)=φ1(λ)0⋱0φn(λ)æèççöø÷÷.因为qj(λ)是Q(λ)的第j列,所以P(λ)λEn-A()qj(λ)=(0, ,0,φj(λ),0, ,0)T.又设qj(λ)的幂级数展开式为qj(λ)=qj(λ0)+qᶄj(λ0)1!λ-λ0()+qᵡj(λ0)2!λ-λ0()2+ ,代入P(λ)λEn-A()qj(λ)=(0, ,0,φj(λ),0, ,0)T,得λ0En-A()qj(λ0)=0,λ0En-A()qᶄj(λ0)+qj(λ)=0,λ0En-A()q(k-1)j(λ0)(k-1)!+qk-2()j(λ0)k-2()!=0.上面等式两边相加㊁移项并提取矩阵A可得A(qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!)=(qj(λ0),qᶄj(λ0)1!,qᵡj(λ0)2!, ,q(k-1)j(λ0)(k-1)!)λ0100λ0 0︙︙⋱100λ0æèççççöø÷÷÷÷.四㊁应用举例例1㊀求多项式f1(x),f2(x),f3(x)的最大公因式,其中f1(x)=x4+2x3+4x2+3x+2,f2(x)=x4+x3+3x2+x+2,f3(x)=x3+2x2+3x+2.解㊀因为f1(x)f2(x)f3(x)æèççöø÷÷=f1(x)-f2(x)f2(x)-xf3(x)f3(x)æèççöø÷÷=x3+x2+2x-x3-x+2x3+2x2+3x+2æèççöø÷÷=x3+x2+2xx2+x+2x2+x+2æèççöø÷÷=x3+x2+2xx2+x+20æèççöø÷÷=x2+x+200æèççöø÷÷,所以由引理4知,f1(x),f2(x),f3(x)的最大公因式为d(x)=x2+x+2.例2㊀求齐次线性方程组x1+x2+x3+x4+x5=0,3x1+2x2+x3+x4-3x5=0,5x1+4x2+3x3+3x4-x5=0{的基础解系.解㊀对系数矩阵A施行初等行变换如下A=111113211-35433-1æèççöø÷÷ r2-3r1r3-5r1111110-1-2-2-60-1-2-2-6æèççöø÷÷ r1+r2r2ˑ(-1)r3-r210-1-1-50122600000æèççöø÷÷.又10-1-1-5012261000001000001000001000001æèçççççççöø÷÷÷÷÷÷÷ c3+c1c4+c1c5+5c110000012261011501000001000001000001æèçççççççöø÷÷÷÷÷÷÷ c3-2c2c4-2c2c5-6c210000010001011501-2-2-6001000001000001æèçççççççöø÷÷÷÷÷÷÷则由引理2知,方程组的基础解系为η1=(1,-2,1,0,0)T,η2=(1,-2,0,1,0)T,η3=(5,-6,0,0,1)T.ʌ参考文献ɔ[1]王萼芳,石生明.高等代数(第五版)[M].北京:高等教育出版社,2019:5.[2]张家宝.浅谈求逆矩阵的几种方法[J].数学学习与研究,2020(10):4-5.[3]石擎天,黄坤阳.线性方程组求解及应用[J].教育教学论坛,2020(12):325-327.[4]于莉琦,高恒嵩.初等变换概述[J].数学学习与研究,2019(06):116.[5]徐仲,陆全,等.高等代数考研教案(第2版)[M].西安:西北工业大学出版社,2009.[6]卢博,田双亮,等.高等代数思想方法及应用[M].北京:科学出版社,2017.[7]朱广化.关于‘相似变换矩阵的简单求法“的改进[J].数学通报,1994(11):44-46.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0 0 0
定理7.1
化为阶梯矩阵,并进一步可化为行简化阶梯矩阵。
例7.2.1
1 3 0 2
把矩阵 A 1 4 4 2 化为行简化阶梯矩阵。
2 5 4 4
解: ②-① 1 3 0 2
1 3 0 2
A ③-①2 0
1
4
0
③+②
0
1
4
0 B
0 1 4 0
0
0
2 3 6
3 6 12
1 4 7
0 1 0
0
0
1
1 2 3 1 0 0
③+②(2)
0
3
6
4
1
0
0 0 0 1 2 1
即矩阵 A 不可逆。
小结:
互换变换
(1)矩阵的初等变换 倍乘变换
倍加变换
(2)矩阵 A 的秩——阶梯形矩阵中非零行的行数;
(3)逆矩阵的判断及求法。
作业:
习题7 第6,7,13题
或非奇异矩阵。
定理7.2 任何一个满秩矩阵都能通过初等行变换化为单位矩阵。
7.2.3 逆矩阵
1.逆矩阵的概念 定义7.12 设 A是 n 阶方阵,如果存在 n 阶方阵 B ,使得 AB BA E ,
则称矩阵 A可逆,并称 B是 A 的逆矩阵。记为 A1,即B A1。
例如:矩阵 A 32
11
(3)倍加变换:将矩阵某一行(列)所有元素的 k 倍加到另一行(列)
的对应元素上。 矩阵的初等行变换与矩阵的初等列变换统称为矩阵的初等变换
定义7.8 如果矩阵 A 满足下列条件
(1)矩阵的零行(如果存在的话)在矩阵最下方; (2)非零行的首非零元素其列标随着行标递增而严格增大。
则称该矩阵 A 为阶梯形矩阵,简称阶梯矩阵。
7.2 矩阵的初等行变换
7.2.1 初等行变换的概念 7.2.2 矩阵的秩 7.2.3 逆矩阵
7.2.1 初等行变换的概念
定义7.7 矩阵的初等行(列)变换是指对矩阵进行下列三种变换:
(1)互换变换:交换矩阵中任意两行(列)的位置;
(2)倍乘变换:用非零常数kk 0 乘以矩阵某一行(列)的所有元素;
定义7.9 首非零元素等于1,而且首非零元素1所在列的其
他元素全为零的阶梯形矩阵称为行简化阶梯形矩阵,简称行简化阶梯矩阵。
1 3 2 4
例如 0 0 1 1 为非阶梯矩阵,
0 0 5 3
1 4 2 3
0 0 1 1 为阶梯矩阵而非行简化阶梯矩阵,
0 0 0 0
1 0 3
0 1 2 为行简化阶梯矩阵。
0 0 0 0
1 0 12 2 ①-②3 0 1 4 0 C
0 0 0 0
式中B 为 A 的阶梯矩阵,C 为 A 的行简化阶梯矩阵。
7.2.2 矩阵的秩
定义7.10 经过有限次的初等行变换将矩阵A化为阶梯矩阵后, 该阶梯形矩阵中非零行的行数称为矩阵 A 的秩,记为秩( A) 或 r(A) 。
定义7.11 对于n 阶方阵 A,如果 r(A) n ,则称A 为满秩矩阵,

B
1 3
12 ,因为可以验
证 AB BA E 。所以矩阵 A可逆,且矩阵 B 是矩阵 A 的逆矩阵。
定理7.3 如果矩阵 A 是可逆的,则 A 的逆矩阵是唯一的。
【问题】是否所有的矩阵都存在着逆矩阵?
如:零矩阵就不存在逆矩阵,矩阵
2 0
10 也不存在逆矩阵。
定理7.4 矩阵 A可逆的充要条件是矩阵 A为满秩矩阵。
2 3
1 0
10
②+①(1)
1 0
2 1
1 1
0
1
所以
A1
3 1
12
①+②(2)
1 0
0 1
3 1
2
1
例7.2.3
1 2 3
用初等行变换求
A

4 7
5 8
6 的逆矩阵。
9
解:
1 ( A, E) 4
7
2 5 8
3 6 9
1 0 0
0 1 0
0 0 1
1 ②+①(4)
③+①(7)
定理7.5
n 阶可逆矩阵 A 经过一系列的初等行变换,必可化成 n
阶单位矩阵 A 经过一系列的初等行变换,必可化成 n 阶单位矩阵 E ;同时对
n 阶单位矩阵 E作同样的初等行变换,所得到的矩阵即为 A 的逆矩阵 A1 。
例7.2.2
用初等变换法求 A =11
2 3
的逆矩阵。
解:
(A, E)

11
相关文档
最新文档