典中点数的开方专训5 实数大小比较的七种技巧
实数比较大小的具体方法知识点

实数比较大小的具体方法知识点实数比较大小的具体方法知识点集锦任意两个实数之间都存在着大小关系,比较实数大小的方法有很多,本文是店铺整理实数比较大小的具体方法知识点集锦的资料,仅供参考。
实数比较大小的具体方法(1)求差法:设a,b为任意两个实数,先求出a与b的差,再根据“当a-b<0时,a0时,a>b”来比较a与b的大小。
(2)求商法:设a,b(b≠0)为任意两个正实数,先求出a与b的.商,再根据“当<1时,a1时,a>b”来比较a与b的大小;当a,b(b≠0)为任意两个负实数时,再根据“当<1时,a>b;当=1时,a=b;当>1时,a(3)倒数法:设a,b(a≠0,b≠0)为任意两个正实数,先分别求出a与b的倒数,再根据“当<时,a>b;当>时,a<b。
”来比较a与b的大小。
< p=""> </b。
”来比较a与b的大小。
<>(4)平方法:比较含有无理数的式子的大小时,先将要比较的两个数分别平方,再根据“在a>0,b>0时,可由a2>b2 得到a>b”比较大小。
也就是说,两个正数比较大小时,如果一个数的平方比另一个数的平方大,则这个数大于另一个数。
还有估算法、近似值法等。
两个实数的大小比较,形式有多种多样,只要我们在实际操作时,有选择性地灵活运用上述方法,一定能方便快捷地取得令人满意的结果。
(5)数轴比较法:实数与数轴上的点一一对应。
利用这条性质,将实数的大小关系转化为点的位置关系。
设数轴的正方向指向右方,则数轴上右边的点所表示的数比左边的点所表示的数要大。
如图,点A表示数a,点B表示数b。
因为点A在点B的右边,所以数a大于数b,即a>b.实数的比较大小法则正实数都大于0,负实数都小于0;正实数大于一切负实数,两个负实数绝对值大的反而小;在数轴上,右边的数要比左边的大。
比较实数大小的八种方法

比较实数大小的八种方法生活中,我们经常会遇到下面的问题:比较一个企业不同季度的产值,国家去年与前年的国民生产总值等实际问题的大小,转化成数学问题,就就是比较两个或多个实数的大小,比较实数大小的方法比较多,也比较灵活,现采撷几种常用的方法供大家参考。
一、法则法比较实数大小的法则就是:正数都大于零,零大于一切负数,两个负数相比较,绝对值大的反而小。
例1 比较与的大小。
析解:由于,且,所以。
说明:利用法则比较实数的大小就是最基本的方法,对于两个负数的大小比较,可将它转化成正数进行比较。
二、平方法用平方法比较实数大小的依据就是:对任意正实数a、b有:。
例2 比较与的大小。
析解:由于,而,所以。
说明:本题也可以把外面的因数移到根号内,通过比较被开方数大小来比较原数的大小,目的就是把含有根号的无理数的大小比较实数转化成有理数进行比较。
三、数形结合方法用数形结合法比较实数大小的理论依据就是:在同一数轴上,右边的点表示的数总比左边的点表示的数大。
例3 若有理数a、b、c对应的点在数轴上的位置如图1所示,试比较a、-a、b、-b、c、-c的大小。
析解:如图2,利用相反数及对称性,先在数轴上把数a、-a、b、-b、c、-c表示的点画出来,容易得到结论:四、估算法用估算法比较实数的大小的基本思路就是:对任意两个正实数a、b,先估算出a、b两数的取值范围,再进行比较。
例4 比较与的大小。
析解:由于,故,所以五、倒数法用倒数法比较实数的大小的依据就是:对任意正实数a、b有:例5 比较与的大小析解:因为,又因为,所以所以说明:对于两个形如(,且k就是常数)的实数,常采用倒数法来比较它们的大小。
六、作差法用作差法比较实数的大小的依据就是:对任意实数a、b有:例6 比较与的大小。
析解:设,则所以七、作商法用作商法比较实数的大小的依据就是:对任意正数a、b有:例7 比较与的大小。
析解:设,,则即八、放缩法用放缩法比较实数的大小的基本思想方法就是:把要比较的两个数进行适当的放大或缩小,使复杂的问题得以简化,来达到比较两个实数的大小的目的。
实数的大小比较及运算

实数的大小比较及运算实数是数学中的一个重要概念,它包括有理数和无理数两大类。
在数学运算中,实数的大小比较及运算是最基础的部分之一,对于学生来说,掌握实数的大小比较及运算是非常重要的。
本文将从实数的大小比较和基本运算两个方面进行详细介绍。
一、实数的大小比较1. 正数和负数的比较正数是大于零的实数,负数是小于零的实数。
在实数中,正数大于负数。
例如,1比-1要大,2比-2要大。
当然,绝对值较大的负数,比绝对值较小的正数要小。
比如,-5比3要小。
2. 零和正数、负数的比较零是实数中最小的数,比任何正数都要小,但是大于任何负数。
如0比1要小,0比-1要大。
3. 实数的比较运算规则(1)同号相乘为正,异号相乘为负。
(2)同号相加为正,异号相加为负。
(3)绝对值较大的数,在同号运算时,结果的绝对值较大;在异号运算时,结果的绝对值较小。
二、实数的基本运算1. 实数的加法实数的加法满足交换律、结合律和分配律等基本性质。
例如,a+b=b+a,(a+b)+c=a+(b+c),a(b+c)=ab+ac。
2. 实数的减法实数的减法可以转化为加法运算,即a-b=a+(-b)。
减法满足减法的交换律:a-b≠b-a。
3. 实数的乘法实数的乘法满足交换律、结合律和分配律等基本性质。
例如,ab=ba,a(bc)=(ab)c,a(b+c)=ab+ac。
4. 实数的除法实数的除法定义为a÷b=a×(1/b),其中b≠0。
除法满足除法的性质:a÷b≠b÷a。
5. 实数的乘方与开方实数的乘方定义为a的n次方是指n个a相乘,即an=a×a×…×a。
实数的开方是乘方的逆运算,即对于实数a,若b是满足b^n=a的实数,则b叫做a的n次方根。
通过以上详细介绍,相信大家对实数的大小比较及运算有了更深入的了解。
掌握实数的大小比较及运算是数学学习的基础,也是解决实际问题的重要方法。
在日常学习中多加练习,相信你会掌握实数的大小比较及运算,取得更好的学习成绩。
实数大小进行比较的常用方法-全.docx

实数大小进行比较的常用方法实数的大小比较是中考及数学竞赛中的常见题型,不少同学感到困难。
“实数”是初中数学的重要内容之一,也是学好其他知识的基础。
为帮助同学们掌握好这部分知识,本文介绍几种比较实数大小的常用方法,供同学们参考。
方法一 .运用方根定义法例1、比较 m 5 和3 4m 的大小解:根据平方根的定义可知:m- 5≥ 0,即 m≥ 5,则 4-m<0,34 m <0,又因为m 5 ≥0,由此可得:m 5 >34m .小结:该法适用于被开方数中含有字母的二次根式和三次根式的大小比较.方法二:差值比较法差值比较法的基本思路是设a,b 为任意两个实数,先求出 a 与 b 的差,再根据当a-b﹥ 0 时,得到 a﹥b。
当 a-b﹤ 0 时,得到 a﹤ b。
当 a-b=0,得到 a=b。
例 1:( 1)比较31与1的大小。
( 2)比较 1- 2与 1- 3 的大小。
55解∵3 1 - 1 =3 2< 0 ,∴ 3 1 < 1 。
55555解∵( 1- 2 )-(1- 3 )=32 >0,∴1- 2 >1- 3 。
方法三:商值比较法商值比较法的基本思路是设a,b 为任意两个正实数,先求出 a 与 b 得商。
当a< 1 时, a< b;当a>a 1 时, a> b;当bb b =1 时, a=b。
来比较 a 与 b 的大小。
例 2:比较31与1的大小。
5531131311解:∵÷ =< 1∴<5555方法四:倒数法倒数法的基本思路是设a,b 为任意两个正实数,先分别求出 a 与 b 的倒数,再根据当1>1时,a< b。
a b来比较 a 与 b 的大小。
例 3:比较2004 - 2003 与 2005 - 2004 的大小。
解∵1= 2004 + 2003,12005 + 20042005=200420032004又∵2004 + 2003 < 2005 + 2004∴2004 - 2003 > 2005 - 2004方法五:平方法平方法的基本是思路是先将要比较的两个数分别平方,再根据a > 0,b > 0 时,可由 a 2 > b 2 得到 a>b 来比较大小,这种方法常用于比较无理数的大小。
比较实数大小的方法

比较实数大小的方法实数大小比较是基础中的基础,重要性不言而喻。
它是我们在数学领域中经常会遇到的问题。
实数大小比较的概念很简单,就是将两个实数进行比较大小。
但是具体的比较方法却不是那么简单。
在本文中,我将系统地介绍实数大小比较的几种方法和应用场景。
一、实数的比较规律在介绍实数大小比较方法之前,我们需要了解一下实数的大小比较规律。
实数的大小比较规律可以概括为以下几点:1、如果两个实数中的一个大于另一个,那么这两个实数一定是不相等的。
2、如果两个实数相等,那么这两个实数必须具有相同的小数表示形式,即它们的小数点后的数字序列必须完全相同。
3、如果两个实数相等,在计算中可能得到不同的结果,这是因为它们的算术形式可能不同。
4、如果两个实数不等,我们需要比较它们的大小。
对于任意两个实数a 和b,它们之间的大小关系可以表示为以下四种形式:a > b:表示a 大于b。
a < b:表示a 小于b。
a ≥b:表示a 大于等于b,即a >b 或a = b。
a ≤b:表示a 小于等于b,即a <b 或a = b。
了解了实数的比较规律之后,我们就可以具体地讲解实数的大小比较方法。
二、实数绝对值比较法实数绝对值比较法是一种比较简单的方法,它是通过比较两个实数的绝对值的大小来确定它们的大小关系。
这种方法的基本思路非常简单,但是它并不适用于所有的实数比较问题。
在使用这种方法时,我们需要将两个实数的绝对值进行比较。
如果它们的绝对值相等,那么它们的大小关系就是相等的。
如果它们的绝对值不相等,那么我们可以通过比较它们的正负号来确定它们的大小关系。
例如,当我们需要比较两个实数-5 和3 时,我们可以将它们的绝对值分别进行比较,即-5 = 5,3 = 3。
因此,我们可以断言3 > -5。
虽然实数绝对值比较法比较简单,但是它仅仅适用于非负实数和负实数之间的比较。
对于一般实数的比较,这种方法并不适用。
三、相减比较法相减比较法是比较常用的一种实数比较方法。
实数大小比较

实数大小比较,教你你几招实数的大小比较法则与有理数的大小比较法则类似,在具体解决题时,应根据实数的特征,选用恰当的方法来比较大小,下面介绍几种常用的方法。
一、法则比较法。
可根据正数都大于0,负数都小于0,正数大于一切负数;两个负数比较大小,绝对值大的反而小。
这是比较实数大小最常用最基本的方法。
例1 比较下列各组中两个数的大小(1) -32 —— 25 (2)-3 —— -3 二、被开方数比较法。
一般的,若实数a>b ≥0,则a >b 例2比较6与35的大小我们可以把6写成36的形式,从而将问题转化为比较36与35的大小,只要比较36与35的大小即可。
三、平方比较法。
比较两个负数的大小,可先比较他们的绝对值的大小,为此可将他们的绝对值分别平方,从而转化为比较两个有理数的大小。
例3 比较 -7与-2.6的大小 因为()72=7 6.22=6.76,且7>6.76 所以()72>6.22 所以7>2.6 所以 -7<-2.6四、取近似值比较法。
利用计算器求出实数的近似值后,在比较实数的大小,这是比较简便易行的方法例4比较3+2与3.1的大小因为3≈1.732,2≈ 1.414 所以3+2≈ 1.732+1.414=3.146因为3.146 > 3.1 所以3+2>3.1五、中间值比较法。
可取一个中间值,借助这两个数与中间值的大小关系来比较这两个数的大小。
例5比较5与37的大小因为5>2 ,2=38>37所以5>37总之,比较实数大小的方法比较多,要再具体操作中应根据题目特点灵活选用简单易行的方法。
比较实数大小的七种方法

所 以、了 一 / > / / 、了 、
六、 倒数 比较法
一 /丽 . 、
例 6 在 下列 两数 之 间填 上适 当的不 等
县 . 一 ‘ 1 1 1 1
1 l 1 1 1 1 1‘ 1 1
比较 依据: b0 0 ÷, <. 若a>, D 则ab 且 >
解 =; , =+ , : 击 1 o 0
、 俪
歹 1 、 i : 14 + = 4 + > /_ 歹+ = 3 l4 . l 涵
所 以、 一 < / v 丽 l 、 /
+. 1
比较依据 :、 均为正数 , 口b 若孚 > , 口 1则 >
练 习 :在下列两数 之 间填 上适 当的不等
号
6 詈 1 6 詈 l < ; =则 ; <则a・ 若 , 若 , b
(砸 、
一 /丽 ) 、芝
参考答 案 :1> ( ) ;3 < ( ) ;2 > ( ).
( Y f + /6 ̄) v' 2 6 xY i
遇救外 学习 ( 年级 ) 九
因为雨 > 1 所 以 >
,
脚
<
.
再根据 比较两个负数 的大小 , 绝对值大 的
反而小 , 一 得 > 一 .
七、 中介值 比较法
一
2 1X2 2 、 01 01 ’
.
例 7 比较 、 而 一 / 1与 、 T + / l的大
小.
 ̄: .0 0 )I 2 1・ ]1 ) 1<
解: 因为 —
X21 / 0 2一x 2 1 / 00
一
( )一 / 13 、
, 9 9
~
一
\ 一 ; 厂 2
比较实数大小的方法

比较实数大小的方法
比较实数大小的方法有:
1. 直接比较:可以通过直接将两个实数进行大小比较来判断它们的相对大小。
例如,比较两个实数a和b,可以用a>b判断
a是否大于b,a<b判断a是否小于b,a==b判断a是否等于b。
2. 减法比较:可以将两个实数相减,然后分析差的正负来判断它们的相对大小。
如果差为正数,则第一个实数较大;如果差为负数,则第一个实数较小;如果差为0,则两个实数相等。
3. 乘法比较:可以将两个实数相乘,然后分析积的正负来判断它们的相对大小。
如果积为正数,则两个实数同号,较大的那个实数的绝对值较大;如果积为负数,则两个实数异号,绝对值较大的那个实数较小;如果积为0,则至少一个实数为0,
相对大小需要进一步比较。
4. 分数比较:可以将两个实数表示为分数形式,然后通过比较分子和分母的大小关系来判断它们的相对大小。
需要注意的是,对于浮点数的比较,由于浮点数的精度问题,直接使用等号进行比较可能会得到错误的结果。
应该使用浮点数比较的规范,例如设置一个虚拟的精度范围,通过比较两个浮点数的差值是否在该范围内来判断它们是否相等或大小关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
典中点数的开方专训5 实数大小比较的七种技巧
◐名师点金◑
实数的大小比较,可以根据实数的特征灵活地选择恰当的方法,除了常规的方法外,还有几种特殊的方法:比较绝对值法、开方法、平方法或立方法、取近似值法、放缩法、作差法、特殊值法等.
技巧1: 比较绝对值法 技巧2:开方法
1.比较-5-2与-7-2的大小. 2.比较712与56的大小.
技巧3:平方法或立方法
3.比较-10和-π的大小.
4.(1)比较2,3,320的大小; (2)比较310与2.3的大小.
技巧4: 取近似值法技巧 5
: 放缩法
5.比较5+2与4.3的大小.
6.比较6+2与57-2的大小.
技巧6: 作差法
技巧7: 特殊值法 7.比较13-12和3
2的大小.
8.已知-1<x <0,将x ,1x ,2x ,3x 按从小到大的顺序排为__________________________________.。