一个高可靠性的短路保护电路设计及其应用
直流开关稳压电源设计

直流开关稳压电源设计一、设计背景及意义随着电子技术的飞速发展,各类电子设备对电源的需求日益增长。
直流开关稳压电源以其高效、稳定、体积小、重量轻等优点,在通信、计算机、家用电器等领域得到了广泛应用。
设计一款性能优越、可靠性高的直流开关稳压电源,对于提高电子设备的整体性能具有重要意义。
二、设计目标1. 输出电压范围:12V±1V;2. 输出电流:2A;3. 转换效率:≥85%;4. 工作温度范围:25℃~+85℃;5. 具有过压、过流、短路保护功能;6. 体积小,便于安装。
三、设计方案1. 电路拓扑选择本设计采用开关电源的主流拓扑——反激式变换器。
反激式变换器具有电路简单、体积小、效率高等优点,适用于中小功率电源设计。
2. 主控芯片选型选用ST公司的STM32F103系列微控制器作为主控芯片,该芯片具有高性能、低功耗、丰富的外设资源等特点,能够满足开关电源的设计需求。
3. 功率开关管选型功率开关管是开关电源的核心元件,本设计选用N沟道MOSFET作为功率开关管。
根据设计指标,选用IRF530N型号MOSFET,其导通电阻低,可降低开关损耗,提高转换效率。
4. 输出整流滤波电路设计输出整流滤波电路采用肖特基二极管和LC滤波电路。
肖特基二极管具有正向压降低、开关速度快的特点,适用于开关电源整流。
LC滤波电路能有效抑制输出电压纹波,提高输出电压稳定性。
5. 保护电路设计为实现过压、过流、短路保护功能,设计如下保护电路:(1)过压保护:在输出端设置一个电压比较器,当输出电压超过设定值时,触发保护动作,切断功率开关管的驱动信号。
(2)过流保护:在功率开关管源极串联一个取样电阻,实时监测电流值。
当电流超过设定值时,触发保护动作,切断功率开关管的驱动信号。
(3)短路保护:在输出端设置一个电流比较器,当输出电流超过设定值时,触发保护动作,切断功率开关管的驱动信号。
四、实验验证与优化1. 搭建实验平台,对设计的直流开关稳压电源进行测试,观察输出电压、电流、效率等参数是否符合设计要求。
IGBT的短路特性及驱动设计

IGBT电流的限制电路一.功率晶体管被应用于电力设备来控制电能的转换,用它来作为一种开关,在特定的时刻进行开和关,IGBT的型号由系统的设计者选择,既要考虑正常的工作条件,又要考虑非正常的工作情况,在非正常工作情况下。
IGBT可能承受非常大的浪涌电流,电流的大小经常只能靠IGBT 的自身增益进行限制,在应用上希望器件效率高、承受短路电流的时间长。
由于器件固有的特点,不能够同时追求高效和长的短路时间,因此器件设计上只能在两者间进行折中考虑。
在应用上,短路是不可避免的,电路设计上应设法提高IGBT的工作效率,提高IGBT承受短路电流的能力。
在发生短路时,关断栅极驱动信号。
IGBT的增益高,短路电流越大,但短路时间就短。
相反IGBT的增益低,短路电流的越小,短路时间就越长。
一般短路时间不应超过10us。
在应用上一般通过检测故障电流,当检测到故障电流后,降低栅极驱动电压,限制短路电流,延长短路时间。
IGBT的短路电流具有下面几种效应1.短路电流热效应:如器件受到短路电流冲击,大电流产生的功率损耗将使温度急剧上升,由于芯片的热时间常数小,温度在芯片上的增加速度非常快,当温度增加到芯片的本征温度250°时,器件将失去阻断能力,因此门极不可能控制器件的通断。
通过降低器件的短路电流,减小了短路电流在芯片上的功耗,因而延长了短路电流时间。
2.锁住效应由于四层结构的IGBT有着类似于晶闸管的特性。
在工艺上。
为了防止晶闸管效应一般通过降低等效晶体管的增益和减小等效NPN晶体管的基极电阻rb。
当IGBT在故障关断情况下,由于MOSFET通道的作用,大部分电流通过rb被分流。
此时rb上的压降将使NPN晶体管的基极-发射极处于正向偏置,使晶体管导通从而引起寄生晶闸管工作,产生锁住效应。
在电路设计上,减小故障电流,使故障电流在rb上的压降减小,从而避免晶闸管的锁住效应。
3.过压效应当产生故障电流时,切断故障电流的电流下降率在电感上产生的电压为Ldi/dt。
万能式断路器的三段式保护原理与工作原理

万能式断路器的三段式保护原理与工作原理万能式断路器的三段式保护原理与工作原理一、引言万能式断路器是一种广泛应用于电气系统中的保护设备,主要用于保护电路和设备免受过流、过压、过热等异常情况的影响。
它具有较高的可靠性和安全性,广泛应用于工业、商业和住宅等领域。
本文将介绍万能式断路器的三段式保护原理与工作原理,帮助读者更好地理解和应用这一重要的电气设备。
二、保护原理万能式断路器采用三段式保护原理,即短路保护、过载保护和过压保护。
下面将详细介绍每一段保护原理及其工作原理。
1. 短路保护短路保护是万能式断路器的第一段保护,在电路发生短路故障时起作用。
当电路发生短路时,电流会急剧增大,超过设定的电流上限。
万能式断路器通过检测电流大小来触发短路保护机构,使断路器迅速切断电路,以防止电流过大造成设备损坏或触电事故。
2. 过载保护过载保护是万能式断路器的第二段保护,在电路发生过载时起作用。
过载是指电路中负载电流超过了设备的额定电流。
万能式断路器通过测量负载电流,并与额定电流进行比较,如果负载电流超过了额定电流的一定比例,断路器将触发过载保护机构,切断电路,以防止设备过载损坏。
3. 过压保护过压保护是万能式断路器的第三段保护,在电路发生过压时起作用。
过压是指电路中电压超过了设备的额定电压。
万能式断路器通过检测电路中的电压,并与额定电压进行比较,如果电压超过了额定电压的一定比例,断路器将触发过压保护机构,切断电路,以防止设备过压损坏。
三、工作原理万能式断路器的工作原理主要基于电磁吸合力和热膨胀原理。
下面将详细介绍万能式断路器的工作过程。
1. 正常工作状态在正常工作状态下,万能式断路器的电磁线圈通电,产生一定的电磁吸合力,将联动部件吸合在一起,使断路器保持闭合状态。
此时,电流从输入端流向负载端,电路正常通电。
2. 异常工作状态当电路发生短路、过载或过压等异常情况时,万能式断路器会通过保护原理进行相应的保护。
2.1 短路保护当电路发生短路时,电流急剧增大,超过设定的电流上限。
电路设计中的可靠性

电路设计中的可靠性电路设计中的可靠性电路设计中的可靠性是指电路在使用寿命内能够稳定、可靠地工作的能力。
随着技术的不断发展和应用范围的扩大,对电路设计的可靠性要求也越来越高。
在电子产品中,例如手机、电脑、汽车等,在电路设计中的可靠性问题直接关系到产品的性能、质量和寿命,因此非常重要。
首先,电路设计中的可靠性涉及到设计阶段和制造阶段两个方面。
在设计阶段,设计工程师需要合理地选择和配置电子元器件,以确保电路可以稳定地工作。
例如,在选择电容器时,需要考虑其耐压和容量等参数,以适应电路的工作环境。
此外,还需要合理地选择和配置电源、保护电路和散热器等,以提高电路的稳定性和可靠性。
在制造阶段,需要注意的是电路的布局和连接方式。
例如,在制作电路板时,需要保证线路的精确连接和电子元器件的正常焊接,避免因接触不良、高温等导致电路出现故障或失效。
其次,电路设计中的可靠性还与材料的选择和质量有关。
电子元器件的材料质量直接影响电路的可靠性。
在电路设计中,需要选择可靠的、高质量的电子元器件。
例如,在选择集成电路时,需要注意其耐高温、耐电磁干扰、抗震动等性能,以适应工作环境的需求。
另外,还需要考虑电子元器件的寿命和可靠度等参数,以确保电路的长期稳定工作。
此外,电路设计中的可靠性还需要考虑一些特殊的因素。
例如,温度对电路的可靠性有着重要影响。
过高或过低的温度都会降低电路的可靠性。
因此,在设计阶段,需要合理地安排散热器和通风孔,以保持电路的正常工作温度。
另外,还需要注意电路对电磁干扰的抵抗能力。
在电磁环境复杂的场合,需要采取一些电磁屏蔽措施,避免电路因电磁干扰而发生故障。
最后,电路设计中的可靠性还需要进行可靠性分析和测试。
可靠性分析可以通过模拟和计算等方法,预测电路的可靠性,找出潜在的问题和风险。
可靠性测试则是通过现场实测的方式,验证电路的可靠性。
在电路设计过程中,需要进行成本与可靠性的平衡。
对于一些高可靠性要求的电子产品,例如航天器、医疗设备等,可以采用冗余设计、备份系统等方法来提高电路的可靠性。
一个高可靠性的短路保护电路设计及其应用

De i n nd a lc to o i h y r l bl ho tc r ui o e to ic i sg a pp i a i n fa h g l e i e s r — i c tpr t c i n cr u t a
LUO Zhic ng.H UA NG iz en —o Sh —h
Ab t a t s r c :Ba e n a c n tn u r n i i cr u t a h g l eib e c re t i tcr u tf rs ot i u tw sd s n d a d s d o o s tc re tl n t i i ih y r l l u n mi i i o h r r i a e i e n a r c . a 1 c cc g
第 l 8卷 第 1 0期
V0 . 8 I1 No 1 .0
电子 设 计 工 程
El cr n c De in Engne rn e to i sg i eig
21 0 0年 l 0月
0c .2 0 t 01
一
个 高可靠 性 的短 路保护 电路设计 及其 应用
罗 志聪 ,黄 பைடு நூலகம் 震
v ld t d t r i g prncpl s t tt e r c i e ure ti i o e c o di o a c ra n s ae ba e n c re tm i o ai a e .Iswo k n i i e i ha h e tf rc r n s m r r d a c r ng t et i c l s d o u r n r r i cr ui,a d t n t r ug h a ln e it ri o a c re po di ot g inal u e s lmit h o g he  ̄e a k ic t n he h o h t e s mp i g r sso nt o r s n ng v la e,f ly c r nti i t ed t r u h t db c cr ui.ADS smulto e u t ho t a v n i h r sa l r e n ic t i a in r s ls s w h te e ft e e i a g umbe fg o d—e e o s ro r un lv ln ie,i c n e fci ey pr tc he t a fe tv l oe tt rgua o sa e p t ur f tt tb y e lt r nd k e he t n o sae sa l .Onc h h r— ic tc n to s r mo e e t e s o tcr ui o diin i e v d,t e r g a o y t m u o tc ly h e ultr s se a t mai al r t r ot e no ma pe ai g m o e e u nst h r lo r tn d . Ke y wor :ln a e u ao s;c ren i i c r u t i h y r ibl ds i e rr g l tr u r tlm t ic i ;h g l ela e;a t ma ial eur o t e no ma e ai g m o e u o tc ly r t n t h r lop r tn d
安全控制电路的等级划分

安全控制电路的等级划分安全控制电路是用于控制各种设备和系统的电路,其主要作用是保护设备和系统免受电气故障和人为因素的影响,确保其正常运行和使用的安全性。
为了更好地对安全控制电路进行管理和维护,通常会将其划分为不同的等级。
1. 一级安全控制电路:一级安全控制电路是最高级别的安全控制电路,其主要用于保护最关键的设备和系统,例如核电站、航空器等。
这种类型的电路通常采用最严格的安全控制措施,包括多重冗余系统、失效诊断和紧急故障切断等。
一级安全控制电路的可靠性和安全性要求非常高,并且需要经过严格的测试和认证。
2. 二级安全控制电路:二级安全控制电路主要用于保护一些重要的设备和系统,例如汽车、工业机械等。
这种类型的电路通常采用较为严格的安全控制措施,例如在关键部位设置传感器和急停装置,以及实施防误操作和防爆破等安全策略。
二级安全控制电路的可靠性要求较高,需要经过基本的测试和认证。
3. 三级安全控制电路:三级安全控制电路主要用于保护一些一般设备和系统,例如家用电器、办公设备等。
这种类型的电路通常采用一些基本的安全控制措施,例如短路保护、过流保护和过温保护等。
三级安全控制电路的可靠性要求相对较低,但仍需要满足基本的安全标准和要求。
不同等级的安全控制电路的划分主要根据它们所用于保护的设备和系统的重要性和安全性要求来确定。
对于一级安全控制电路,必须要有高可靠性和高安全性的设计和控制措施,以确保设备和系统的安全运行。
而对于二级和三级安全控制电路,可靠性和安全性要求相对较低,但仍需要考虑一些基本的安全因素。
总之,等级划分是为了更好地管理和维护安全控制电路,不同等级的电路采用不同的安全措施和标准,以适应不同设备和系统的安全性需求。
这种等级划分有助于提高设备和系统的安全性,减少电气故障和人为因素对其的影响。
为了更好地管理和维护安全控制电路,不同等级的安全控制电路采用不同的安全措施和标准。
一级安全控制电路主要用于保护最关键的设备和系统,其可靠性和安全性要求非常高,需要经过严格的测试和认证。
IGBT保护电路设计

关于IGBT保护电路设计必知问题绝缘栅双极晶体管(Insulated Gate Bipolar Tramistor,IGBT)是MOSFET与GTR的复合器件,因此,它既具有MOSFET的工作速度快、开关频率高、输入阻抗高、驱动电路简单、热温度性好的优点,又包含了GTR的载流量大、阻断电压高等多项优点.是取代GTR的理想开关器件。
IGBT目前被广泛使用的具有自关断能力的器件,广泛应用于各类固态电源中。
IGBT的工作状态直接影响整机的性能,所以合理的驱动电路对整机显得很重要,但是如果控制不当,它很容易损坏,其中一种就是发生过流而使IGBT损坏,本文主要研究了IGBT 的驱动和短路保护问题,就其工作原理进行分析,设计出具有过流保护功能的驱动电路,并进行了仿真研究。
二IGBT的驱动要求和过流保护分析1 IGBT的驱动IGBT是电压型控制器件,为了能使IGBT安全可靠地开通和关断.其驱动电路必须满足以下的条件:IGBT的栅电容比VMOSFET大得多,所以要提高其开关速度,就要有合适的门极正反向偏置电压和门极串联电阻。
(1)门极电压任何情况下,开通状态的栅极驱动电压都不能超过参数表给出的限定值(一般为20v),最佳门极正向偏置电压为15v土10%。
这个值足够令IGBT饱和导通;使导通损耗减至最小。
虽然门极电压为零就可使IGBT处于截止状态,但是为了减小关断时间,提高IGBT的耐压、dv/dt耐量和抗干扰能力,一般在使IGBT处于阻断状态时.可在门极与源极之间加一个-5~-15v的反向电压。
(2)门极串联电阻心选择合适的门极串联电阻Rg对IGBT的驱动相当重要,Rg对开关损耗的影响见图1。
图1 Rg对开关损耗的影响IGBT的输入阻抗高压达109~1011,静态时不需要直流电流.只需要对输入电容进行充放电的动态电流。
其直流增益可达108~109,几乎不消耗功率。
为了改善控制脉冲的前后沿陡度和防止振荡,减少IGBT集电极大的电压尖脉冲,需在栅极串联电阻Rg,当Rg 增大时,会使IGBT的通断时间延长,能耗增加;而减少RF又会使di/dt增高,可能损坏IGBT。
动力,锂电池短路保护mos 选择

铅酸电池具有安全、便宜、易维护的特点,因此目前仍然广泛的应用于电动自行车。
但是铅酸电池污染大、笨重、循环次数少,随着世界各国对环保要求越来越高,铅酸电池的使用会越来越受到限制。
磷酸铁锂电池作为一种新型的环保电池,开始逐步的应用到电动车中,并且将成为发展趋势。
通常,由于磷酸铁锂电池的特性,在应用中需要对其充放电过程进行保护,以免过充过放或过热,以保证电池安全的工作。
短路保护是放电过程中一种极端恶劣的工作条件,本文将介绍功率MOSFET在这种工作状态的特点,以及如何选取功率MOSFET 型号和设计合适的驱动电路。
电路结构及应用特点电动自行车的磷酸铁锂电池保护板的放电电路的简化模型如图1所示。
Q1为放电管,使用N沟道增强型MOSFET,实际的工作中,根据不同的应用,会使用多个功率MOSFET并联工作,以减小导通电阻,增强散热性能。
RS为电池等效内阻,LP为电池引线电感。
正常工作时,控制信号控制MOSFET打开,电池组的端子P+和P-输出电压,供负载使用。
此时,功率MOSFET一直处于导通状态,功率损耗只有导通损耗,没有开关损耗,功率MOSFET的总的功率损耗并不高,温升小,因此功率MOSFET可以安全工作。
但是,当负载发生短路时,由于回路电阻很小,电池的放电能力很强,所以短路电流从正常工作的几十安培突然增加到几百安培,在这种情况下,功率MOSFET容易损坏。
锂电池短路保护的难点(1)短路电流大在电动车中,磷酸铁锂电池的电压一般为36V或48V,短路电流随电池的容量、内阻、线路的寄生电感、短路时的接触电阻变化而变化,通常为几百甚至上千安培。
(2)短路保护时间不能太短在应用过程中,为防止瞬态的过载使短路保护电路误动作,因此,短路保护电路具有一定的延时。
且由于电流检测电阻的误差、电流检测信号和系统响应的延时,通常,根据不同的应用,将短路保护时间设置在200μS至1000μS,这要求功率MOSFET在高的短路电流下,能够在此时间内安全的工作,这也提高了系统的设计难度锂电池短路保护当短路保护工作时,功率MOSFET一般经过三个工作阶段:完全导通、关断、雪崩,如图2所示,其中VGS为MOSFET驱动电压,VDS为MOSFET漏极电压,ISC为短路电流,图2(b)为图2(a)中关断期间的放大图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个高可靠性的短路保护电路设计及其应用
电子设计工程作者:罗志聪黄世震
一个高可靠性的线性稳压器通常需要有限流保护电路,以防止因负载短路或者过载对稳压器造成永久性的损坏。
限流保护通常有限流和折返式限流2种类型。
前者是指将输出电流限定在最大值,该方法最大缺点是稳压器内部损失的功耗很大,而后者是指在降低输出电压的同时也降低了输出电流,其最大优点是当过流情况发生时,消耗在功率管能量相对较小,但在负载短路时,大多数折返式限流型保护电路也没有彻底关断稳压器,依然有电流流过,进而使功率MOS管消耗能量,加快器件的老化。
针对上述情况,在限流型保护电路的基础上,设计改进了一个短路保护电路,确保短路情况下,关断功率MOS管。
本文分别定性和定量地分析了这种短路保护电路的工作过程和原理,同时给出基于TSMCO.18μm CMOS工艺的Spectra仿真结果。
1 短路保护电路的工作原理
高可靠性短路保护电路的实现电路如图1所示,其中VMP是线性稳压器的功率MOS管,R1、R2为稳压器的反馈电阻;VMO和VMP管是电流
镜电路,VMO管以一定的比例复制功率管的电流,通过电阻R4转化为检测电压;晶体管VM1完成电平移位功能,最后接入由VM8~VM12等MOS管组成的比较器的正输入端(Vinp),比较器的负输入端(Vinm)与输出端(0UT)相连;VM13、VM14组成二极管连接形式为负载的共源级放大电路;VM14和VMp1构成电流镜电路;晶体管VMp1完成对功率管VMP的开关控制,正常工作时,VMp1的栅级电位(Vcon)为高电平,不会影响系统的正常工作,短路发生时,Vcon将为低电平,使功率管关断。
1.1 工作原理的定性分析
当短路发生时,比较器的负输入端电位(Vinm)为0 V;同时VM1管将导通,因此比较器的正输入端电位大于0 V,最终比较器的输出节点电位(Vcom)为高电平,在MOS管VM13、VM14作用下,控制信号Vcon 将为低电平,最终VMP管的栅极电压将升高,进而关断P功率管,实
现短路保护。
实现短路保护后,VM1管将关断;VM3和VM4组成电流镜,晶体管VM2的作用是保证电路在短路期间(VM1管关断),比较器正输入端的电压始终高于比较器的负输入端电压(即使系统存在地平面噪声),从而使Vcon电压始终为低电平,确保电路在短路发生期间始终都能关断P 功率管,实现保护电路的高可靠性。
同时当短路发生时(即Vcon信号为低电平),VM7管正常工作,VM5管将导通,有一定的电流流向0UT端;因此一旦短路消除(即0UT端接有负载电阻),VM5管将对负载电容和负载电阻组成的并联RC网络充电,0UT端电压升高,Vcon信号将变为高电平,电路自动恢复正常状态。
1.2 工作原理的定量分析
由电路分析可知,比较器的正负输入端关系为:
比较器输入端的Vinp,因此比较器输出信号Vcon为低电平,将关断P功率管,实现短路保护。
当P功率管关断后,ID0=O,晶体管Vcon将截止,此时比较器Vinp 输入端电压Vmin_OD取决于晶体管VM2、VM3、VM4组成的网络,只要保证Vmin_OD大于Vinm电压(Vinm=VOUT=O),P功率管将一直处于关闭状态。
接下来将分析VM2、VM3和VM4组成的网络如何确保Vmin_OD大于0。
分析电路可知,VM2、VM3工作在饱和区,VM4工作在线性区,因此ID3>ID4,ID4=ID2。
因此选取,即可得到Vinp>0。
本文VM3的宽长比为VM2的宽长比的10倍,Vmin_OD=2.6 mV。
当短路排除后,流过VM5的电流将对RC网络充电,过t秒后Vinm(0UT)端电压将大于Vmin_OD,电路正常工作。
其中充电时间为:
式中IDM5为VM5的漏电电流,RL=VOUT/Imax,CL为负载电容,其中Imax 是系统规定的最大负载电流。
要使系统能正常启动,IDM5必须满足
IDM5>VOUT/RL,因此合理选取参数,就能正常启动。
2 仿真结果与讨论
基于TSMC O.18μm CMOS工艺,仿真结果如图2~图3所示。
仿真结果表明输出短路时,输出电流为O,P功率管被关断,实现短路保护。
图3(a)所示曲线的仿真条件是输出负载周期性地从0 Ω变化到5 Ω。
仿真结果表明当输出发生短路时(即负载为0),输出电流被限制在最大电流值,这样功率MOS管会消耗大量功耗,将加快器件的老化。
图3(b)所示曲线的仿真条件与图3(a)的条件一样。
仿真结果表明当输出发生短路时(即负载为0),输出电流被限制为O,即功率MOS管被完全关断,同时表明系统具有自动恢复的特点,即负载短路消除后,系统恢复正常工作。
3 结论
在限流电路的基础上,设计改进一个短路保护电路,确保在短路情况下,彻底关断功率MOS管,减少短路发生时系统损失的功耗。
同时该电路具有以下特点:高可靠性、自动恢复,即使地平面存在大量噪声,当短路发生
时,稳压器的功率管截止,实现保护,而短路一旦消除,稳压器的输出将自动恢复到正常状态,有效地保护系统。
在蓝牙功率放大器电源管理电路中得到了很好应用。